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Abstract

An artificial neural network is proposed which
processes functions rather than data point evalvations of
«functions. This functional newral network uses neurons
which are functionals and is based upon the system
identification techniques of Zyla and deFigueiredo. As such
it uses Volterra functionals in a Fock space, which is a
reproducing kernel Hilbert space, with weights which are
themselves functions. The main advantage is that this
functional neural network can identify systems as functional
input-output maps rather than mappings of data points into
data points.

1 Introduction

Present day anificial networks normally take input
data, weights it and sums into a nonlinear output sigmoidal
type of output function. Standardly the input data is a
numerical data set, such as the pixel intensity of a
discretized image. As such these artificial neural networks
have proven (o be effective classifiers and pattem
recognizers in situations where closed form mathematical
solutions are hard to obtain. But in many sitvations the data
is a set of functions, rather than their values at specific
arguments. Such would be the case for system identification
where one desires the input output map as an operator
rather than as the set of input-output data values. In the case
of linear time-invariant systems such an operator could be
specified by the transfer function or equivalently by the
impulse response function. If we treat the latter in a
functional way, for example as the kemel of the convolution
input-output map, then we become interested in functional
maps as descriptions of systems and significant problems of
systems identification become those of identifying
functional maps. Although the convolution functionals,
represented by their kemels, characterize all linear time-
invariant continuous systems, when we turn to the more
prevalent nonlinear systems the situation is much more
complex. Unfortunately the mathematics for general
nonlincar systems is still rather primitive in terms of
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obtaining practical results. However, the theory of Volterma
functionals is developed to the point that in the abstract one
can obtain a Volterra functional representation of a system
given its sufficient input and output function pairings. Here
we review in section 11 the situation, as presented in [1], for
system identification via Volterra functionals in using a
Fock space. Then in section III we apply the resulis of
section II by introducing a functional neural network which
solves the minimum norm problem in a Bochner space
related 1o the Fock space to which the Volterra functional
belongs. In so doing the functional neural network is
trained on input-output exemplar function pairings to set
the weights, which themselves are functions. Then the
functional neural network carries out the system
identification by associating a Volterra functional input-
output map.

2 Review of Fock Space Identification
Theory

Because we are interesied in characterizing
dynamical systems described by nonlinear mappings V of
input functions u=u(-) into output functions y=y() we
consider the Volierra series representation as it is a
description of great generality. In order to carry out an
identification we specify a real interval I of time t over
which identification is to be made. By definition we take
y(-}=V.(u{:)) which when evaluated at time t is denoted
¥()=V(u(-)); written as a Volterra series this is [2]

y(t) =V, (u())=

Z%I...Ihx(ml.....l.)u(tl)...ll(lk)dtl.._d(k (2.1)
k=0 .'l f

in which the Volterra map V() is characterized by the
kemels hy; these latter designate k-(multi)linear maps
defined on the inputs as indicated by the integrals (all of
which are taken over I here and in the following). We make
all of the assumptions of [1] on the spaces to which the
various variables and operators belong, reviewing some of
these as we proceed. For simplicity of the treatment we limit



to the single-input single-output real-valued case, that is u
and y are taken {o be one-dimensional real valued functions
of the real variable time, though extensions to multiple
input multiple output cases are readily made. Also on
physical grounds and in line with [1] we assume that u and
y and sufficiently many, n, of the outputs derivatives have
finite energy by taking all such functions to be square
integrable over I,

The identification of the system as carried out in
(11 rests crucially upon the nonlinear Volterra functional
V() belonging to a special reproducing kemel Hilbert
space, called a Fock space and designated F, and the
associated Volterra operator V.(:) belonging to a Bochner
space B2, these assumptions being equivalent to assuming
the following three physically reasonable conditions:

a) The ith partial derivative, h{ =a'n, /21!, with
respect o t of hy e:usls evcrywhcre on I for i=0,...,n-1as 2
map from I into L2(k), where 1K is the k-dimensional cube
of sides I, and the nlh parual derivative with respect to t is a
map from I into L2@k+1),

b) There exists a real constant r such that
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c) hg(tity,...ty) is invariant 10 permutations (that is,
symmetric) in the variables 1;.,..., ty
Although not so important physically, condition a) is
needed for guaranteeing the mathematical existence of the
reproducing kernel to be introduced while b) is needed to
guarantee convergence of the Volterra series. Condition ¢)
is of secondary importance since the nonsymmetric parts
cancel out in the inlegrals anyway.

Given 1 we introduce the scafar product of two
elements V(-) and W(-) of Fock space Fy as follows. Let hy
be the kernels for V and gy be those for W, then

<o fori=0,...,n 2.2)

(VO W, (g, = giﬁhku:.......)gt (I S
(2.3a)

where the scalar product of any two (Lebesgue) square

integrable functions g and h of k variables, t;, ..., &, is

given by
(s'h)l..'(l') =
| j I 8Lyt et N8y g ennnty Xyt .8t

Lty &
(2.3b)
With this latter scalar product the Fock space of the
Volterra functionals V(-) becomes an Hilbert space. There
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is also a Hilbert space associated with the Volterra operator
V.(-) which will be needed for the system identification;

thus the Bochner space B2 becomes an Hilbert space if we
associate with it the scalar product

a1
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where the a; are any chosen positive constants. We note that
the operator V.(:), which maps the full input function u(-)
into the full output function y(-), represents the system as a
Bochner space map taking a time t in the time interval |
into the Fock space Volterra map V(') which maps full
input functions u(-) into output functions evaluating them at
time t, that is into y(t).

A reproducing kemnel for F, is the following
functional K(-,-) which maps L2MxL2Q) into the real
numbers

K(w,v)= exp( (u.),5,) @s)

To see that this K is a reproducing kemnel for the Hilbert
Fock space note that

K(“r’) = exp('} (u'.)l-’(l)) (2.6)

If we expand this exponential in a power series indexed by k
and if we set K(u,)=W(:) for (2.3) we se¢ by observing
{2.1) that the kemnels for W are

1 L,
=<u®ud. . Qu=—7ud®
By =—pubu us-gudu an

where ®® = k - fold tensor product

In other words

(V. K@), =): Teer .ue“ Wpg = Vel

(2.8)

That is, the scalar product in the Fock space of the Volterra
kemel with the functional K reproduces the Volterra kernel,

The beauty of using this reproducing kernel is that
it reduces the estimation problem of nonlinear dynamical
systems to that of linear operators. The details are carried
out in [1] and next summanzcd here for use in our neural
network.

We assume available m pairs of input-output test
functions, uj(-) and yj(-) for j=1...., m, with these functions



(along with n derivatives of the output) being square
integrable over 1. We choose the m input functions to be
linearly independent over I so that we have sufficient
information to perform an identification, In preparation for
the next section we note that these input-output function
pairs serve like exemplars of artificial neural networks,

The desire is to identify a dynamical system
characterized by V.({-} such that

V.(i0)=y;()
subject to V describing the "best”™ such system, this latter

being represented mathematically by V having the smallest
norm, i.e,

=l (2.93)

infv.olf overall V(e B2 (2.9b)

The number n of derivatives of interest play an important
mathematical role in solving this problem since this
Bochner space norm is defined in terms of them by

n-} 2
Vol =Y a “v,"’[] at

in0 g F,

2.10)

The problem is actually tackled by solving the equivalent
problem

min [VP°]_ overall te Tand all VO ¢F, (2.11a)
subject to
VO =yP@®) fori=0....n, j=1,...m (2.11b)

The solution to the problem of equations (2.11) is
rather easily phrased. First we form the mxm Grammian
mafrix

G=(Gy)=[expc (w0, p))  @2.120)

where for completeness we recall, see (2.3b), that the L2
scalar product of functions of one variable is just the
(Lebesgue) integral over the specified interval of the scalar
product entries, that is

(0003, = [0, 00,08 (2.12b)

tal

Note that G is nonsingular by virtue of the independence
assumed for the input test functions. Forming the column
m-vecior of test cutputs
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Yiest(=lyj @.1%)
we obtain a column m-vector of coefficients
(=G Ly O=le;(0)) (2.123)

10 place in the best estimation V, (-) of V,(-). The key and
end result is that this best estimate is given by [1, Eq.(20)]:

- 1
v:(->=§c,a)-exp(;(u,(-).-)t,(,,) 2.13)

It is upon equation (2.13) which we base our functional
artificial neural network,

3 A Functional Neural Network

The functional neural network of interest results
from the key decomposition of equation (2.13) and is
diagrammatically itlustrated in Figure 1. Here m exemplar
pairs uj(-) yj(-) are used to form the neural network
coefficients c(t)=G‘1ylcst(l) according to equation (2.12d)
where G is the Grammian matrix of the exponential of input
scalar products, the scalar product being formed as the L2(])
integral so that G is a matrix of numbers, these numbers
being the exponentials of these integrals as given in (2.12a),
The entries of c(t) act as time-varying synaptic weighs
while the exponentials of the inputs preceding these weights
act as ncuron nonliniarities with the weighted neuron
outputs summed to give the overall neural network output.
Thus the exponentials act as input neurons feeding the
synaptic weights which junction onto an output neuron
which performs a linear summation.

Given an arbitrary input (of the class allowed by
the system) this neural network gives an output which is an
approximation to the output of the true system which the
neural network is approximating. This approximation is
based upon forcing the neural network to give the desired
output on the exemplar inputs from which the system is
approximated by the neural network. The approximation is
in terms of functionals and as a consequence atiempts 10
incorporate the nonlinearities and dynamics of the system
which is being approximated. The key ideas are best
illustrated by a simple example.

Example:

Letting 1(-) denote the unit step function, consider
a system for which uj (0)= e**10) gives y;()=0.5(1-e-2)1(0)
and uy(®)=0.5¢V211) yields yo(1)=0.25(1-eY1() all
defined for time in the unit interval, 1=[0,1). We choose
ms=2 and find




and up(=0.5¢Y21() yields yp()=0.25(1eH)1(1) al
defined for time in the unit interval, 1=[0,1). We choose
m=2 and find

llbg =J:e"dt =(1-¢?)/2
1
foolg = f025"at= 1"y 4
1
.8}y = (2,00 = Io 05¢%dt =(1-¢%)/3

from which G is calculated according to equation (2.12a),
after choosing r=0.9 and writing to three decimal places
though carmrying the calculation to eight:

o 1617 1333 o 7997 8950
11333 1192 -8.950 10847

In turn the synaptic weights c(l)=G'1y(l) are given as

o= (1.761+2.238¢™ - 3.999¢*)1(n)
(-1.763-2.711e™ + 4.475¢2)1(7)

For the two inpul neurons we calculate the exponentials of
(2.13)10 be

1 1
exp(-r-(ul.u)l_,m)=exp(l.llljoe u(d)

1 ' a
exp(=(u3 u)y3) = exp(0.556 | e Zu(ti)

We note that these terms, although nonlinear in the input,
are independent of time, all of the time dependence having
now been placed in c¢(t). For reference we state that the
original system for which this neural network is an
approximation is a squaring device followed by an
integrator, both with unity gain.

4 Discussion

Because of the inherent importance of using neural
networks for predicting the performance of nonlinear
dynamical systems, here we have generalized the theory of
artificial neural networks to incorporate that of functional
input output pairing of nonlinear dynamical systems. The
theory is based upon the theory of Volterra kemels but
using a very important difference of viewpoint than one
finds in much of the literature on Vollerra series outside

those related to reference [1). The key idea is the
reproducing kemel within the mathematical framework of
Fock Hilbert space concepts, although the reader should not
Jet the technical details of the mathematical spaces involved
gel in the way of the fundamental ideas. The use of the
reproducing kemel allows the estimation of nonlinear
gystems 10 revert back 1o that of linear dynamical systems
while still incorporating the nonlinearites for which the
Volterra series is tailored. The theory was previously
developed and expounded in Zyla and deFigueiredo [1] and
adapted here to fit within the framework of neural network
theory. However, we have only given the rudiments
necessary to make the ideas available to the neural networks
community while it remains to develop operational details
as well as to coordinate the ideas with others, such as the
OMNI neural network [3).
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Functional Artificial Neural Network
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