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Analog VLSI for Neural Networks

Robert W, Newcomb and Jason D. Lohn

Introduction

One of the most promising strategies for implementing neural
networks is through the use of electronic analog VLSI (Very
Large Scale Integration) circuits, An analog circuit is one that
processes a continuum of real-valued signals in continuous
tlime, in contrast to a digital circuit which processes integer-
valued {most often binary) signals in discretized time. VILSI
refers to an integrated circuit design and manufacturing tech-
nology whereby hundreds of thousands to millions of active
components (most often transistors) are placed on a chip on
the order of 100 mm? in area and 0.5 mm thick. Because Arti-
ficial Neural Networks (ANNs) attempt to behave similarly to
the brain with its millions of neurons, VLSI is the most appro-
priate presently available technology for their hardware imple-
mentations. Furthermore, both VLSI circuits and biclogical
neurons are of the same class, that is, fundamentally analog.
Although during the 1980s digital ANNs held more interest,
the first neural-like circuits were analog ones constructed by
Dr. Otto Schmitt in the late 1930s using vacuum tube analog
computer circuits (Schmitt, 1937). These were extended to rath-
er cumbersome transistor circuits after the Second World War
to obtain artificial neurons, in which much of the emphasis was
placed on the initiation and propagation of action potentials.
The circuits developed to accomplish these tasks relied on non-
linearities for implementing amplitude saturation, pulse repeti-
tion saturation, threshold effects, and dynamics for effecting
time-domain changes on the action potentials (Reiss, 1964).
But, because of the large size of the circuits used for just one
neuron, very little was done to make full ANN systems until
the advent of integrated circuits (ICs). In a number of research
centers around the world during the mid-1960s, considerable
interest began to develop in the design of analog IC neurons
and systems built from them. Of importance to the signal pro-
cessing capabilities in this development has been the recent em-
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phasis on the synaptic combining of signals via weight-matrix
summations, as opposed to the axon propagation of action
potentials. Present analog ANNs consist of synaptic weights,
implemented by amplifier gains; summation of the weighted
signals, implemented by the use of Kirchhoff™s laws (most
conveniently the current law, denoted KCL); activation func-
tions, realized by amplifier nonlinearities; and in many cases
dynamics, via capacitors, for smoothly transitioning from an
initial state to a desired equilibrium.

The workhorses of analog VLSI ANNS are the Differential
Voltage Controlled Current Source (DVCCS) and capacitors,
The DVCCs is used for making synaptic weights and activation
functions, and capacitors are used for dynamics. A DVCCS
takes a voltage difference as input, and gives an output current
as a function of that difference, DVCCS gains can realize the
weights when operating on small signals in a linear fashion and
can also realize saturation nonlinearities when operating on
large signals. In both cases, the DVCCS output currents can be
conveniently summed by KCL. By using capacitors in conjunc-
tion with DVCCSs, any linear circuit can be realized (Bialko
and Newcomb, 1971}, so that any desired filtering of ANN
signals is available. Along with the DVCCS and the capacitor,
it is also convenient to have resistors for conversion of currents
to voltage and voltage divisions, as well as devices for creating
and scaling currents {called current sources and current mir-
rors, respectively). Except for passive resistors and capacitors
(both of which are generally avoided in VLSI because of large
area or nonideal characteristics), all of these devices can basi-
cally be constructed from VLSI transistors, which are discussed
later in this article.

Overview of an Analog ANN Implementation

First we present a complete ANN analog circuit to give an
overview of the circuits discussed in later sections. Figure 1
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shows an analog circuit suitable for the VLSI realization of the
continuous-time neuron equations which, for the nth neuron of
a set of N, are (for simplicity of notation we omit subscripts n
on device parameters but not on the output currents and state)

Cdx Jdt + Gxy= Y gur Rilu+ Ty n=1,....,N (l2)
i=1..N

i = g(x,) (Ib)

[n Equation 1, g(-) is any of the activation functions available
(see Equations 2-4), with i, being its current output; x, is the
nth neuron’s state variable; £,; is the current output of the ith
neuron, which is fed to the input of the nth neuron; the g.;* R,
are the synaptic weights; and /., is the bias input. With refer-
ence to Figure 1 and Equation 1, it will be shown below that
VLSI citcuits can be constructed to make this Hopfield class of
analog neural networks, as well as any other analog ANN,
such as ART 2 (sec ADAPTIVE RESONANCE THEORY), pulsed
Hebbian, and biclogical mimics. The nonlinear function g(-)
in Equation 1b can be realized via a DVCCS (see Figure 5)
exhibiting square-law, exponential, or sigmoidal processing.
Tn this simple model of a neuron, these nonlinearities can be
thought to correspond to the activation processes in the cell
body. The weighted inputs from the synapses to the cell body
can be thought to correspond to varying amounts of currents
linearly summing, via KCL, at the input node to the left of
the activation function DVCCS in Figure 1. On the right side
of Equation la the weights g, R, are the current gains of
DVCCSs operating as linear amplifiers with resistor inputs, the
resistors (of resistance R,) being used to convert the neuron
output currents to voltages (constructed using direct layouts,
see Figure 3, or DVCCS connections, depending upon their
Ohmic value). The bias input I, also on the right of Equa-
tion la, is constructed as a constant current source made of
a transistor. Using a resistor-capacitor branch connected to
this same input node of the activation function amplifier, we
obtain the dynamics of the analog circuit, shown on the left
side of Equation la incorporating the derivative. Because each
neuron outpul current i, (which can be positive or negative)
needs to be sent to each of the other neurons, it needs to be
repeated M times, this being accomplished by the bidirectional
current mirror (see Figure 4B) in muitioutput form on the right
of Figure 1. This simply reproduces N copies of the neuron
output current /, irrespective of what load is presented to it.
For adjustments, as may be needed for adaptive ANNs, the
transconductances g,, can be made voltage variable by varia-
tion of the gain of the associated DVCCS (via the tail current
introduced in Figure 5 below).
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Figure 2, v1.5] transistors and layouts. A, NMOS. 8, PMOS. C, NPN BJT.
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Transistors and VLSI Layouls

The key circuit component in analog VLSI is the transistor, a
three- or four-terminal device that can behave as a switch in
digital circuits and as an amplifier in analog ones. Transistors
may be {abricated using a variety of technologies: BJT (bipolar
junction transistor), MOS (metal oxide semiconductor), CMOS
(complementary MOS), and others. For neural network imple-
mentations, MOS and BJT devices have been used the most;
when both occur together, the process is called BICMOS and
is the most prevalent present-day analog VLSI technology.

Figure 2 shows the circuit symbols for those transistors of
most interest to ANN VLSI, along with a top view of an IC
layout of each. The fabrication details can be found in Geiger,
Allen, and Strader (1990); however, for our purposes, it is
enough to know only a few aspects of their operation.

In the MOS transistor the drain current, fp, which flows
from the outside into the drain, D, and then through the device
to the source, S, is controlled by the voltage at the gate, G,
with respect to the source, Vgs, when the latter is “above”
threshold voltage, ¥,,. As the threshold voltage can be used asa
fine control on the ANN weights, we note that it is dependent
on the bulk-to-source voltage, Vs, where the bulk material (B)
is that of the substrate into which the transistor is embedded.
The two types of MOS transistors, NMOS and PMOS, are
distinguished by their conduction mechanisms, with the cur-
rents and voltages of the latter being ideally the negative of
the former in the complementary case desired for CMOS fab-
rications. Since the channel can be formed by enhancing or
depleting charge, we have enhancement- and depletion-mode
transistors of each of the NMOS and PMOS types; the distinc-
tion is that the threshold voltages of depletion-mode devices
are generally of opposite sign to those of enhancement-mode
devices. Depletion-mode transistors are not as common in
analog VLSI because of the extra fabrication steps needed,
but they can be used to obtain more flexible designs. MOS
transistors can be operated such that between the drain and
source a resistor is seen whose value depends on the gate-to-
source vollage, giving a voltage-variable resistor useful for ad-
aptation. More commonly the MOS transislor is operated in ils
saturation mode where, instead of a resistor between drain and
source, a current source is seen. This current source depends
on the gate-to-source voltage in a square-law fashion, conve-
niently allowing for quadratic weights. By operating an MOS
transistor at very low (subthreshold) gate-to-source voltages,
exponential behavior is obtained; subthreshold operation is
convenient for low power designs but is not too robust. In
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all of these cases, the drain current is proportional to the width-
to-length ratio, W/L, of the channel; this acts as a design
parameter that is very easily set in a VLSI layout. For bipolar
transistors, exponential nonlinearities are obtained, and the
VLSI design parameter is the emitter area to which the collec-
tor current is proportional. For more details on these devices,
see Geiger et al. (1990).

Besides the active transistors, passive capacitors are used to
obtain dynamics needed for realization of those ANNs that
are described by differential equations, and for the derivatives
needed for backpropagation. Several types of capacitors are
available in VLSI, The primary one is realized by an oxide
between two conductive layers (presently polysilicon, but pos-
sibly metal on top and doped silicon on the bottom), as shown
in Figure 3A. These capacitors are linear time-invariant capaci-
tors and satisfy § = Cdv/dt with capacitance C = C,, WL for
which C,, is the capacitance per unit area of the (gate) oxide
used. The area, WL, of the polysilicon plate serves as a design
constant. Unfortunately, to obtain capacitance of useful values
requires considerable area, and, hence, capacitors often take up
a good portion of analog VLSI neural networks. At times, one
also needs linear resistors, for transformation of currents to
voltages or for biasing, in which case the most common means
of VLSI implementation is via strips of polysilicon, often in
snake form to optimize layout (Figure 3B). The conductance G
is given through the sheet resistance R, (in ohms/square mi-
cron, a material constant) by G = W/(LR,), in which L is the
length (distance between contact pads) and # is the width of
the polysilicon. These resistors also take up considerable area
and thus are avoided, but for small values of resistance they are
sometimes invaluable (for values of 10 to 100 ohms). Larger-
valued resistors are constructed using transistors.

Primary Circuits

Two of the key components in an ANN are the weights and
the nonlinear activation functions, A weight can be realized
by a DVCCS operating in its linear region, while a sigmoidal
nonlinear activation function can be realized by operating a
DVCCS over its full nonlinear range. We consider, as back-
ground, current sources, current mirrors, and resistors con-
structed as diode-connected transistors, These are all used for
biasing the transistors, that is, setting the modes of operation
of transistors, while the current mirrors and sources are used
for various adjustments, as in adapting weights.

A current source can be constructed as the drain to source,
of current f, of an MOS transistor operating in its saturation
region (see Geiger et al.,, 1990, p. 49) with a voltage source
of voltage V attached gate-to-source. We note that (1) the cur-
rent [ can be adjusted by varying the above-threshold voltage
V; (2) current sources of one polarity are changed into ones

Figure 3. Passive components and lay-
outs. A, MOS capacitor, 8, Snake re-
sistor.

R=R, *L/W
(b)

of opposite polarity by reversing the attachment points or
by interchanging NMOS and PMOS; and (3) one needs to
maintain the saturalion mode of operation (by application
of sufficient voltage across the current source nodes). I the
transistor is operated in its ohmic region (see Geiger et al.,
1990:49), with small ¥, then the same circuit gives a voltage-
variable resistor of conductance G(¥'), which is useful for mak-
ing small-area resistors (10-1000 ohms) as well as adaptive
adjustments.

Figure 4A shows current mirrors which allow the current in
one section of an ANN to determine that in another, perhaps
for adjusting weights. These mirrors use a diode connection of
one transistor to set the gate-source voltages for the input and
output transistors to be equal. The current mirrors of Figure
4A allow current to flow in only one direction. However, by
placing a P-mirror on top of an N-mirror, as in Figure 4B, we
can get a bidirectional current mirror. By replacing all of the
MOS devices by BJTs, similar BJT devices can be constructed.
Furthermore, by placing several output transistors on one in-
put transistor, multiple-output current mirrors are easily con-
structed, and these are of considerable use for distributing cur-
rent in current-mode VLSI ANNs (as in Figure 1).

Figure 5 shows the basic configuration of a DVCCS. The
tail current, I+, is steered between [, and , by the differential
pair consisting of identical transistors T, and T; (of NMOS
or NPN types), with the steering contrelled by the voltage
difference of the input voltages, V, = V; — V;. The difference
of the transistor cusrents, I, = I, — I,, is designed to be a func-
tion of ¥, and [y, independent of any loads or the current
mirror. To obtain the current output as this difference, the
current mirror is used along with KCL at the output node so
that I, = —/;. The function of [, versus ¥; realized depends
upon the NMOS or NPN transistors and their modes of opera-
tion used to form the current difference. In all cases, the gates/
bases are the leads to the left (in 7)) and right {in T:), the
drains collectors are at the top, and the sources/emitters are at
the bottom. In practice, there is some loading by whatever is
attached, in which case other current mirrors are attached for
isolation.

For possible nonlinearities of I, versus V;, there are several
design alternatives. For NMOS we can obtain the sigmoidal
function

ly= (KWID[QIAKWIL) - ViV'2V, V] <[ [(KW/L)]

2)
which is linearized (o
g = [2I(KW/L)]'? 3

Typical orders of magnitude are O(J;) = 1073, O{K) = 107%,
1072 < Q(W/L) < 10%, giving 107° < O(g,) < 107% over a
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Figure 4. MOS current sources resis-
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and PMOS unidirectional current mir- ‘li" ]out‘
rors, fow = ((sz le)J'(L”'[Vl Vi B,
Mz
[

Bidirectional; current source. My

T
| bl lout §
(=)

Voias
Figure 5. DVCCS. Basic configuration on
and circuit symbol, T= M (when curr 1’{
MOS) or @ (when BIT). TIUITO!

7

B}
i__.i . ~(1;-12)

Vi T

V2

L
i

-Vbias

limited range of input ¥. For NPN transistors in Figure 5,
or NMOS in the subthreshold range,

{, = Irtanh[V;/2V7)] @

where V7 = 0.025 is the thermal voltage at room temperature.
This characteristic is quite nicely sigmoidal, leading to the BIT
DVCCS having considerable importance for VLSI construc-
tion of ANN activation functions, especially for backpropaga-
tion circuits.

In some instances, it is necessary to convert the output of a
DVCCS into a voltage (producing a Differential Voltage Con-
trolled Voltage Source, DVCVS), as when voltage output for
an activation function is desired. This can be accomplished by
directing DVCCS output current into a resistor. However, one
of the best ways to do thisisto attach the gates of a CMOS pair
to the output of the DVCCS. Since the CMOS pair allows no
current at its input, the DVCCS can of course no longer act
as a current source, but its output voltage is determined by
other factors (specifically the channel-length modulation effect
through the Early voltage). Other voltage amplifiers are avail-
able in the fiterature (Geiger et al., 1990), but high-gain opera-
tional amplifiers are not generally reasonable in VLSI for
ANNs,

Since the DVCCS and the capacitor are sufficient to generate
all finear circuils, we can construct many of the components of
ANNs using them; see Kardontchik (1992) for filter examples.
However, ANNs also require nonlinearities and, as we have
seen, several ponlincarities are available, such as square-law
and sigmoidal tanh ones. To build other nonlinearities, it is
convenient to have multipliers, which can also be constructed
from the DVCCS. An excellent multiplier is based upon the
f°“'1'-quadranl Gilbert multiplier (Geiger et al., 1990, p. 73N,
which uses two DVCCSs with the transistors of their tail cur-
fent sources forming another differential pair. Assuming linear
(;;JCratlon in the saturation region of the transistors and inpuls

< and ¥, bounded by Vi « 21 (KW/L), « U, (KWIL), Vi <

*12' * _._Jj—’ I t
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frans (rans _ +
| T2 f <=> Vi +
V2
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AUAKWL), with K Iy and /, as in Equation 2, the Gilbert
multiplier gives [y = V: V). “This Gilbert multiplier has success-
fully been used to multiply voltage-determined weights with
neuron output voltages {Linares et al., 1993, p. 446). Dividers
are possible but even less recommended than multipliers in
VLSL

Applications

Neural modeling implementations using analog VLSI have
produced numerous systems. In this section, we briefly high-
light some of these applications and invite the interested reader
to learn more by way of the following references: Mead (1989),
Zornetzer (1990), and Sénchez (1992, 1993). Other applica-
tions include constrained optimization (Tank and Hopfield,
1986), Fourier transform computations {Culhane, in El-Leithy
and Newcomb, 1989), oscillators (Linares, in El-Leithy and
Newcomb, 1989), Hebbian learning (Meador, Watola, and
Nintunze, 1991), A/D conversion (Yuh, in Sanchez and New-
comb, 1993), data compression (Fang, in Sanchez and
Newcomb, 1992), pattern recognition (Salam and Wang,
1991), and fuzzy controllers (Yamakawa, in Sanchez and
Newcomb, 1993).

Analog VLSI circuits have been applied to the task of model-
ing neurophysiological phenomena (see SiLicoN NEURONS).
One approach in which nerve cell characteristics were modeled
in hardware is the silicon neuron of Mahowald and Douglas
(1991). In the circuits comprising the silicon neuron, the neu-
ron’s ability to seif-generate electrochemical impulses is emu-
lated. Other approaches have been taken by Moon (in Sanchez
and Newcomb, 1992). Circuit realizations for a set of low-level
electrochemical processes occurring within synapses have also
been constructed. Using dynamics derived from actual neuro-
physiological data, second-messenger chemical “pools” (Hart-
line, in El-Leithy and Newcomb, 1989) were simulated (TsaY-
1993) using VLSI analog multipliers and DVCCSs.




920 Part III: Articles

One of the best matches to date between analog VLSI cir-
cuitry and a biologically based application is the silicon retina
of Mead (1989). This chip implements the first stages of inver-
tebrate retinal processing and produces signals similar to those
found in real retinas. Another silicon retina implementation
which includes tuned pixels is discussed by Delbriick (in
Sénchez and Newcomb, 1993).

ANN associative memories (such as the Hopfield net) store
patterns in weights such that when a “noisy” pattern is pre-
sented, the complete pattern is produced from the memory.
Boahen and his co-workers describe the implementation of a
three-layer, 46-neuron heteroassociative memory (in El-Leithy
and Newcomb, 1989). Using current-mode circuits operating in
subthreshold conduction, the chip contains a regular array of
cells, each cell containing two synapses and a 1-bit weight
memory cell. Inverters are used for thresholding neurons,
current sources are used in the bias circuit, and a multiplier
circuit is used in the synapse. A class of adaptable associative
memories can also be realized using DVCCSs, incorporating
Gilbert multipliers for transconductance weights (Linares, in
Sanchez and Newcomb, 1993).

Discussion

Compared to digital technology, analog VLSI offers the ANN
world the distinct advantages of speed and real-time processing,
though it suffers from relatively large size requirements and
lack of standard cells. It also offers the ability to make continu-
ous and speedy adjustments for adaptive neural networks and
those needing efficient calculations of derivatives, as in back-
propagation ANNs. Although the absolute error for analog
components is typically larger than 5%, the relative precision
can usually be controlled to be under 0.1% when implemented
in VLSI. Roughly, this is the equivalent of 8-bit digital resolu-
tion at hundreds to thousands of mHz. When working with the
primary circuits discussed here, such as the DVCCS and the
current mirrors, voltage and current differences matter most,
so that it is the relative tolerance that is critical. In any event,
because ANNSs are by conception fault tolerant, precision is
not usually of concern.

VLSI neurons can have their dimensions comparabie to
those of biological neurons with considerably faster signal pro-
cessing. However, real neurons take full advantage of their 3D
nature, whereas most present-day VLSI structures are essen-
tially planar. Although connection wires can be routed under
other wires in multiple metal VLS!I constructs, and there do
exist some prototype 3D processes, the technology is still quite
limited. Pulse-coded ANNSs are amenable to a mixture of ana-
log and digital realizations; the action poltentials can be stan-
dardized and then realized by digital pulses, while the synaptic
effects can be most conveniently realized by analog devices,
since real-valued weights are involved.,

A large number of other devices of interest to specialized
areas of ANNs are presently available for VLSI. Among such
devices are charge-coupled devices (CCDs), possibly for axon-
like propagation or enzyme-effect mimicking, floating-gate de-
vices for long-term storage of weights, and JFETs for less deli-
cate labrications. It should be noted that the MOS devices take
minimal area but they are subject to damage by static charge

that can puncture the very thin gate oxide. For the future, there
are the very small resonant tunneling devices, which use a
different substrate than the silicon of present VLSI, and molec-
ular devices, which probably show the greatest long-range
potential because of their minimal size and general signal
handling.

Road Map: Implementation of Neural Networks

Background: 1.1. Introducing the Neuron; 1.3. Dynamics and Adapla-
tion in Neural Networks

Related Reading: Silicon Neurons; Digital VLSI for Neural Networks
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