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ABSTRACT

In this paper we give the semistate
equations for tying a knot on a torus
using two robot arms. The two robot
arms in synchronization with one

another follow a trajectory on a torus

which is the path generated from the
equations of an (m,,m=z)-torus knot.

1. INTRODUCTION .

To tie a knot is a part of our everyday
lives. For example we tie our shoe

laces, wrap packages, tie ropes while
gailing or at the dock. Tying a knot
has many industrial applications as
well, for example in textile factories.
However, under hazardous conditions
there will be times that a robot will
be desired to do the job, like tying a
knot under water or in space. In this
paper we give the semistate equations
for tying a knot on a torus using two
synchronized robot arms. Our available
robot arms bhave four rotation angles,
namely waist, shoulder, elbow and
wrist, however, each robot arm has only
one gripper (end-effector). In [1] we
mentioned that a knot which is embedded

on & torus is called a torus knot. An
(ms ym2)} —torus knot is a trajectory
which travels m; times around the

meridian circle of a torus with radius
Ry and ma times around the axial circle
of the torus with radius R=. In order
to tie an (m;,m=2)-torus knot using two
robot arms we need to know the
coordinates of the joints and the
inverse kinematic equations of each
robot arm. That information determines
the positioning of the two robots
with respect to each other and the
torus, which is used as the supporting
base for the knot. Here, we place the
two robots at a distance "a" from each
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other, along the positive direction of
the Y axis of X-Y-Z coordinate systems.
We place the torus supporting the knot
at a distance "a/2" +from each robot
along the Y axis of an X-Y-Z coordinate
eystem to insure that the torus is
within reach of both robots, Fig.la. In
part Il1 of this paper we give the
coagrdinates of the joints and the
inverse kinematic equations of two
robot arms at a distance "a" from each
other. The results of part 1! are used
in part III where we give the semistate
equations for each robot arm to tie a
knot on a torus which is positioned at
a distance "a/2" from each robot. We
choose a torus which can be
disconnected to release the knot once
it is tied on the torus. As a result,
the two robot arms in synchronization
with each other construct an open ended
torus knot. Fig. 2a shows a (2,3)-torus

knot tied on the torus and Fig. 2b
shows the knot after the torus 1is
removed. Part Iv contains some

discussion and conclusions.

I1. THE INVERSE KINEMATIC EQUATIONS OF
TWO COORDINATED ROBOT ARMS

In order for humans to tie a knot they
normally use both hands. To simulate
this process we use two synchronized

robot arms. Our available robot arms
have four joints, namely waist,
shoulder, elbow, wrist and a gripper.

In order to tie a knot on a torus using
a string, we need, to know the
coordinates of the joints of each robot
and the joints' rotation angles. That
information will help us position the
torus such that it is well within reach
of both robots. Table 1 presents the
coordinates of the joints of each robot
arm. To understand the entries in Table
1, refer to Fig.ila, where the robots
are seen to be positioned at a distance
"a" from each other along the positive




direction of Y axis of the X-¥-2
coordinate systems. Continuing to refer
to Fig.1a, point Qs indicates the base
or the waist of the robot #1. Ra is the
height of its waist, Rb is the length
of the upper arm, Rc is the length of
the forearm and Rd is the the length of
the end-effector, that is, the gripper.
©os is the anale of the waist rotation
with positive orientation being
counter—clockwise, ©i, is the shoulder
rotation angle, - that is, the angle
measured from the positive direction of
the Y axis to Re. ©i= is the elbow
rotation angle and is equal to the
angle measured between Re and Re. O34
je the wrist rotation angle and 1s
equal to the angle between Re and Ra.
The coordinates of all of the joints
for each robot are given in Table 1.

Given the coordinates of the
end-effector of robot #1 one can $ind
several possible sets of rotation
angles for robot #1, 9,1 where

n=0,1,2,3. These angles are qiven in
Table 2, & table of direct kinematic
equations. In order to $ind the joint
angles of the second robot, On=, WEe use
Table 2 and substitute XpisYo: and Zops
by Xpzs Ypz, Zpz. Depending on the
physical limitations and the intended
path of each robot only one solution is
accepted at a time. Now we proceed to
give the semistate equations for these
two robot arms tying a knot on a torus.

111. Semistate Equations For_ Tying A
Knot on & Torus Using Two Synchronized
Robot_ Arms

A knot which i= embedded on a torus is
called a torus krot and, with reference
to £13), an (mi,mz)-torus knot i8 a
trajectory which travels m; times
around a meridian circle with radius R,
and mz times around an axial circle
with radius Rz. The solution to the set
of state Eqgs. (1) will result in an
(my .Mm=z) -torus knot in four dimensional

space of its own coordinates w. X, Y.
and =.

dx/dt=y (1a)
dy/dt=—m,2x (1b)
dz/dt=w (1c)
dw/dt=-mz=z {(id)
with initial conditions ®{(O)=0,

Y)Y =R,. z2{(0M=0, and w(0)=R=a, in which
Ry, Rz are the radii of the two circles
used to construct the torus. Now in
order to tie an (m,,mz)-torus knot we
should place the torus supporting the
knot well within reach of both robot
arms in the robot coordinate system.
With referance to Table 1 and examining
the maximum and the minimum distances
reached by robot #2 on each axis of the
toordinate system, we place the torus
and its supporting base at a distance
"a/2" from each robot on the Y axis. We
call the coordinates of the center of

the torus Xee Yes and Zec. These
coordinates are defimed by the
following equations.

X.: = 0 (2a)
Ye = a/2 (2b)
Zc = Ra (2c)

With reference to Egs. (1) and (2), and
returning to three dimensional space,
we have the semistate equations {(3).
Thie solution is the path of the
trajectories on a torus shifted a/2
units along the positive direction of Y
arxis and Ra units up the' Z axis, £13.

dx/dt=y-Da/2 (3a)
dy/dt=—m.=x (Zb)
dz/dt=w (3c)
dw/dt=-mz2(z-R.D/mz} (3d)
Where

D=d+W (Ze)

and O Rz is a free parameter which can
be chosen such that

d2=R, 2+Rz2 (36)
x=X/D, y=Y/D, (3q)
2=(Rym=2) /[D(d%—R22)1 (3h)

After some algebraic manipulation and
using Egs. {3), the equation of a torus
in X-Y-Z coordinate systems with its
center at (0,a/2,Ra), 15 agiven by
Eq. {(4).

(2-Ra)2+IR-I{XZ+(Y-a/2)=I2=r=

(4a)
where in Eg. (4a)
R=dR,/ (d2-Rz?)} (4b)
r=RsRz/ (dz-F\'zz). (4c)

Now we proceed to give the semistate
equations for . two synchronized robot
arms tying & knot on the torus defined
by Eq. (4) which has a very rough
eurface for holding the string. We
assume both robots are at an initial
position which for reference we call
the HOME position. We call the rotation
angles at HOME position Oniw and Onazm
for each robot where n=0,1,2,3. We
assign to robot #1 the task of moving
to all points on the torus where
Z+Ra-Zy 3 the task assigned to robot "2
ijs that of moving to al11 points on the
torus where 2<R.+Zi,F1g. 1b, where Zs
is the smallest possible incerement
that the end-effector of each robot can
take. This increment is one degree or
8.8 steps, (F]. To tie a knot we use a
piece of string which is long enough
that if the robot holds it in the
middle it can still be wrapped around
the torus. Robot #1 holds the string
near one end by closing its gripper and
then it moves the string over the torus
to a point where the Z coordinate of
the point on the torus is larger than
Re by an increment Z,. With reference
to Table 1 and Table 2 new joint angles
are calculated. The above process



continues until Z=R,-I, at which point
the gripper throws the string over the
torus. When this results, robot #1
opens its gripper and lets go of the
string, and goes to HOME position. At
this time robot #2 becomes activated
and moves its gripper to the point
where robot #1 has let go of the
string, that is, to where I=R.-Z, and
grabs the string by closing its gripper
near to the midpoint of the string. At
this point since 8:2<0 we find foa,
Ba=z, and ©O32 using Table 2 and
substituting for Xpz, Ypay, and Zpa by
Xpisy Ypary Zpa, respectively. Taken
together these angle constraints aean
that robot #2 approaches the point from
underneath the torus. For as long as
2<{Ra+Z3, robot #2 will follow this new

orientation and again, as soonh as
I=Ra+ls, its gripper reaches and
attaches the string to the rough

surface of the torus and lets go of the
string and goes to HOME position with
robot #1 being reactivated for Z>Ra-Z:.
Wwe should notice that the size of the
torus which has the knot embedded on it
must be chosen such that it satisfies
the workspace constraints of the robot
arms. To implement the mentioned idea
mathematically, the two robot arms sit
in two planes, the upper hysteresis
plane and the lower hysteresis plane.
Robot #1 moves on points on the upper
surface of the torus until it reaches
the hysteresis jump plane, which in our
case is perpendicular to the 2 axis.
This jump occurs at Z=sR.-Z,. At this
paint robot #1 lettgo of the string and
robot #2 takes over. Robot #2 moves to
all the points on the lower half of the
torus until it reaches the second
hysteresis jump point. This jump occurs
at Z=R.+Z:. At this point robot #2 lets
go of the string and robot #1 takes
over. This process is shown in Figs. la
and ib. With reference to semistate
Eqs. (3), the semistate equations for
the two robot arms to tie a torus knot
on a torus with its center at (a/2, O,

Ra) are given by the following
equations along with (3e-h)
dx/dt=y~Da/2 (Sa)
dy/dta—-m,3x (Sb)
dz /dtew (Sc)
dw/dt=—ma2(z-R.D/ma2)H(Z) (Sd)

1 Z>Ra-Z. t(6a)
where H{(Z)=s<¢-1 Z<{Ra+Z, {é&b)

Where with reference to Eqs. (3e),

34,
(3g), and (3h),

2=Ra~Z3s and Z=Ro+Z, are

the hyteresis jump points. For all
Z>Ra~2, the coordinates of the
end-effector of robot #1 should be the

same as the coordinates of the point on
the knot, while for all ZI<R.+Z, the
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coordinates of robot #2 must be the
same &s the coordinates of a point on

the knot. That is:

Case I: 2>=R.+Z,3 ngﬂx, Y55=Y, Zp1=2
(7a)

Case 11:Z<=Ra~Zs} Xp==X, Ypa=Y,

Ipa=1 A (7b)

Since each robot after completing its

task goes to HOME position there will
not be a collision between the two
robots. The precautions needed to avoid
collision of the robot with the base,

the detailed algorithm, and the
experimental results are given in [31.
At the completion of the procees
mentioned above we have an

{ms,m2)~torus knot wrapped around the
torus, Fig.2a. 1f the torus can be
disconnected and pulled out of the
knot, one has an open ended torus knot.
Fig.2b shows an open ended (2,3)-torus
knot.

1V, CONCLUSION

Here we gave the theory for semistate
equations for tying a knot on a torus
using two synchronized robot arms. The
actual experimental results are fully
discussed and given in £33. Our
assumption in this paper was that the
knot was wrapped on a torus and after
the completion of the task of knot
tying the torus is pulled out of the
knot. To tie a knot we simulate the
motions of human hands. With the
robots used. here this is a difficult
task, since, the robots lack three out
of five +fingers and, unlike human
fingers, which have three )joints in
each finger, our available robots miss
the joints in the fingers. We often
tend to overlook the importance of the
joints and the flex muscles in our
fingers and the complicated
coordination among the fingers on each
hand while tying a knot. To simulate
these movements requires more study.
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Fig.1la Two Synchronized Robot Arms
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Fig.1b The Path Taken by Each Robot Arm On The Torus

Fig.2a A (2,3)~Torus knot Formed On A Torus
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Fig.2b An Opan Ended (2,3)-Torus Enot
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