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Summary

If a one or two port network has q+(p°)s'0,
it is possible to obtein & passive embedding
network to obtain a natural frequency at B, This
will be demonstrated for those networks which
possess an admittance matrix ¥ and for which the
skew-gymmetric imaginery part of Y is zero at Py
The method consists of obtaining canonical forms
To exhaust all
possibilities over twenty distinct cases are

for Y vwhich can be easily treated.

treated.
Introduction
Problem

Until recently the design of active circuits
has been a sem!-haphazard process. One usually
followed the designs of previous workers, incor-
porating emall improvements which mainly resulted
However in 1957,

Thornton, [1], initiated n study of the
limitations of the natural frequencies of such
devices. This was follewed in early 1960 by the
work of Descer and Kuh, [2].

from trial and error.

Thornton's paper 1s
concerned with determining the possible natural
frequencies of an active resistive device with
perasitic capacltance which is embedded in a
transformer network. Although some speeial
results are presented, a general trestment is only
touched upon. 1In contrast Descer and Kuh develop
a criterion for an arbitrary active device, embed-
ded in a passive network, to possess a natural
frequency. Their criterion is that q+(po)§ 0 at
the required frequency, p_, {2, p. 15]. Thus one
now knows a restriction on the switching speed of
8 flip-flop, say, wheress previously this was
determined experimentally,
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However, more is desired. We would .
be able to synthesize B passive network s
that, when a8 given active device 1is embed:c
it, & desired, natural frequency results.
is the subject of thls paper. In particu:
wish to investigate the followlng questior

"Given an (active) network for which
q+(p°)£ 0 for p_ in Re p > 0 does there e:
finite passive embeddlng network such thai
two networks combined support a natural
quency at pOT If so, how is the passive
network obtained?"”

Using this we will solve the above D)
by exhiblting & passive network for the aor
The soluti
the remalning class of two ports has been
obtained and wlll be reported at a later ¢

Review of a, and Conventions

and a large class of two ports.

Consider an n-port N which 1s assumet
possess an admittence matrix Y(p).
exclted by the voltege vector v(t) = Ve

Now le¢
pt
is a vector of complex constants and p = ¢
let a superscript tilde, ™, denote matrix
position, a superscript asterisk, *, denot
complex conjugation end Yﬂ(p) denote the
Hermitian part of Y.
We now define, for ¢ > Q,

;*Yn(p)v + (U/]p|)‘§f(p)vl if «

q (v,p) =4 .
A v*YH(p)v

if a



here ] | denotes the absolute value of a complex
Physically, if o # 0, o le20%q
represents the upper limit on energy into N for &

+
Desoer and Kuh

number,

glven v(t) at a given instant.
vork with, {2, p. 15],

q,(p} = min @ _(V,p) (2)

|l =1
vhere for ;=[Vl,...,vn] we have [|Vl|2= E‘Vila.
From the meaning of Q_we see that ¢ e a,
represents the smallest of the upper limits on the
energy into N at a given instant for all
normalized non-zero V. TFrom the meaning attached
to q, it should be physicelly clear that q,
should depend only upon the device and not the mode
of description. In other words we should be able
to define q_ even though 8 Y (or Z) matrix
doesn't exist., Such a guantity is clearly

cbtained from

2(v,1,0) ={ DV BIVI/[pDIVI| 12 0o (3)

(AHV T v if w=0
By the nature of ocur problem we must base our
work on Q. but it is important to note that if we
find some non-zero V for which Q+§p then q+sp.
Thus, if in a specific instance, we are only
interested in the fact that a, is non-positive and
not in its exact value, we may profit by using Q+
and avoid the tedious job of finding a minimum.
How consider an n-port N which is connected
in parallel to s passive n-port NP' The
combined networks form a new n-port No whose
terminal pairs are taken As the common terminael
peirs og % and NP. We say that N supports a mode
v(t)=ve ° , 0 20, if the voltage v(t) can eppear
nCcross NO when the terminal currents of “u are
ZeTo.
(2, p. 4]. If I and N have admittance matrices ¥

Such an N has been called active at Ps

and YP then the following results have 1
esteblished.
"1. [2,p.15] If ¥ is active at p_ tl
necessarily q+(po) <o0.

2. [2,p.7) N 1s active at p, if en
there exists some NP such- that
det[Y(pO)+YP(po)] = 0.

The second of these results is the key °
synthesis methods, since it gilves an aw
way of determining 1f we have solved ou
It should be pointed out that

definition of naturel frequency used he

problem.

from the usual one which rests upon ini
ditions in energy storage elements, sin
work for which the determinant is zero
such as e&n open circuit, can support an
This introduces a subtlety which 1s exp
upon in Example E-1.

For transforming one network loto =
will have use for ideal transformer net
gyrators. Consider two networks “C and

admittance matrices are related by

where T is a real metrix. Then Nc is o

connecting a transformer network to N,

and [4,p.301].

be clarified. Let
o 1

The notation for the gy

E =
-1 9

Then the polarities for the gyrator are
by Fig. 1 for which

v = gyration resistance

Y = -1'1E



We will slso adhere to the following notation.
1 will denote the unit matrix of order n, 0, the
corresponding zero matrix and + will meen the
direct sum of two matrices. Further we will
sssume, as in [2], that Y{p)} has rational elements
with real coefficients.
Method

We will assume that a network N is glven
which possesses an admittance matrix Y at pO and
for which q+(p°)f§h Clearly a dual situation holds
In part II
we will show how to cobtain & Z or Y if neither
Consequently, for n=2, the

if only an impedsnce matrix Z exists.

exists, for n=2.
sssumptlion on Y 1s no restriction. At P,: Yis a
matrix of complex numbers and we write

Y=Y (n

ms * Ypss * 1s + Mpsg

where the subscripts R and I refer to reasl and
ilmeginery parts and S esnd 55 refer to symmetric
end skew-symmetric matrices.

In this peper the synthesis of the passive
network NP will be given for YISB=0'
of transformers and gyrators we will transform N
into a cancnical network Nc.
“PC wlll be obtained for NC; the passive network
for N will then consist of “PC and the trans-
forming network as illustrated in Fig. 2.

From the physical interpretation of q+ it
should be clear that if N can be cbtained from
NC then N and Nc have the same q,- This will be
Justified mpalyticelly for the actual transforms-
tions that we will use.

AB a consequence of the canonical forms

By the use

A passive network

actually used, we will have many cases to consider.
For some of the cases geveral synthesis methods are
available for N__.

FC :
only the simplest syntheeis methods, some of the

In this paper we will present

alternates can be found in [6].

RSS=O
We will usually do this, but in

At the very
begioning we can assume Y s Blnce 1t can be

sbsorbed in NC.

164

cases where fewer gyrators will be used, ¥
terms will appear in the canonical forms.
By glancing at Q+,-it can readily be
appreciated that we must consider two regi
w .
o
assuming u3>0 since Y(p) has real coeffici

If wao, there is no loes in generali

Synthesis of NP: n=1l

Here Y is a scalar which at P, can be

written as
Y(po) =g+ jb

Region 1: m0=0

As Y is real at B, b=0. The conditi
q*(po)fp gives g<0. We then let Yp(p)=-g.
Region 2: wb>0

The condition q+(po)5p now requires

g<0; (ﬂob)es(mﬂs)2

Ir a°=0 ve cancel b by an inductance or a
capacitance and g by a positive resistance

u°>0 we form
Tp(p)=(2)[(-8/a_)-(b/w )p +

()(-8/0_)+(b/w ) ) sal) /o

Yp is positive real as & result of the con
straints of Eq. 8. It should be noticed t)
the second of Eq. 9 is equivalent to the a
constraints for positive real functions,
[5,p.114]). Alternative T, are easily founc
they mey not hold for all allowed g and b ¢
this one does.

We can now eppreciate a difficulty whi
occur. It may happen that two different ac
networks have the same admittance matrix at
When N is connected to these, the resultir

P
determinant may be identically zero for all



one while merely falling to zero at P, for the
other. The latter situation is the one actually
desired, but, since we can only assume Y(po)
known, we can not tell which situatlon occurs in
general. Of course if the propertiss of a device
are known for all p we can actually check to see
This is illustrated by the
following example.

E-1: Let N have Y¥{(p)=-1 and consider
po=(%)+3(/§7§). If we choose N, to have % £p)=+l
then Y+Y1=O for all p.
though no energy storage elements need to be

In contrast let I, have Ya(p)=p+1/p
then Y(pn)+Y2(po)=0 but this is not true for all
p. Now consider another active network N'
described by Y'=-Y2(p). Then at p_, N' and N are
indistingulshable.

isalated zero at B,

what happens.

Then N supports e even

considered.

However, ¥'+Y, has only an

1

Synthesis of NP: n=2, YISS=0
We recall that we will generally assume
Yrss™0 88 Ypsg c
remains the same before and after YRSS is
deleted, since Q+ is independent of YRSS' With

this assumption we will generally transform

can be lumped in N Clearly q,

Y(po) to & canonical form Yc(po) through the use
of Eg. 4, with T non-singular. This operation also
leaves q+ invariant since V in Q+ is replaced by

TV which assumes all values with V.

the canonicel form will require a cascade

In two cases

connection of gyrators in addition to the trans-
formers. For these situations the invariance of
q+ is proven in Appendix 1.
Reglon 1: mo=0

Here Y(po)=YRS+YHSS
gyrators. We diagonalize YRS to obtain

and we need use no

Yé(p°)=[51432]+gE. The condition g <O requires
that at leacst one of g, or 82 be < 0; through our
diagonalization process we can assume 1t to be 8-
We then short port two to obtain a one port with
YC(po)=El' A netural mode results by forming, for
all p, YFC='51‘
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Region 2: wobﬂ

It o°=0 we again don't requlre any
gyrators. In this case we dlagonalize
Yé(p°)=[gl-ige]+gE+jYi vith g <0 by q,
then short port two to obtain a one por
Yc(p°)=gl+,jb. b is then canceled by ar
inductance or a capacitance and g by a
reslstance.

If a°>0 we are apparently forced t
the following mutually exclusive cases.
Unfortunately there are many subcases,
leading to & different canonlecal form.

note that YRS cannot be positive defini
q,20.
Case 1: YRS positive semi-definit
(rank © or 1)
Case 2: Y. negative definite (re
Case 3: YRS negative semi-definit
Case b: Y.o indefinite (rank 2)
Case 1: Y. positive semi-definite (re

Clearly q+=0.
A .
diagonalize Y;o to et Yc(po)ngE+j[bl+t

q+=0 then requires that at least one of

If YRS has renk zea

be zero; by our transformation we can &
to be bl' Shorting port two then glvee
and we have used no gyrators.

If Ypq
Yo to 1 + 0. The requirement q+=0 the
that the {2,2) term of the transformed
If the (1,2) term of the new Yo
zero we have Yb(p°)=[(l+jb)$alwhich hat
If the {1,2) term is not

further transform by adding the second

hae rank one, we can first

Zero.
determinant.

column to the first (with a proper muld
to have the (1,1} term zero in the new
Thue we have arrived at

1 Jb

1'(p,) = o



We now connect a gyrator es shown in Fig. 3 to
obtain {see Appendix 2)

Jb

b2

Yc(po) = 1

-Jb

vhich has a zero determinant.

Case 2; Ygq negative definite (rank 2)

We simultanecusly disgonalize YRS and YIS to
get, [T,p.107],
Y(p,)=-1,+8E+][b,3b,] (11)

Such an admittance always has q, <0 since we can
find a non-zerc V such that |VY V|-0 Appendix 3.

Consequently there are no constraints on b, and b_.

1 2

We have three subcases to consider.

blba-O

There 1s no loss in generality in assuming

Case Ea:

b, =0.

1 Then we let, for ell p,

YPC=[1+O]-gE

to obtain & zero determinant.
Case Eb: blb2>0

We let, for all p,
Ypo={l14(b)/5,)130} + {[(b, /b, )(b21) 12 g

which ylelds a zero determinant.
Case 2c: b1b2<D

We derive a new canonical form from Eq. 11 by
normlaizing the imaginary (2,2) term to -b, .

' =I_.71 t Y O
¥i(p )=l 1+(bl/b2)]+g E+J[bl+( b, )
1
where g'=(-bl/b2)5 . We first add, for all p,

Yio=2+(-by /b,)

We then aedd all eslements of the resulting
This
corresponds to connecting port ome to port
is {llustrated in Fig. L.

It should be noted that if, in Eg. 11
and 0<[bi|51ab/uo) for i=1 or 2 then we ca
passive network to port i to get a zero de

to cobtain a zero input admittance.

ant. This would then avoid the gyrator in
2b. The following will exhibit e simple C
synthesis while clarifying the general prot
to be used.

E-2: Let N be the network so denoted in F
for which

1

¥(p) = [-14p

1 b+p+(2/p)

Let p_=(1/2)+343/2), then

pﬂ

(-1/2)+36372) 1
1

¥(p )=

We find, using

B
273

/3
that Yé(po)dEY(po)T=-12+j[043/§]. The Case
synthesis then gives Fig. 5.
¥pg negative sewml-definite (n

We first diagonalize YhS to obtain

Case 3:

P

b22

¥'{p )=[(-1)i0l+g"E+} by

s

From this we obtain three canoniecal forms de
ing upon the vanishing or non-vanishing of t

and blE'
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Case 3 bEE#O

In Eq. 12 we can add the second row and
column to the first to eliminate the (1,2) temm.
If the (1,1) term of the new imaginery part is
non-zero, we can normelize the (2,2) term to
equal the (1,1), except possibly for sign. We

have then

=+b_ or O

Yc(po)=[(-1)40]+5E+J[b14b2] where b, =+b,

Here g=g' if bl-O or g=/+b 7b g' otherwise,
Because we can find a V with V #0 such that
IVY ¥|=0, this case always has q,<0. Thus there

is no restriction en b However, we have two

1"
further cases to consider as far as synthesis is
concerned.
Case 331: hleEQ

We here add, for all p,

YPC=[1;01+(bl-g)E

to obtain a zero determinant.
Case 3a2: blb2<D

We here add, for all p,

v _a
YPC-1+0
and then apply feedback by connecting port coe to
to obtain & zero input edmittance
(compare with Case 2c).
Case 3b: b22=0 [in Eq. 121

Here we msgaln have two further subcases, this

port two

time depending on blE'
Case 3b1: b12=0

Assuming that g'=0, Eq. 12 then takes the
form

To(py)=l(~1+Jb)+0] where bsb,

Here YC already has a zero determinant which
corresponds to Q+=0 with V1=0.
However, if q+<0, Eq. 9

Consequently b 1is
not constrained if q+=0.
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shows that b2<(wb/ao)2 and synthesis c
results from Eg. 10,
b, 70

We now add the second row and colu
Eq. 12 to the first and then normalize
term to obtain

Case 3b2:

Yo{p,}=[(-1)40)+gE+; [é 1
1 0

vhere g=g /b . Again q, <0, since then
zero ¥ such that [VY V]-O We force th
minant to zero by adding, for all p,

ch=[04(1+ga)l

The following example will serve t:
1}lustrate a Case 31 synthesis.

E-3: Let N be a8 illustrated in Fig. 6,
¥(p)= |-2+p  3-p
-3-p -3+2p
Let p_=1+jl, then
Y(pn)= -1 1l+3|r -1 +38
1 1 -1 2

A Case 3a1 synthesis is required. Using
with
T=(1/5}[3 -L

2 1
we obtaln

Tolp,)=[(-1)+0]+3(1/5)1,+(3/5)E



The final network is shown in Fig. 6. It should
be noted that we could replace the gyrator-
resistor network by a gyrator L-C network in this
caBe.
Case L: Y g indefinlte {rank 2)

Depending upon the rank of YIS we now have
several cases.

Case ha: of rank zero

Yrs

We can diagonalize YRS to obtain

Yc(p°)=[1$(-1)]+gE

We then =dd rows and columns (comnect port ome to
It
should be noted that here we always have q+<D.
Case 4 : Y

b Is

We begin by dlsgonalizing YIS

port two) to get a zero input admittance.

of rank one

Y'(p°)= g, B +j[b11401+g'E (13)

g1 8o

From this will be derived three canonical forms
depending upon the value of 322.

82070

After essuming g'=0 we now use elementary

Case hbl:
transformations to add the second row and
column of Eg. 13 to the first and pmormalize to
obtain

Yc(po)=[(-1)41]+3[b$o]

The requirement 9, <0 yields basﬂwb/ao)z, as is

seen by choosing V2=0. Using Eq. 10 we add a
passive network to port one of NC to obtain & zero
determinant.

Case hbez €550

Using the same procedure as in the previous
case we obtain

T,(p)=[14(-1) ]+ 3[vio]
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This clearly has q <0 {choose Vl=0), and
for all p,

Y_ =0i1

PC

to obtain a zero determinant.
3: 322=0
Since YRS is indefinite we have 812#

Case hb

Using the transformation method of the p1

two cases we can arrive at

Yo(p) = [0 1] +i[violsgE

1 0

Here we always have q+<D as is shown in A

3. This is substantisted by the fact tha
normalize any non-zero b to +l. We here
for all p,

YPC=-(g+l)E

to obtain a zerc determinant.
Case hc: ¥1g of rank two

We must divide this case into twoe fu
cages depending upon whether YIS is defin
or lndefinite.
rather elaborate synthesis methods.
Case hclz ¥;g definite

To obtain a canonical form we simult

The second of these calls

diagonalize YRS and YIS and then normaliz
to obtaln

¥o(p, )=[13(-1) 1+ [0 b, +gE

We have two regions for b2 which are of 1)
2 2
Case hcla' beﬁ(wb/uo)
Here we always have q+<D, as 1s seen
=0. After cancelling gE by a ;

1
we synthesize a passive network by Eq. 10

choosing V



Caze U4 e1p’ b2>(w /o )2

If q, -O Appendix 3 shows that we require
'b (m/cr .
q+-0 follows that of the preceding case.

If q, <0, Appendix 3 shows that we require
b2>b (Appendix 3 also shows that

As a consequence, & synthesie for

u;(1+bi)1/2+(1+b2)1/2]>2|pol and that there exists

g non-zero V such that IVYCV|=0). Because YIS
definite we have (bl/b2)>0 and we can force the
determinant to zero by adding, for =ll p,

_ . 2 _y11/2
Y=L (1/0,) (b, - )01+ {[ (b, /b, ) (b52) 17/ “-g)e
Case hc2' g indefinite

We begin by diagonalizing YRS to get

Y (p)=[14(-1)3+5 [by, Dy +8E (15)
P1a P
Let B=[bij] be the second matrix on the right. We

have three cases depending upon the form inmto
which B can be brought by the congruency trans-
formations of Theorem 1 of Appendix b (the sub-
scripts on the following B's refer to the
corresponding matrices in Appendix 4).

Case hcaa: B=B, [b11+b22]

Letting bll 1 b22 ; Ea. 15 18 identical
to Eg. 14 except that instead of (bl/b2)>0 We now
have (b /b J<O. The same subcases occur that
were present in Case 4
Case hcaxlz b <(m /a é

The properties and the synthesis method are
identical to that of Case h
bz%_(u) / cr

We have the same properties as in Case hclﬂ
except that (bl/b2)<D. We now revert to that
case, after first assuming g=0 in Egq. 15. To
obtain this result we connect a gyrator in
cascade with port one {(as we did in Fig. 3). The
nev Y metrix is obteined by using the results of

Case h

1&%

Appendix 2, and then multiplying the first m
and column by 1+b§; we get

Yo (p )=[24(-1) 1431 (-0, J4u,))

which now is of the form required for Case 4
It should be noticed that in general this me
uses three gyrators. However, after pulling
shunt resistor through a gyrator, the finsl
these are in cascade and can be replaced by
transformer. This procedure is illustrated
example E-4 which follows the remaining case
B=»B, /B | sy =det

Case 4 __:

c2p’ ll 22

&

Appendix Ut shows that there is a non-si
lar real T such that

Y"(p°)=EY'(pD)T=[14(-1)]+ JBII+3“E

From Eq. 16 we will obtain two cenonical for
depending upon bll'baz’ by elementary trans-

formations.
Case thﬁl: bll-baago
We first add -/-Ab/(bll-bez) times the

He
normalize by multiplylng the second row &nd
column by I(b11 22)//-ab] to get

row and column of Eq. 16 to the second.

Yc(po)z 1 -1+

1 1-{(vy b))

J(bll 22)[l+(-1)]+g E

Recalling that Ab<D by assumption, we now ad
for all p,



Tho=l{(by,-b,,) /('%)}+°]

and then add rows and columns {connect port one to
port two) to obtain a zero input admittance.
Case kcaﬂa: blr-b22=0

We first add 1/2 of the second row and
column of Eq. 16 to the first. Following this we
subtract the first row and column from the second

to get

3/
-5/%

Yo (n )= -5/4| +3/-5, (1+{-1)]+g E (18)

3/

We now add, for éll P;
Y=[1+0]

and then add rows and columns {connect port one to
port two) to obtain & zerc imput edmittance.

It should be noticed that the bll-bae—o and
#O cases can be teken care of by & single case.
This results from adding [(1/wﬁ)(b22-b11+./-ab)]
times the second row snd column of Eg. 16 to the
first and then subtracting the first row and
column from the second. However, the canonical
form is not as neat as those of Egs. 17 and 18.
Further, since we have slways found an NP when
B==?BII, the first result of Desoer and Kuh quoted
In fact

shows that q+<D. An example of

sbove shows that aQ, is elways <O here.
choosing V
Case hcg
part II.
Case hc27:

2
will be given as part of an example in

B=B= ~5

b

H Ab=det. B

=By Paphy

This is the finml and worst case. By
Appendix 4 we find a real, non-singular T such
Eg. 15 becomes

that

¥"'(p )T (p,)T=[15(-1) )+ 3By +8"E (19)

Here we can assume that b #0, a5 otherwise

We

2211
this is covered by the treatment for BII'
then have two aubcases.

Case hc271: {b ) {-hab {recall £,<0 by

assumption)

22" 11

We follew the procedure used to obtain
Eq. 17. Thus we first add /-Ab/('bee-bll) times
the second row and column to the first and then
normalize by multiplying the first row and
column by [(bea-bll)//-ab]. This gives

Yo(p )=d(b 50, JI(-1)i1)4gE

+ -1+[(b22 11) /(-Ab)] -1

-1 -1

We now add, for all p,

Yi'c:[{"“[(bza b.,) /(-Ab)]}+01

and then add rows and celumns to cobtain a zero
input admittance.
q.< <D, since we have found an NP’

Case hc272‘ b= ll)2> kab

We will reduce this to Case hcal' We
apply Theorem 2 of Appendix 4, which ghows that

Note that agaln we always have

there 1s a real, non-singular Tc such that Eg. 19
takes the form

oy )=F ¥"(p )T =[1i(-1) J+jlb d0, l4g E (20)
In fact we have
b (or b2)=[-at/q+t2(b22 n)I/(l -t ) (21)

b, (or 1:1)={(1:22 11) 2t/-Ab]/(l-t )

t=(1/2){byp-by, )4V

Dooby )E+hab /5
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Eg. 20 now falls under the description of Case

hcaa' Thus if q <O that case applies and gives a
synthesis. However, it has not yet been determined

under what constraints on the biJ’ satisfying

(0ap=21,
may be >0, and E-5 shows that q+§p can also occur.

)%-ba,, 4,<0. Exemple E-G shows that q_

The following instructive examples 1llustrate
the Case 4 synthesis.
E-4: Tet N be as shown in Fig. 7. Then

Y(p)=[(5-bp)+(-3+2p)]

Let p0=1+j1 then

¥(p,)=[{1-34)+(-1+32)]

Connecting

vhich requires a Case &4 synthesis.

c2x2
a gyrator in cascade and multiplying the first row

and column of the resulting matrix by A7 we get
Yc(po)=[(1+jh)%(-1+32)]

Connecting

YPC=[ 110]+/I0E

After
pulling the resistor through the gyrator, Fig. T

in parellel ylelds a zero determinant.
shows the final realization. Here the transformer
end the two gyrators in cascade have also been re-
placed by their transformer equivalent.

E-5: Let N be the network shown in Fig. 8. Then

(2/5)+(2p/5)]

Y(p)=[1
{2/5)+(2p/5} -2+p

and for p°=1+35 we have

Y(po)=[11‘-(-1)]+,j 0o - (22)
-2 5
We have Case l‘caya with t=2 or 1/2. Let t=2 then
vith
={1//3) [2 1
1 2
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we get

¥ TYT=[(1-50)5( -2+ §1) ]

vhich is treated by Case hcaul' The finpa!
is shown in Fig. 8. Consequently N is ac-

p, and Case b actually exists.

c2y2
E-6: Consider the network of Fig. 9. 'Th
Y(p)=|1 2.2p
2-2p -6+5p

Let p0=l+Jl then Y(po) is the same as give
Using the same transformation, Ec

Eg. 22.
valid. 2>wo/ 0,=1 and

2 2
bl_lﬁlﬁnbe. Consequently q*>0 at P, and 1

Hovwever, now 4=b

passive network exists.
Conclusions

We have shown how a gne or two port :
which possesses an admittance matrix at P,
q+(po)sp and Y,o.=0 can be embedded in a i
passive network to yield a natural frequer
B, The genaral philosophy has been to si
eously put YRS and YIS into & canonical fc
This then led tc

cases, each of which must apparently be c¢

the use of transformers.
ed. separately. However, the synthesis met
are in general combinatlons of the followi

1} Connection of a shunt L-C circuit

2} Connection of a shunt resistor.

3) Connection of e cascade gyrator.

4) Connection of port one to port tw

(feedback).

5) Shorting one of the ports (to sav

gyrator).

In part IT we will show how to remove
ISS=0 and the existence c
Y(po) for n=2. Further most solutions for
but Y_..=0, can be obtained.

IS8
for n>2 are at present under study.

restrictions of Y.

The remainin
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Appendices

1: Invariance of q, for the Cascade Gyrator

Let & gyrator of gyration resistance 7 be
connected in cascade with port one of & network

N! as shown in Fig. 3. For Eq. 3 we find

1+(VcsIc:P)=:-+(v' s I :P)

since V. cl:(-yIi)(-Vi/7)=ViIi. Assuming N' to
have & Y matrix, Appendix 2 shows that Nc also has
a Yc matrix (if yil#O). As a conseguence q+ is
the same for both N' and NC'

2. Determination of Y for the Cascede Gyrator

We wish to find YC for Nc of Fig. 3.
can write the chain matrix

Here we

v =
a4

I cC D

A Bl|v] , 0w

I'
vhere A, B, C, D are 2x2 matrices.

we can obtain YC=[C+DY'][A+BY']'1
Applying this to Fig. 3 we find, assuming a

Solving this

gyration resistance y, A=D=0+1 ; B=-740 ;
e=(-1/7)i0

If yil#o, these equations are easily evaluated to
give

Y= 1/(72yi1) ¥}/ (rvyy)

ot ' Uoqpl xpt et t

i/ (rvn) Gy Y)Yy

These results are extended to arbitrary n in [6].
3:

Q+ for Various Cases

Here we will prove some of the statements made

about Q+and q,-
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We have YC

@, ==}V 12- [V, | 2o /1, IVA(-1e g0, )ova( <L gb,) |

a) Case 2: =-12+j{bl;b2]+gE or

Choosing

(V,/V,) %2 (L g05) /(-1 30, )

gives lVYCV]=O. As a consequence q+=—l, no matte:
what values b, and b_ assume.

1
b) Case th: We have Yca[O 1] +3[b+0]+gE or

10

Q+=2Re(VIV2)+(UO/|p°|)|JbV§+2V1V2|

= v, | B{2Re (v, /v, ) 40 /|py | Y] 320V, /v ) 1}
if vlfo
We now choose

(Ve/Vl)=u-J(b/2) with u arbltrary but <0

Then

q,=(-2u)[-1+(a_/|p ] )}<0

As a consequence we Know q+<D, independently of b
¢} Case ucl: We have YC=[1+(-1)]+3[b1+b2]+gE.
We wish to find the constraints put on bl and b2
by q+5p.

&, =17, |21V, 12+ (0 /oy | V5 (14 3b, 4VE( <Le b, )|

2 2
Let lV11 =e|V2| H ﬁi=phase of V§(1+jbi), i=1 and

Since we wish to minimize Q+ vwe require O<e<l,

2 2
ﬂl=ﬁ2+u. Then restricting Q _ to !Vll +|v2| =l,
we have

S frven(oy /I, (andiE-ean)}

)

+

We have two cases to consider.

b2<b2° Then

Case I: 1P,



1 ao 2,5 c"0 2 %
- . )¢l -
R,= Tre {-1+ TE;T (l+b2) ]-el-14+ ngT (1+b1) i

S[(1-e)/(1re) {14 /]p [ (1+63)7]

Consequently for q,<D we clearly reguire
b <(m /a 2. Further, this inequality on b, is
sufficient to insure q <0 @8 is seen by taking
g=0.
o % 2

Case II: by>b.: Letting e= [(l+b )/(1+b )]

then

(1+e)a, =

On differentiating we find

(1+0)%1an, /ae] =

2-(a /Ip,DL(L2)E(1482)%]  for e<c

2+(ao/|po|)[(l+b§)%4(l+bg)é] for e

Two slituations can ogcur. L
. 2yz 243
Case IT; Uo[(l+b1) +(1+b2) 1< Ejpo]

In this case (dQ+/da)29 for all & and hence
the minimum occurs at €=0. This requires

2 2
bafwa/do) for q <0.

. 2y%, (122
Cese II.: co[(1+b1) +(l+b2) ]>2|po|

p

Here d§ /de changes from negative to positive
+

(as € increases) at e=e_.

“ This always has q+<D, since at

g a
(16 =% (1452) Twel1- =20 (1462131} for e<
{ + T?;T +8,)7 1+e TE;T +by } for e g

a -l a 1

[=] 2= o) 243
-1- T——r 1+b,_ )= J+el1+ 1+b )= for e>e
-{[ %, {1+ 2) J+el TE;r ( 1) ]} e

The minimum is then at

=€, (1+E°)Q+=-1+Eo<0.
From these results we conclude that
2 2
q,<0 and b}_(mo/oo) then bo>b3.

k: Canonicel Forms for Two Indefinite Ma
Theorem 1: Let G=[1i(-1)] and let '13=[bi‘j
real, symmetric, indefinite matrix. Then

exists a real, non-singular matrix T such
TGP=0C and TBT is one of the following mat

By=[o, #b,5), Bpp=

1122 A | s Brord © By
e 0 STBy Pty

where Ah=det. B.
Proof: Consider the two matrices

Tl*(l/‘Jl-ta) M t] if to<1

t 1

Tan(lﬂte-l) [t 1] 1 31

1t

where t will later be defined. Then we h
T GT. =1 _GT,=C and

16817107,

(1-1:2)%131 =

b11+2tb12+t2b22 b (1+t J+(b, +b,
b (146%)4(by 40,0t bll+2tb12+t2b22

(2 -1)T o

h22+2tb12+t2b11 b (1+t J+(by +b,
b (l+t )+(hu 22)t bll+2tb12+t2b22



Now if b12=0 B B=BI already and if h22=0 then
B=BII alresdy. Thue assume that b12;§0 and
baa#o, then we choose t such that one of the

diagonal members in Eq. &.2 15 zero, i.e,, choose

t=-(1/b22)[b12rfigj

t is real end ;! 1 by the amssumption made on
bEE-bll' Q.E.D.
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Fig. 4. Nustration of Case 2; synthesis.
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