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ABSTRACT - A numencal model of a necarest-neighbor interconnected
cellular neural network 1s descrbed. The cells consist of optically dnven
auvtonulling circuns that generate analog output signals.  Fror  the
numencal analvsis we demonstratc that the 2D array provides lateral
inhibition properties Control of the image enhancement 15 obtained through
the weights associated with a 2D convolution operator
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INTRODUCTION

Aruficial neural networks have been developed to enhance
features or edges for pattern recognition and classification [1] The
optical cellular neural networks (OCNNs) use signais from
photodiodes or phototransistors to drive a  nearest-neighbor
interconnected neural network to an equilibrium state, generating a
2D matnx corresponding to a pre-procssed image We present the
results from a numencal model of a feedback system that uses an
array of phototransistors, with each phototransistor configured in an
autonulling bndge [2]-[3]. The bridge circuits and interconnections
are designed to reduce electronic noise from the input devices as well
as spatially filter background noise, analogous to spatial filtering
techniques used 1n image processing.

A nearest-neighbor interconnected neural network utiizing
the autonuiling dc bndge (ADCB) as the unit ce// shown in Figure |
has been simulated using PSpice and numencal techuuques. In the
first microfabricated impiementation of the OCNN, each bndge cell
will be configured as shown in Figure 1 with a phototansistor as the
DUT and a bipolar transistor as the VCR, described in {2}, A second
vanation of this embodiment is being fabrcicated to use a photodiode
array as the input for each of the bridges in which the bridge circuitry
1s connected in close proximity to the array to reduce pick up.

NUMERICAL MODEL

Each of the brdge integrators will have outputs that are
governed by the following coupled differential equations
oV,
_Er'i' = A-.;(Vu i
where V;; s and ¥, comrespond to node voltages of each bridge in
the array and 1 and j correspond to the row and column in the array.
Vy.is comresponds directly to the input signal being transduced by
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Figure 1. Dynamic autonulling Cell of the OCNN with the integral
feedback and a summer in the loop generating V from the neighbors
and itself DUT represents a device under test that responds to an
applied dc voltage, and VCR is a voltage controlled resistance used
to null the bridge.

each cell and V), , ; is the volitage driven by the feedback to follow the
mput node. A;; are the respective gains on each of the
instrumentation amplifiers in each of the bridges. The collection data
from an array of transducers suffers fram spatial noise due to thermai
affects on the transducers and local electrical noise at each
transduction point. The nearest-neighbor interconnection emulates
cellular neural network that enables spatial convolution or integration
over the image. It provides the weighted interconnection of the
feedback signals in the following manner in order to generate the
voltage required to balance each bridge in the network,

1
Vr.i.j = Zwt.! 'Vm.;‘d
j==]
where w,, are the interconnection weights of each of the
neighborhoods. The above summation is for k and 1 over the range
of -1 to 1 which denotes only nearest-neighbors, but this can be
extended indefinitely depending on the shape and corresponding
function of the convolution kernal.  The weights of the
interconnections determine the type of spatial filtering that is carried
out by the network and can be positive or negative to mimick
different types of kernals. At equilibrium, each of the bridges will I?e
at null, so the signal V., that controls the VCR of each bridge will
cotrespond to the input signal on that bridge, but the signal V;, will
be the signal comresponding to a spatially filtered output from that
point in the array. The weighted interconnection of the bridge
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ure 2. Gray-scale contour plot for the equilibrium solution of the
merical simutation of a point source response for a 10x10 opucal
neural network (OCNN). Lateral inhibition s evident in
inishing low then high bands around the source.

hack signals generates a two-dimensional pre-processed image
technology used in this network is compauble with
fabrication and therefore offers itself 1o miniatunzed operation

The svstem equations for the OCNN are similar to a general
dbrmulation developed by Cohen and Grossberg [5]-{8] for the state
*“equation of shunung inhibitory neural networks,

:—rr. =alx, ){b.{x,)— ?;C"d* (x, )],

s was demonstrated by this generalization, the state equations we
ve discussed can also be applied to many other paradigms of neural
Wnetworks (e g content addressable memory, short term memory)
W implying that the interconnecied ADCB offers itsell to other
« applications besides the optical OCNN  This type of state equation
‘also demonstrates the capability of the system to be applied as an
~amalog processor for spaual signals that are not necessanly
. tansduced using sensors, but for general computation (analog
S.computation) Other schemes besides linear weighted sums of the
‘meighbor signals (e g. products, derivatives) are also feasible yielding
¥ 2 variety of spatial filtering algorithms incorporated into the system

RESULTS

The linear model denived using the coupled differental state
= equation for the OCNN was solved using numerical techniques, The
£'node voltages from each of the bridges was represented by the
following linear models for the phototransistor and bipolar transistor
¢ feedback element
by, < PBes 0Dy, PR, 2O
R R

the simulations, a Runge-Kutta algorithm was used to solve the
; In these equations, Rg;=Rgs=Rg and in the input to the
was simulated using the voitages V;, ;. Two tests are carried
Lout on the OCNN to test its lateral inhibition capabilities: (i) point
source response and (ii) spatial edge response. The equilibium
J’elults of the system in response to these spatial signals are shown in
#Figures 2 and 3.

583

Figure 3. Gray-scale contour plot for the equilibrium solution of the
numerical simulation of a spatial edge response for a 10x10 optical
celiular neural network (OCNN). Lateral inhibition is evident in
diminishing Mach bands away the source [9].

CONCLUSIONS

This configuration is being investigated for use in three
sitvations: (1) for two-dimensional optical transduction that can
either be mounted under a substrate properly passivated for celiular
or chemical deposition to monitor transmission of light signals
through the chemical system; (2} as a focal plane array, or (3) signals
transduced from substrate-based electrodes or sensors (e.g
temperature or pressure) as the input method in which case a two-
dimensional electrical image will be transduced. It is also possible
that the dc bridge configuration be modified to an autonulling ac
configuration described in (4] in which the photocapacitance be
monitored instead of equivalent resistance. In view of the similarity
between the state equation of the OCNN and the shunting neural
networks, the OCNN with the autonulling dc bridge as the dynamic
cell offers itself to many neurat network implementations besides that
of the proposed optical pre-processing system,
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