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ABSTRACT

In this paper the pulse coded Neural Processing Element
(NPE) is used to realize two Winner-Take-All (WTA)
systems which use an Hebbian type learning rule for
setting the synaptic weights. The two systems, temporal
and maximum-level, use the same circuit with a small
connection change. In the NPE the average pulse duty
cycle modulation technique is used to achieve pulse coded
weighting for an artificial neuron. The average pulse duty
cycle serves as an information mechanism to determine
the weight multiplication. SPICE simulations check the
theory with a CMOS prototype chip designed and
fabricated through MOSIS. Measurements on the chip
compared with simulation results verify the operation of
the WTA circuitry.

NEURAL PROCESSING ELEMENT WITH PULSE
DUTY CYCLE SYNAPTIC WEIGHTING

In [11, [2], [3] an electronic Neural Processing Element
(NPE) was developed. The synaptic weight in the NPE
was achieved using Pulse Duty Cycle Modulation
(PDCM). The PDCM allows us to achieve
implementation in small size CMOS circuits. The NPE of
[11, [2], [3] is composed of four functional blocks: a set
of Modified Neural Type Cells (MNTC) [one for each
input], summation, threshold logic, and optional learning
blocks [one for each weight]. Figure 1 shows the
functional block diagram of the NPE.

Each input signal is multiplied by a corresponding weight
in its MNTC. An MNTC functions as a synaptic junction,
and accepts analog continuous signal X(t) as the input and
analog continuous signal W(t) as the weight. The output
of the MNTC is a pulse stream Y, with a pulse duty cycle
that is monotonically proportional to the input signal X(t),
and to the input weight W(t). For the output pulse stream
Yp, the Pulse Duty Cycle (PDC) is defined as
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where PW(j) is the jth pulse width in the stream, assumed
to be of m pulses in time interval t. Several pulse streams
are summed in the summation block (shown in Fig. 2)
using charge accumulation in a conventional capacitor
Cs, as also shown in Fig. 2.
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Figure 1. Functional block diagram of Neural Processing

Element (NPE).
reT--T=- T T T T ve T T T T
1 MNTC1 Yp1 I M |
X1 S 8l 2 I Text
—‘—»Q-—-H Y —d[V: LY |
| wy; YP? | 3 E( v |
2| I
X_l__.Q 1' toﬂbhold
w2j T
| MNTC2 I __{ " Isi |
< | Ypn | M2 [| YA
n J
e e e
| Wnj
| MNTCn | ]
L __ = N |
Weighting Summation

Figure 2. Summation block with n-MNTCs.



The output of the summation block, that is, the voltage on
the summing capacitor, is an analog voltage Y with its
value proportional to the average pulse duty cycle of the
output pulse streams from the MNTC's. The analog
voltage is compared in a threshold logic block (not shown
in Fig. 2, but see Fig. 4) with a threshold voltage to
produce the digital output Yp of the NPE.

WINNER-TAKE-ALL MODEL

The WTA is a special case of the continuous Hopfield
neural network in which all connections between different
neurons are working in the inhibitory mode. Thus, as one
of the outputs reaches above the threshold level and fires,
it will, as a winner, suppress all the other nodes which
then hold their outputs below the threshold level.
Depending on how to choose a winner, two types of WTA
models are introduced in this section; one being a
temporal WTA, where the neuron with an earliest-coming
input is to be chosen as a winner in the network, while the
second is a maximum-level WTA, where the neuron with
the strongest input acts as a winner.

In either case an example of the WTA with three
contending inputs is shown in Fig. 3.
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Figure 3. Winner-Take-All Model with three contending
inputs.

A type of Hebbian learning is undertaken [4] for
determination of the WTA synaptic weights is taken to be
as follows

Wi = Y_DiYAJ‘, for temporal WTA
Wi = YpiX; for Max-level WTA
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In (2) and (3) the overbar denotes digital complement
(note that the Yps are digital outputs of the NPEs).

As shown in Fig. 2, the net charge across the summation
capacitor CS is proportional to the time period when P-
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type transistor M1 (in Fig. 2) is ON minus the time period
the N-type transistor M2 (in Fig. 2) is ON. Both N- and
P-type transistors are designed in such a way that when
they are turned ON they are operating in their saturation
region acting like current sources, and the saturation
currents for both P- and N-type transistors are the same.
As a result, the summation voltage YAj of each
summation block (corresponding to each NPE) is a
function of the average PDC of the input streams as
defined in equation (1).

The analog voltage YAj can be expressed as [3]
as:

n
Ya=2 3 (1-2PDCk) + Yao j=1,.0n (@)
Csj k=1

for n inputs to each NPEj, Qo, and YAo are constants.
PDCK is the average Pulse Duty Cycle associated with
MNTCk's output streams YPK.

Temporal WTA

For the temporal case, we use eq. (2) as the weight
learning rule. Suppose, for example, the first output hits
the threshold level making YD1 high. Then according to

the learning rule Yp1 =0 and, the correlate weights, both
W12 and W13, become zero inhibiting the other two
outputs YD2 and YD3. A single transistor is used for
implementing the learning rule. The circuit diagram for
the temporal WTA model with three contending inputs is
shown in Fig. 4.
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Figure 4. Circuit diagram for temporal WTA.



Three NPEs are used for three contending inputs. Each
NPE has two MNTC:s for its synaptic junctions connected
from the other two NPEs. Notice the learning rule (2)
above is accomplished by a single transistor Tij along with
a negated digitized output from one NPE and an analog
output from the other NPE. The SPICE simulation result
is shown in Fig. 5.
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Figure 5. SPICE simulation result for temporal WTA of
Fig. 4.

The same level of 4 volts of input are applied to the three
NPEs with different delays. The first input comes first
delayed only 10us, while the second and the third inputs
are delayed 30us and 50us, respectively. As expected and
shown, as the output from the first NPE (YA1) reaches the
threshold level first, arbitrarily chosen as 2.2 volt, it
inhibits the other two outputs (YA2 and YA3) through the
changes of their weights as described in eq. (2). As a
result, the increases of YA2 and YA3 are significantly
degraded and both become saturated around 1.7 vol,
while YA1 increases further saturating around 2.5 volt.
The winner of this model is therefore the first NPE which
has the earliest-coming input and the simulation shows the
correct result.

Max.-Level WTA

For the Max-level WTA case, the learning rule is

expressed by (3). The first term Ypi is for suppressing the
other weights in case the i-th output is HIGH as a winner.
The second term Xj reflects the effect of the input

strength. Thus, the weight between i-th and j-th NPE
(Wij) is proportional to the negated digitized output of one
NPE as well as the input of the other. Thus, if one neuron
with lower (weaker) level of input claims that it is the
winner just because it has earliest-coming input, then this
input term (Xj) in the learning rule will play a role to
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boost the weights of the neuron with the maximum
strength, and eventually let the network choose it as a
winner. For example, in the two neuron case, if both YD1
and YD2 are low at the beginning, and if X1 > X2 the
weight W21 is larger than W12 and this will boost the
output of the first neuron, which is to be a winner. The
circuit diagram for this case is similar to that in Fig. 4.
However, the connection for the learning rule of (3) will
be different from Fig. 4, where each transistor Tij is
connected to the input Xj and the negated digitized output

—Yja. Simulation results for this case are shown in Fig. 6.
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Figure 6. SPICE simulation result for Max-level WTA.

Three inputs X1, X2, and X3, of 2V, 3V, and 4V,
respectively, are applied to three NPEs with different
delays. X1 input comes first, while X2 is applied 20usec
behind the X1, and X3 is applied 20usec behind the X2.

The threshold O is fixed as 2.2V for all NPEs. This
threshold value is chosen arbitrarily near half of Vdd, and
should not be too close to GND level. If the threshold
level is too small, the network decides the winner too soon
before it receives all inputs and thus chooses a wrong
winner. If the threshold is large, the model works
correctly, since the input with maximum level reaches the
threshold level first. So, the threshold should be chosen
preferably near half of Vdd or higher. Figure 6 is for a
worst case scenario when the threshold (2.2V) is below
half of Vdd (5V). Although X3 is applied with the longest
delay the system is to select the third output (YD3) as a
winner because X3 has the maximum strength (level).
Around 100usec, the network falsely chooses the first
output (YD1) as a winner because it reaches the 2.2V
threshold level. Soon after the second output (YD2) is
also chosen as a winner for a short period of time, and
thereafter until at 170usec the three neurons 'fight' each
other to claim a winner. The output for the third neuron,



however, is strongly increasing over the other outputs due
to the learning rule of eq. (3), and as a result, at 180usec
and, thereafter, the network finally chooses YD3 as the
winner, which is the correct answer.

VLSI CHIP DESIGN AND MEASUREMENTS

With circuit diagrams along with design parameters
proven through simulation, a CMOS chip was built for
hardware implementation. With this chip, we are able to
test and measure the basic functions of the NPE as well as
the WTAs described in the previous section. The chip
design and fabrication was done through MOSIS. CMOS
double metal P-well technology was adopted for the
fabrication. The minimum feature size is 2um. Process
parameters as well as some electrical parameters had been
given by MOSIS which were used for the simulations in
the previous sections. The TinyChip has 40 pins and is
packaged in a ceramic DIP (Dual In-line Package). From
the MOSIS original design, six pins are pre-assigned
(hardwired) for power connections: three for Vdd, and
three for GND, and thus only the remaining 34 pins are
available for user connections. Due to this pin count
restriction, a modification was made on the original frame
so that 38 usable pins became available along with 2
power pins. In the following section measurements of the
temporal WTA circuit are illustrated to verify the above
design.

Measurements of Temporal Winner-Take-All

For the Temporal WTA, we need to set up an adaptive
learning feedback which will execute the learning rule of
eq. (2), W =YpiYa;. This was done using single
50/50um N-type transistors in the learning block as
explained in the previous section. For Temporal WTA,
we also used two off-chip TTL 7404 (inverters) packages
for introducing the delay between two inputs. Six
inverters in two 7404 TTL packages were connected in
cascade for this delay.

Two unit-step signals with a delay between them
were applied as two inputs, and two digitized outputs
(YD1 and YD2) were measured. The output associated
with the input which comes first is expected to be in the
HIGH state and the other output is expected to be LOW.
Figure 7 shows the measurement result. Four signals of
X1, X2, YD1, and YD2 are shown from the top,
respectively. As can be seen, with the six 7404 inverters,
60ns delay was introduced for X2, and as we expected,
YD1 was chosen as the Winner because the first NPE has
an input which arrives first. Notice YD1 is HIGH while
YD2 stays relatively LOW. Notice we have 1V amplitude
degradation for X2 since X2 was generated using X1
through six inverters in 7404. Notice also that YD2 is not
as close to GND as we would wish. This could be due to
many reasons: malfunctioning of the threshold block of
the second NPE, for example, or power lines problem in
conjunction with TTL chips.
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Figure 7. Functional test for Temporal Winner-Take-All
model (5V/Vert.).

CONCLUSIONS

Analog CMOS designs of two types of Winner-Take-All
circuits are introduced. The WTA circuits use an Hebbian
type learning rule for setting the synaptic weights. The
learning subcircuit is implemented using a single nMOS
device. A CMOS chip was designed and fabricated
through MOSIS. Measurements check the proposed
design. In addition, as it turns out from the actual layouts,

a single MNTC occupies 150um x 320um (73mil) silicon
area. Thus, we will be able to build up to 30 MNTCs on
MOSIS TinyChip 2.1mm x 2.1mm, which can function as
five fully-connected neurons. This is an expected value
based on an assumption that 30% of the chip will be used
for routing (compared with 50% in single-poly single-
metal technology), and another 20% reserved for the
other blocks, like summations and thresholds. Thus the
design introduced occupies a reasonably small silicon
area.
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