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Priiigre:
Come on & vislt to wy countree
where McMillan's resivlt is reviewed;
The treetment is short and concise
with & strvcture quite simply imlied.

1. INTRODUCTION
In 1948 McMillan presented [1] and .n 1952 [2] he oblisied in 71l

detall one of the iirst genersl s nthesis methods Tor Pinite, linear,

time-invariant, passive, veciprocel, n-ports. At sbhout the seme time

Oono [3] and Tellegen [4] presented syntheses, which, like McMillan's,

are tased vpon the Brune process [5], wiule »ecentl: Belevitch [¢] end
ourselves [T], [8], have used the same type of ideas to relax the reci-
procity constraint. Of these varivus methods McMillan's is probably con-
ceptually the simplest, h-wever, tils clmplicity is masked b, the somewhal
complicated details of the proot. Some simplications of this proor

have been given by Bayard (9, p. 388], but the somewhat vague ideas are
treated with nowhere near the rigor of McMillan.

In this paper we fvrtier s 'mpliiy the proof of the mein step in
McMillan's synthesis, called 1y h'm the "pidce de résisctance” [2, p. 550].
Besides giving a new proof of thic step, we give a concrete ph s cal
struvcture which vses uncovpled indvetors end cepecitors n e.njinetisn
with transformers. The preliminary steps are only quickly reviewed, since

they are elegently covered in McMillan.
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2. SYNTHESIS

Consider an n x n PR impedance matrix 2Z(p); thaet is, 2Z{p) is 1)
symmetric, 2) rational in the complex frequency variable p = ¢ + jw,
3) analytic in ¢ > 0, 4) real when p =0 > 0, and 5) the Hermitian part
of Z(p) is positive semidefinite in ¢ > 0. Since 2 1is PR, any poles
on g =0 are simple with positive semidefinite residue matrices.
Further, the inverse of any PR metrix is egain PR. The first step in the
synthesis is to remove any poles on o =0 of Z &nd then g = 0 poles
of the inverse of the remainder, repeating until a PR matrix Z2, 1is
obtained for which neither Zr nor Z;l hes poles on ¢ = 0. Any non-
zero, singular matrices met in this process are transformed into nonsinguler
ones, bordered by zeros, by using real, constant, congruency transforma-
tions. Assuming Zr of order n, if the rank of the real part of Zr(jn)
is n 1its renk is lowered at some w,s 0 < w, < =, by & resistance ex-
traction. McMillan's extraction can be improved upon by using the method
descirbed first by Oono [3, p. 168] and later by Tellegen [4, p. 4]. If
Aall(m) and A(w) eare the one-one minor and the determinant of the real
part of Zr( Jo), respectively, one determines r = minimum over o of
[A(m)ﬂ&ll] and then one forms the PR matrix Zm(P) = Zr(P)'[r;on-ll

where 4 denotes the direct sum and On- the zero matrix of order n-1;

the real part of Zm(me) has rank n-l.1 If Z;l has any ¢ = 0 poles,

the above procedure is repeated; this will always be the case if W, = 0

or o, The mathematical details of the above steps, except for the use

of r, and their physical meaning are adequately discussed in McMillan [2, p. 541-588].
The synthesis is then reduced to the realization of a PR impedance

matrix, assumed n x n and written as 2Z(p), which a) has no poles of

it or its inverse on o = 0, b) has its real part singuler at p = P, = Jo,

and ¢) is nonsingular at every p on g=290 (and hence elso in g > 0).

We now follow McMillan, with slight terminology changes intended to be

more physically suggestive. We have Z(Po) = R(“b) + jx(wb) with R

and X real and symmetric. X(mb) is disgonalized by a resl congruency

transformation to give X(wb) = WDW  where the tilde denotes matrix

transposition. Then the constant diagonal matrix D is written as

D= D+-D_ where D+ and D_ are also diagonal with all entries non-
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negative. The following two positive semidefinite matrices are next
defined

-~

wly = WDV (12)
Dl = CDOWD_W (lb)

and then the following impedance matrix is formed

2)p) = 2(p) + 5, + D/ (2)

Then Z( )(p) being the sum of PR matrices, is PR. Further Z(z)(p ) =
R&n ), by direct caleulation, and hence Y( )(p) [Z(z)( )] has a
pole at Py this inverse exists as is seen by letting p = 1. As a re-
sult of the real coefficients & pole exists at Py and combining residue

metrices one writes

Y(B)(P) A C) ER —%P—G-é+¥(3)(p) (3)
D

o]

where Y(3) is finite at Py PR, and nonsingular in p; G is real,

symmetric and positive semidefinite. Then we can write

-1 4
Z(3)(1)) = [Y(3)] = 2 )(p) + PLg + D3/p ()
where Z(h) is PR and finite at 0 and w, L3 and D3 are nonzero
with Ll and Dl and, besides being positive semidefinite, satisfy an

(2)

important constraint which is seen by multiplying (3) on the left by 2
and on the right by 2(3) to get

2p2t ) (p)az 3)(p)
2 2
P + wb

(z(p) - Z(k)(p)l + plL, - Ly] + (1/p)D; - D3] =

(5)

Multiplying this by p and 1/p and letting p tend to 0 and w
respectively, gives
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1 3

Dy - —52-D; = q (6e)
mO

Lj- 2Ly0L- Ly = Q (éb)

2,-1 -1
From this we see that D, = D3[ln- EGD3/a:°] and L, = L3[ln- 2GL3] s

and, thus, Dl and D3 have the same rank, T, and Ll and L3 have
the same rank, T,; here 1 = is the n xn identity matrix.

A circuit for obtaining Z in terms of Z(h) is shown in Fig. 1

where we define

I, = 2 (72)
C, = 26/wd (7b)
2 o]
. i
IIl IZI
o I|:- “pL, P, -:: . (]
N\ .
| Ve | ry/p 20 :
I )
; 1 |
- | T |
| \ |
| \ |
-+
| No [
.

Fignre 1. Initiel Reslization of Z(p).
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In the first figure, the series arms represent series connections of
n-ports described by their impedence matrices, while the shunt n-ports are
described by their admittence matrices. The coupling network NC cor-
responds to McMillan's M (2, p. 5631].

Since the terms -le and - l/p in NC describe active networks,
the main problem of the theory is to show that NC can be realized by
passive circuit elements. At this point we deviate from the somewhat
complex ideas of McMillan [2, p. 562-580]. Consider the upper tee sub-
network of Nc, this can be described by its 2n x 2n chain matrix Hg
defined as the coefficient matrix in

v = [1-1r, o Voo (8)

Pz/p 1+ P2L3 -1,

ageln 1~ dis the n x n identity matrix. Here (8) can be easily
obtained by multiplying the individual chain matrices for the three sub-
parts and using (6b) to obtain 0, for the (1,2) term. Now multiply
(6b) on the right by -T, and add 1  to both sides to get

(-Llrz)[ln+ L3Fé] + ln[ln+ LBFé] = 1~ vhich gives, using the symmetry of

L3 and Ty

-1
L+ Tyl = [1 - r,L,] (9)

This also shows that ln- Ple is nonaingular. Inserting this in the
(2,2) terms of (8) and factoring the result, gives sgain writing e tilde

for the transpose,

Ve
9 = [ T %4 (10e)
r,/p [1- rr 1t
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= 1 0 ] '[fn-?}"f] 0 ] (10b)

-1
1-‘2+ 1-|2I"3I‘2/‘1') ln 0n [ln" PZLl]

e — h— vl

By exactly similar reasoning one gets for the lower tee subnetwork of
N

c
et
'/c s 1 0, [1n- C,D, ] o, (10c¢)
plC+ €. D.C.] 1 0 [1-c.p ]t
2 27372 n n n 21

~

Now an ideal transformer 2n-port is desecribed by v, = TVB, I, = -T1,,

where T is the turns-ratio matrix {10, p. 233] and thus the right-hand
terms of {10b) and (1lOc) describe ideal transformers with

T.B = ln- Ple (lla)
% = 1,60 (11b)

The left-hand terms of (10b) and (10c) describe shunt inductive and ce-

pacitive n-ports which are passive since their admittance metrices

n

Y z(p) [r,+ I‘ELBI"Z]/P (12a)

Y. (p)

plC,+ 0213302] (12b)

ere PR, the residue matrices being positive semidefinite with L3 and
D;. Note that, since Y, = [1 + réL3]r2/p, (9) shows that the rank of

3
Y, is that, m, of I,. Further, Y, = pC,[1 + D3Cz] which also has

£ 2
rank m, by (7). As a consequence of these considerations the realization
of Fig. 1 can be replaced by the one using purely passive elements of

Fig. 2.
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Figure 2. Passive Realization of Z,

With Fig. 2 the validity of MeMillan's method is proven, since the
process can be repeated on Z(h). Further, S(Z)-B(Z(h)) reactive
elements (inductors and capacitors) are used in realising Nb, where &( )
is McMillen's degree {2, p. 543]. To justify this last statement we use

the properties of &( ) stated by McMillan [2, p. 543] to write
o(z)-5(z")) = (6(2(®)or,r 1-18(2()r e ] (13)

- 16203 yszmer por_1-[6(2(3))-x o ]

]

2m = a(xﬂ)-pa(yc)

But we know Yh and Yc can be realized by using only S(Yh) inductors
and S(YE) capacitors {2, p. 5u48].

We can bring the realization of Fig. 2 into a form somewhat more
femilar to those acqueinted with the one-port Brune synthesis. For con-
ciseness, we only outline the steps involved, since their validity is
eagily justified. At the input we insert in cascade two transformer
networks of turne ratio matrices T, and T-l; similarly we insert trans-

formers Tél, T, 1in cascade between K, and Z' 7. This step leaves

2
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the external behavior unchenged; -1 and T-' can both be split into

1 2
two equal transformers again of turns ratio Til and Tél such that
Y, and Y  each have Til in cascade on the left and T, and T,

have Tél cascaded on the right. The cascade of T, and T can be
combined into one transformer Zn-port of turns ratio T 1T and similarly

Tc and T;l go into T lT At this stage the realization is a8 in

Fig. 3a. The cascade connection of T end Y is now reversed to

1 £
glve a shunt n-port of admittance
Yyq = TYT = Tlrgsnt.r,it/p (1ka)
again in cascade with Til. Til is now combined with T2T£ to get a
transformer of turns ratio
T = ToTt (13a)
£a T 27871
A similar process on Yc yields
Yo = YT = [°a+°zD3°2]T1 (14b)
T - rorl (15b)
cd ~ 27¢e l

We now simultaneously diagonelize Yz and Yc by a proper choice of T

in (14a) and (14b); this can always be done since the residue matrices
are positive semidefinite {8]. We then choose T, such that T . =1,
that is, T can now be omitted. The finael realization then takes the

cd
form of Fig. 3b where the inductors and capacitors are "uncoupled” and

1

can include open circuits.
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Figure 3. Development of Ce.. niical Realization.
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3. DISBCUSSION

Here we have followed the synthesis procedure of McMillan to show that
eny symmetric, rational, positive-real impedance matrix corresponds to =
finite, passive, reciprocal n-port. Besides greatly shortening McMillan's
proof of the validity of the method, we have given a canonical structure,
Fig. 3b, in terms of uncoupled reactive elements. Since this canonical
structure reduces to the normal Brune circuit in the one-port case, we
believe some physical insight is gained into McMillan's n-port extension.
This result is in good agreement with the different type of extension due
to Belevitch which relies upon complex resistances [6] and is a special
case of our nonreciprocal synthesis [7], [8]. Although Belevitch dis-
cusses a structure somewhat like Fig. 3b, he only treats the uncoupled
case of m=1 [6, p. 291]. The synthesis of Tellegen [4] also deals
largely with the m = 1 case, but, as pointed out by Oono and Yasuura
[12, P. 150], his synthesis does not seem to cover all cases. Also, in
contrast to the title of [4], a Brune type synthesis need not yield a
network with the minimum totel number of resistors, capacitors and in-
ductors. This is shown by specific examples [12, p. 1T4]. In contrast
to prevalent notions we believe this paper shows that McMillan's result
is complete.

In the synthesis it should be observed that, at (2), McMillan ex-
tracts X completely. It is also possible to extract only part of X
or even add to X. Doing this, one can guarantee thet (2) has rank one
at p = P, and, consequently, the section of Fig. 3b can be reduced to
one containing only one inductor and one capacitor, if so desired.
Further, the method used to go from Fig. 2 to Fig. 3b can be applied to
the synthesis of Oono [3] to also simplify that method.

Although meny other types of n-port synthesis methods exist and the
reciprocity restraint can be relexed [T], [12], as yet no generel method
exists to cover the nonrational casge,

Epilogue:

I know you have been to my countree
though I never saw you there;
I know you have loved all things I loved,
flowery and sweet and fair.
Shaw Neilson [13]
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