470

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 4, NO. 3, MAY 1993

A Multilevel Neural Network for A/D Conversion

Jen-Dong Yuh, Student Member, IEEE, and Robert W. Newcomb, Fellow, IEEE

Abstract—In this paper we introduce a multilevel neuron and
show its use in a neural network multilevel A/D converter. An
energy function suited for multilevel neural networks is defined
for which local minima problems for A/D conversion are removed
by modifying Lee and Sheu’s method. This energy function ex-
tends others in the sense that it allows one to consider more than
two discrete levels in the neuron output and threshold settings.
We also demonstrate how to build and implement multilevel
nonlinearities, and a way of implementing a multilevel neural
network for A/D conversion by taking advantage of BiCMOS
technologies. Computer simulations are included to illustrate
how this design functions and individual component VLSI chips
measurements for multilevel A/D conversion are presented to
show how each component operates.

I. INTRODUCTION

EURAL networks have been shown to have the capabil-

ity to handle problems in a number of applications and
in a variety of areas [1]—[5]. They are able to deal with some
optimization problems more efficiently than digital computers.
The function of each neuron is simple and primitive. How-
ever, collectively they can be organized to solve complicated
problems [1].

Typically, a neural system will need a large number of
weights which makes VLSI implementation inconvenient.
Thus a means to reduce these weights and still achieve
desired goals should be of major interest for neural network
design. Multilevel neurons have the potential of reducing the
number of weights and when properly designed they may
be implemented in VLSI. Therefore, we investigate here a
multilevel neural network.

While most neural networks in the literature can be con-
sidered as “two state” neural networks [3], [4]. There are
a couple of works using multilevel neurons [6], [7]. In [6],
Banzhaf did some simulations involving multistate neural
associative memory and introduced what he called an energy
function. However, he did not show what kind of nonlinearity
should be used, what is the possibility to implement that
nonlincarity, and necessary properties and his energy function.
In [7), Si and Michel did analysis and synthesis of discrete-
time neural networks with multilevel threshold functions using
a pseudoinverse and without using energy functions. In this
paper, we consider these properties by examining multilevel
neural networks starting from Tank and Hopfield’s optimiza-
tion neural networks [2], [3]. They designed an A/D converter
based on analog processors and showed that these analog
processors should be promising in optimization applications
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[2). Here we extend the results of [2] to multilevel neural
processors. An energy function is given for multilevel neural
networks. This energy function is also adequate for binary
neural networks defined by Tank and Hopfield [2], since their
network is a special case of that presented here. A BiICMOS
nonlinearity building block (NBB) circuit suited for multilevel
neural network is designed to apply it to multilevel A/D
converters. SPICE3 simulations of multilevel neural A/D con-
verters with MOSIS BiCMOS analog process parameters are
included to demonstrate the feasibility of this implementation.
The reason that we use BICMOS technology is to approximate
mathematical equations for multilevel nonlinearities as closely
as possible. As a result, by means of computer simulations, and
formal analysis, we show that neural A/D converters can be
obtained by using multilevel neurons. The chip is fabricated
via MOSIS using BiCMOS technology and individual compo-
nent measurements for multilevel neural A/D conversion are
shown in this paper.

This paper proceeds as follows. In Section II, multilevel
nonlinearities are introduced, and with these nonlinearities,
we construct multilevel neurons. Then, a fully connected
multilevel network is organized. Also, we demonstrate a way
of implementing these multilevel neurons, and implementation
of neuron weights is also shown. In Section III, an energy
function is proposed for these neural networks. We use this
energy function for designing multilevel neural A/D converters
with local minima elimination in Section IV. some useful
notations are introduced to help eliminating local minima for
multilevel neural A/D converters. A circuit implementation
for multilevel neural A/D converters is also demonstrated
through SPICE3 simulations and measurements on a chip.
Finally, we compare our circuit implementation with Lee and
Sheu’s, discuss some advantages and disadvantages of our
implementation, and make our conclusions in Section V.

II. MULTILEVEL NONLINEARITIES

A typical artificial neuron presently most popular in the
literature [3), [4], [8] can be modeled by a set of weights
which multiply inputs to the neuron. The neuron sums the
weighted inputs and passes the result through a nonlinearity.
Hard limiters, saturating linear elements, and sigmoidal func-
tions are three common types of nonlinearities [3], [4]. The
nonlinearities can be considered as two-level nonlinearities
since classification is into one of two neuron output values. In
order to represent a b-level nonlinearity, a multilevel function

M(-) is introduced as
b-1
M(z) =" a;fj(x - 8;) (1)
=0
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where the basis functions f;(:) are chosen among any of a

number of monotonically nondecreasing step-type functions,
mapping from the reals I onto a finite interval I. Examples of

such f;(-)’s are the unit step function 1(z), the special sigmoid
function 1/(1 + e~**) and tanh(Az) for which the intervals I
are [0, 1], [0, 1], and [—1, 1] respectively. In (1), a; are positive
finite constants for 0 < j < b—1. 6, is a threshold point where
the neuron output is considered to transit from one level to the
next level, and 6; < 6;4,; we take fy = —o0 and 6, = +00 to
simplify the following formulas. There are generally b output
levels of this multilevel neuron nonlinearity with b, a positive
integer greater than 1.

By choosing the f;(-) to all be a unit step function, we have
the multilevel hard limiter M} (-) function shown in Fig. 1(a)
and described by

b-1
My(z) =Y ajl(z - 6;)
=0

i
=E aj;

j=0

0,‘31‘<0,‘+1, 0Si<b—l.

(2a)

The subscript h denotes the hard limiter function. The non-
linearity is called “discrete” because its output generally
assumes the discrete values, mg, my, ..., my—1, where m; =
ag + ...+ a;. Although discrete hard limiters are appropriate
for computer simulations, they are discontinuous and, conse-
quently, not the most appropriate to implement in hardware.
Therefore, another type of continuous multilevel nonlinearity
is needed. The special sigmoid function has been widely used
in continuous neural networks [4], [9], [10]. Hence, it is an
appropriate choice to use as the basis functions in which case
(1) gives
ag ay
Ms(z) = (1 + e 2=00)) + (1+ e 2a—00)
ap—-1
T iFereany

For the same reason, subscript s denotes f(-) to be the
special sigmoid function. This is the nonlinearity that the
hardware implementation will closely approximate. Similarly,
a multilevel tanh(-) nonlinearity can also be built by letting
the f;(-) to be tanh(-) functions.

+...

(2b)

A. Multilevel Neurons

Neuron models can be roughly classified as continuous time
models [9)-[12] and discrete time models [3], [8). In [9], a
typical continuous time neuron is defined by (3)

dz;
&= = ; wijv; — Gz + I (3a)
v; = gi(x:) (3b)

where neuron output v;, in a finite interval range, is a contin-
uous and monotone-increasing function g;(-) of the input state
variable z; to neuron 4, w;; is the connection weight between
the jth neuron output and the ith neuron input, and G; and ¢;
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Fig. 1. A hard-limiter multilevel linearity. (b) A sigmoidal multilevel

nonlinearity.

are the input conductance and the input capacitance of neuron
i, respectively. For our multilevel neuron, we modify the above
description to a mathematical model defined by (3a) and (4),
illustrated in Fig. 2; that is the characteristic function g(-) is
replaced by a multilevel nonlinearity

v; = Mi(z;). ()

Here, M;(-) is the ith multilevel nonlinearity as per (1) and
U;(z;) = G;z;. The function U;(x;) is considered to introduce
a negative feedback in terms of the neuron state z; as shown in
Fig. 2. Equation (3a) means that the activity of node 1, i.e., the
state variable z;, increases if interneuron input to the neuron,
which is the sum and J; in (3a), exceeds the intrinsic feedback
function U;(z;). As we can see in Fig. 2, if U;(z;) is omitted,
the output of the integrator, z;, may be unbounded as long
as dz;/dt keeps either a positive or a negative value for a
sufficient period of time.

1) Multilevel Neural Networks: A general multilevel net-
work can be organized as a fully connected network as shown
in Fig. 3, following the structure of Hopfield [8], [9]. Each
M(-) is assumed to be the sigmoid multilevel type shown in
Fig. 1(b). Then the neural network is defined in the following
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Fig. 3. A multilevel ncural network: M;(-) is the ith multilevel nonlincarity.

matrix form of (3):
CX=WV-GX+1I
V = M(X)

(52)
(5b)

where, using superscript 7' to denote matrix transpose, X =
[z1, 22, .:r,,.]r consists of the voltages across input capac-
itors, C is a n x n diagonal matrix with the ith diagonal
capacitance value ¢;, and W is the n x n. matrix of connection
weights. V = [v;,v;.---,v,,]r is the neuron output vector.
G is also a diagonal matrix with the ith diagonal value G;.
I=[I1,--- ,In]T is the vector ¢’ external inputs. Here, X
denotes the derivative of X.

B. Multilevel Neuron Circuit Implementations

We wish to implement the typical neuron model in multi-
level form. For this, a block diagram for a circuit implemen-
tation is shown in Fig. 4 by using a multilevel nonlinearity
of (1). It consists of three parts, current sources formed via
weights on neuron outputs and as external inputs, an equivalent
input resistor and capacitor pair, and a multilevel nonlinearity.
The weight w;; may be implemented by the geometrical ratio
W/L of two MOS current mirrors [13]. In Fig. 4, we see
that U;(z;) = G;z;, and Kirchhoff’s current equation gives
(3a) and (4). Furthermore, in the two level neuron case, the
threshold point is rarcly mentioned and is normally taken to
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Fig. 4. A block diagram for a sigmoidal multilevel ncuron.

be zero. But in the multilevel case, the choice of threshold
points is critical. These threshold points are shown in Fig. 4
explicitly, and we will show how to choose these threshold
points in Section [V where a multilevel ncural A/D converter
design is given.

1) Multilevel Nonlinearity Implementations: In order to
show how to build multilevel nonlinearities, implementation
of the nonlinearity building block (NBB) is demonstrated first.
A NBB can be implemented by a bipolar emitter coupled pair
and MOS transistor current mirrors as shown in Fig. 5. In
analyzing Fig. 5, we assume that Q1 and Q2 are matched and
I, is described by (6) [14, pp. 445],

L= arlpe
T .
ron(-2)

where vy = = — 0, ap is the large signal forward current
gain of bipolar transistor common base configuration, Igg is
the current source for an emitter coupled pair, and V7 is the
thermal energy. The NBB shown in Fig. S builds a function
a;f(x — ). Let the geometry ratio of PMOS transistors M,
and F; be Rp; = (W/Lp;)/(W/Lr:). Assuming that the
channel modulation effect is relatively insignificant. Then I
is approximately equal to Rp;l4.; by applying current mirror
techniques [14, pp. 346] in which case we have the following:

)

Rrjarlpp

a‘f('Ud):RF‘I,:] = .
! ! 1+cxp(—:—:)

)

For building multilevel nonlinearities, these b — 1 NBB’s
collectively generate b output levels in accordance with the in-
put voltage z; in Fig. 4. In order to implement the summation
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Fig. 5. 1/[1 4 exp{—=A{z — 8))] Current mode circuit implementations of
NBB's with A = 1/17 using both bipolar and CMOS transistors.

of (1) for a multilevel nonlinearity, we use to advantage that
the output of a NBB is a current. As a consequence, by tying
together outputs of b— 1 NBB’s with different threshold points,
as shown in Fig. 4, we have a general multilevel nonlinearity
given by (1). As an example, the following homogeneous
moultilevel nonlinearities, Mg(z), where only one kind of
nonlinearity is used to build a multilevel nonlinearity, are
provided for illustration:

A”s(.’l‘) :m_f(:n—0|)+02f(.17-02)+...
+ ap1 f(T = 85-y)

Rp,
o0
1+ cx;)(—',‘—T)

+...+

Rpy
,"(?)
()
Rpp-)

v(b—h
d
l+exp(— v )
(k)

where v’ = x — 6, and Ms(-) is a multilevel nonlinearity
with threshold settings, #;,05,...6,—,. The above multilevel
nonlinearity uses the special sigmoid function. Other multi-
level nonlinearities can be built in a similar way by means
of constructing NBB’s. As shown in [15], tanh[z] is used
as NBB’s to build multilevel nonlinearities. Output levels
of these multilevel nonlinearities can be scaled by choices
Rr1y..., Rpp-1, and Igg.

=orplgg +

®

2) Implementation of Neuron Weights: Neuron weights are
implemented via the L/W ratios of MOS current mirrors.
In Fig. 6, a bidirectional current mirror [16] is shown that
allows current to be mirrored no matter whether it flows into
or out of the input node; this is desirable if a multilevel
nonlinearity takes both signs. A positive weight is defined
for Fig. 6 when the output current O is the same direction
as the input current Mg(z). Thus an inverting bidirectional
current mirror is shown in Fig. 6, part (a), since O is negative
when Ms(+) is positive. For simplicity for that figure, assume
that channel modulation effects are relatively insignificant, and
therefore,

0= _(Ir— -+ Id—)
= - (K(”ld,s + K(z)’dut) = "U(_)I”S(') (9a)

where KV = (W/L,_)/(W/Ls), K® = (W/Ls_)/(W/
L), =KW = - K@ = (=) and I .4 + I4,5 = Ms(-) are
shown in Fig. 6 part (a); (9a) is to give a relationship between
O and Ms(x), O = w'~)Ms(x), where w(~) is negative,
designating a negative weight. A noninverting bidirectional
current mirror is obtained in Fig. 6, part (b) by cascading two
inverting bidirectional current mirrors. Similarly, let 7% and
Ts, and Ty and Ty be equal sizes, we get O = w(+) Mg(x),
where w'*) = (W/L,)/(W/Lg) = (W/Lay)/(W/Lg).
Therefore, weights of either sign for a multilevel nonlinearity
Ms(x) are given by the following equations:

w™t = (W/Lyy)/(W/Lg) = (W/Lay)/(W/Ls) (%)

W) = (W/L_)(W/Ls) = (W/La_)/(W/Ls). (%)

The above implementation is a general way (o obtain
weights of either sign for currents of either sign for mul-
tilevel nonlinearities, However, for some special cases, we
can implement weights in a way that uses less transistors.
If Ms(z) > 0 for all =, positive weights are implemented
by current sources and negative weights are implemented by
current sinks. Similarly, it Mg(z) < 0 for all z, positive
weights are implemented by current sinks and negative'weights
are implemented by current sources.

[T11. ENERGY FUNCTIONS FOR MULTILEVEL
NEURAL NETWORKS

For the system defined by (5), we define the following
energy function,
1 T
E= —7VTWV +/ GZ(V)YdV - VT (10a)
0
where Z = {z1,29....,2,]" is just a dummy vector of
integration for the vector variable X, and F is a scaler.
Expanding 10(a), we have, where n is the number of neurons:
n n n N

E(.’l?) = %ZZWUU,(JJ,')UJ'(IJ') + ZG.‘/ ' Zi dv.- (Z.‘)

x
i=1 Iil i=1 0
J#i

- Z I,‘1!.‘(!E.‘)
=1

(10b)
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Fig. 6. A neuron weight implementation for Mg(r) using bidirectional
current mirrors.

Equation (10b) is a energy function when W is symmetric
since

dE(x) dE(z)

dv; (z;)

dv.— (z:) ) E
dx; dt

Z

n

-1

dv;

z wijv; —Giz; + I | - pr

=1
1#-

(10¢)

By definition, an energy function should be bounded with
a trajectory derivative that is less than zero. In our case,
dE(z)/dt < 0 as long as dv;/dz; is positive since ¢;
is assumed positive. As indicated in Section II-A, v;(x) is
bounded for all z, and I;, G; are all finite values. Therefore,
for showing the boundedness of the energy function, what we
need to investigate is the integral term in (10b):

ici /,‘ zdv(2) = z": G.Ei(v).
i=1 0 i=1

(11a)
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The integral is denoted by Fg(v) and developed as

M~ (y)dy.

mop

Fo(v) = /-z zdv(z) = (11b)
0

Here, normally M;™!(-) can not be expressed in a closed form.
Therefore, we use the Stieltjes integral form of the first term
and get the following, assuming Ms(-) of (2b):

1
Ey(z) = 5 log og,(1+¢**)
=1
b-1 —A(z-—@ ) 1
- SNy =A(z-8;)
1[1+e-m-v> ) ‘°g=(1+“ ' )]
J=

(11c)

The first term of (11c) is a constant and the last two terms go
to bounded values as x approaches infinity. That is

b-1
_ Te 1 ~A(z—8;)
s zl[m*“x'%(”‘ ")
i=
has lim F(z)= 0, and
=00
b-1

zll.r_nm F(I) = Zo, .

=1

—Mzx—8;)

(11d)

Therefore, Ep(x) is bounded even if x approaches infinity.
Here, M;(x;) = v; and we assume that M;(x;) is a monoton-
ically continuous function as defined in (2b). Therefore, (10b)
is indeed an energy function since E(z) is bounded and v; is
monotonically increasing in z;.

Equation (10) provides the foundation for multilevel Hop-
field style neural systems. We will demonstrate how they can
be applied to a multilevel neural A/D converter in Section IV.

IV. MULTILEVEL NERAL A/D CONVERTERS

The strategy for designing a multilevel A/D converter is
similar to that used on Tank and Hopfield’s A/D converter
[2]. However, in our development, the energy function (given
in (17)) and the Mg(-) multilevel nonlinearity are used for
designing multilevel neural A/D converters. Multilevel neural
A/D conversion is considered as a simple optimization prob-
lem. In order to do this, we use the square difference between
an analog input z and its neuron output representation, [V],
in the following:

where [V] = Z bl
k=1

Fu = 5 (@~ [V])?, (12)

where V' is the neuron output vector. What we want is
to minimizing F.4 so that we can obtain the best digital
representation for a given input z. In order to have a neural
network perform this job, we need a neural network energy
function which is in a form similar to (12) a well as (10b).
Also two criteria must be met. The first is to have v; as close
as possible to one of the values in L = {0,1,2,---b— 1},
and the second is to minimize this error energy function Eq
by use of multilevel neural network so that each analog input
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x will map to a base b representation [V} of neural outputs
with minimal E 4. Since (10b) is a multilevel energy function,
what we want is to arrange Egq in a form similar to (10b).
Expanding (12) and dropping the constant term 27, we have
the following:

,;d - - % i X": (—bi+j'2)vi1;_,~ _ Zn: (.rb'_l)v,-

i=1 J=1 =1
IFi

n
1 1
+ )b ')?(v,-)?.

i=1

(13)

As we compare (10b) with (13), the integral term in (10b)
needs more treatment to obtain a similar term as the last term
in (13). To accomplish this, we examine equation Ey of (11c).
Assume that A is a large number, then Ey(v) is illustrated for
b = 4 in Fig. 7(b). The E4(v) portion of E(z) is the area
under the function M, '(v). We will assume homogeneous
threshold settings, i.e., #;,1 = 6;+ A# for all j, and Af = 6.
In a similar way, we also assume homogeneous ncuron output
levels, i.e., mgsy; = myg + Am for all k. To obtain a term
similar to the last term of (13), we define

Ed(v) = AGAm (”)2% and  Eg_eer(v) = Eo(v)—Ed(v)
(14)

and then we express Fg(v) as
E4(v) = E(v) + Ep_enr(v) (15)

which is illustrated in Fig. 7(b). Substitute Ey(v) of (15) into
(10b) to replace the integral term in (10b), and we have

E(V)= —% Z iw,jv;v, - z": Liv;
i=1
#*

=1 =1
J#E

+ Z G; [Eg(v.) + Eﬁ.err(vl)]

=1

(16)

where V' is the neural network output vector. Then, substitute
E{(v;) of (14) into (16), and rearrange (16) as

E(V) = —% iiw.’jvivj - i (I. - %G, AG. Am,-)v,—
#1

i=1 j=} i=1
i

l n n
o ; (v:)*G; A6; Am, + ;G.Eo_en('h) .7
here, (17) is in a similar form as (14) except for the last term
in (17). To (14), in order to have a term similar to the last
term of (17), we add a term E'p, which favors discrete neuron
outputs, and have

Eap=E, +Ep
= —% ZZ( bt 2)v,vvJ - (zb"1)v;
=1 ;3: =1
1 ¢« .
t= 3 (@)Y + Ep (18)
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Now, (18) is in a similar form to (17). But, Ep is like a
parasitic term when we use a neural network energy function
for A/D conversion. To know the effect of Ep in Esp,
we examine Ey_...(v;) since Ep is in a summation form of
Eg _cce(v;). As shown in Fig. 7(b), we know the last term of
(17), Eg_ere(vi), is bigger than or equal to 0 and approaches
zero for the ith neuron output close to one of the values in L.
As a result, the effect of Fg_e.(v;) is to favor discrete neuron
outputs. Therefore, (18) satisfies our two criteria to design
a neural A/D converter. There is no need to know exactly
what Ep should be because it does not affect us in deciding
neuron connection weights, external inputs, and thresholds for
each neuron. By comparing (18) and (17), connection weights,
inputs, and thresholds for each neuron can be obtained as

w;; = —b+i=2 (19a)
L =z-b"' +1/2G; A0; Am;  (19b)
G; AG; Am; = b0, (19¢)

Connection weight entries are completely determined by (19a).
Here, x is the analog input voltage. Without losing generality
by choosing G; Am; = 1, I; is determined by (19b) and
we obtain Af; = b1 from (19c). Threshold for each
neuron are determined by Af; ;41 = 6;; + A6;; note that
A6; = 0;,. A neural A/D converter circuit design will be
shown in Section IV-A.

A. Local Minimal Energy Problems for Neural A/D Converters

The multilevel neural A/D converter shown in Section IV
suffers from local minimal energy problems. In order to phrase
the means to eliminate these local minima, in Section IV-B,
we introduce some useful notation. Since energy functions are
expressed in terms of neuron outputs V, our analysis of local
minimal problems for A/D conversion is based on neuron
outputs too. We assume that there are only discrete neuron
output levels for simplicity.

A normal A/D converter is a function that takes an analog
input value and gives a finite number of digital outputs. It is
defined as a function, F,24(x), which maps the analog interval
R, = (r~,r%) into a n-vector whose entries are digits in
L = {0,1,---,b— 1}, where n is the number of neurons.
This function is only a function of analog input z. In contrast,
we define an inverse neural A/D converter function, that is

fi2a(Ci) = {z|V C; € L", fara(z,C;) = C;,C; € L™}
(20a)
where f;2f,(~) is a function mapping from a digital output
code C; to the analog input set giving the code. By definition,
a neuron output code is a vector C; = [Uei,1,Vei 2, """, vc;_,.]r,

where v, ; is the kth neuron output, i € {0,1,---,b" — 1}.
The analog input range of code C; is

Xoi = f24(C0). (20b)
The limits on the set X; are

X! =min{f5u(C)}, X = max{/54(C)}. (20¢)
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Fig. 7. (a) Inverse function M ~'(v) in terms of neuron output, where

b = 4. (b) Energy functions of Eg(v) and Eg(v) in terms of a neuron
output; Ey ..r(v) is the difference between these two curves.

Also, C; 1 denotes the one step higher code from C;, as shown
in Fig. 8,and Cy = [0,0,---,0], Cy = [1,0,---,0],---,C™b—
1=[b-1,---,b—1). Here, index i represents a discrete D/A
output level, and 7 = [C;], where [-] is as defined as (12). In
order for the neural converter to function correctly as an A/D
converter, the following conditions should be satisfied.

(P1) fa(Ci)N f0u(Ci1) = ¢
(P2) X! -X.=Xx" -Xx!

Cig1 41!

(21a)

i={1,2,---,b* -3} (21b)
where ¢ is the empty set. Condition (P1) means that there
is no analog input overlap between two adjacent codes. Con-
dition (P;) gives an appropriate analog input range for each
neuron output code except boundary codes, Co & Cyn_;. The
local minimum problem for A/D conversion is illustrated by
Fig. 8(a), (b), and (c). Fig. 8(a) is what is desired for the
A/D converter to function correctly. Fig. 8(b) shows violation
of the condition (P1), and Fig. 8(c) shows violation of the
condition (P2). These conditions are used to illustrate local
minima for neural A/D converters. Neural A/D converters with
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Fig. 8. (a) without local minimum problem; (b) an overlap; (c) different
analog input ranges for two adjacent codes.

local minimum problems violate condition (P1) and/or (P2).
We will use these two conditions helping us to eliminate local
minima of neural A/D converters.

B. Elimination of Local Minima for Multilevel
Neural A/D Converters

To rectify problems mentioned in Section IV-A, the concept
proposed by Lee and Sheu [17], (18] is exploited and general-
ized to multilevel neural A/D converters. The overlapped input
range between two adjacent digital codes can be corrected
by adding compensation currents *(V') to the neuron inputs.
Basically, the function of this compensating circuit is to fill
up the wells of local minima, so that only a global minimum
exists [18].

E*(V)= E(V) - zn:l.-’(V)v.-

i=1

=5 DY iy - 3 (G V)

i=1 Jj=1 i=1
I#

1 n n
+ Z vi(vi + 1)G; AG; Am; + Z GiEg_ere(vi)
i=1

i=1

N

@)
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Fig. 9. A multilevel neural A/D converter without local minimal problem; Functions of IS and I3 are shown in Table I; Mp;(-) is the ith multilevel
nonlinearity for neuron :.

where I*(V) : L™ = R™ is the compensation input current
vector, and R is the set of real numbers; n and L are as defined
in Section IV-A, Then E*(V) is the corrected energy function.
In order to determine I*(V') for the neuron output codes C; of
the last section, we need to know overlap input ranges between
adjacent neuron output codes. An overlap input range between
any two adjacent neuron output codes is defined by

D= X!

Ciy1 X :.' (23)
If D <0, a given analog input value may map to more than
one neuron output code. For neural A/D converters, D < 0
indicates violation of condition (P1). Our objective is to have
D = 0 for each set of adjacent codes so that local minima
can be eliminated. To examine this problem appropriately, we
denote two consecutive codes as C;4; = [0,-++,0,p,a,-,a]
and C; = [b—1,---,b—1,p—1,a,--+,a], and index i =
[Ci] as mentioned in Section IV-A. Here, a € L and p €
L—{0}-p & p—1sit in the kth position of the neuron output
vector, and for a given i, k is given by

k = max{y|Vy€ {1,2,---n},(i + 1) mod b¥ ' = 0}.
v
(23a)

Here, mod is the mod function that gives the remainder as a
dividend. As an example for (23a), i = 15 & b = 4, then
k = 3; to satisfy (154 1) mod 4¥~! = 0 in (23a), y could be
1, 2, or 3 and then we obtain £ = 3 by taking the maximum
value over y. Furthermore, the kth neuron decides the high
and low limit of an analog input range between two adjacent
neuron output codes. This is the key point that we should
keep in mind.

As a first step towards correcting local minimum problems,
the analog input voltage range causing transition of individual
neuron outputs from one level to another will be studied.
On the kth neuron, using (19b), the original external current
input would be I, = zb*~* 4+ 1/2G; A8; Am; but to correct
local minimum problems, we need to add a current (given in
(28)) for which we denote the correction current as I} (V). To
determine the correction I3 (V') for the kth neuron,

dIk

Ci d_i = Z w,,jvj(:cj) - 2 Gr + zb*!
=1

JEkR

+ 1/2G Ab Amy + (V) | (243)

Here, z is the analog input voltage for A/D conversion,
and =y is the kth neuron input potential. Setting its left hand
side equal to zero gives the steady state A/D conversion.
Rearranging (24a) we have

kak - E ngvj(xj) - 1/2Gk Aﬁk Amk - I':(V)
i=1

I#Ek
=

pe—1
(24b)

Setting zy = f#,_1x for the lower limit and then to 6, ; for
the higher limit when the kth neuron output is vx = p — 1,
the analog input voltage range is given by the following
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TABLE |
CorrecioN Locic FUNCTIONS, F2 AND F3, For
LocaL MiNniMaL ELiMINATION IN FiG. 9

ViV vV, F2

a

d00)

—

=1

[

ccol~ocl=-ccl~ocoo

~
—cococcooccooceol

(d33) )

inequality

Gkﬂ,,_,,,, b Z ‘I)J'Wk_,' . 1/2Ck Aak A'Ink = I;(V)
i=1
IFk

e <
Gkop,k -— 2 UJ‘Uka - 1/2Gk Agk A'nlk = [‘:(l/)
i=1
< ha e . (25

In order to know the overlap taking place between two
consecutive codes, we substitute C; = [V, Ve, -+ Vi gl
and Ciyy = [Veitr,1, Veisr2,- - Veiga,n] into (25) upper
limit, and (25) lower limit, respectively, and then we have
the following inequalities:

n
G.»H,,_k - E Vei jWhy; = 1/2Gk Aa}.. A"lk — I;(C,)
=1

iEk

r < pE-1

=z¢, (26a)

Gk ~ 2 Veit1,jWhj — 1/2Gy A8y Ay, — L(Ciq)
=1

J#k

> pE-1

=z, i (26b)
As defined in Section IV-A, v,; ; is the jth neuron output for
code C; and vy ; is the jth neuron output for code Ciy

and k is defined as (23a). From (26), the difference of (26a)
and (26b) gives the following:

k-1
—(b-1) 21 wi; + I (Ciy1) = IR (C))
J=

prk—1

D= :1:'(‘;‘ —a:é-.“ =
(27)
Because of the condition (P2), the analog input range for

each neuron output code should be corrected to be at the
middle point of the overlapped range. Thus we let I3(C};) =
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Fig. 11. (2) A BiCMOS circuit implementation for J7, where : = 2. n; (b) A circuit for Vj; and Vi and I¢'s, where n = 3.

~I:(Ci41), and D = 0 in (27), and have

k-1

. 1
I(C)= -5 (b~ )Y w; and
i=1
1 k-1
L(Cin)= 5 (b~ )3 w. (28)
=1

From (28), if two adjacent codes differ in the least significant
digit, K = 1, no overlap will occur to the input range
of each code since D = 0, and I(C;) = I[{(Ci1) =
0. For £k > 1, correction currents at neuron inputs are
calculated by (28). As an example, for three multilevel neurons
and b = 4, the corrected multilevel neural A/D converter

circuit diagram is shown in Fig. 9. Also, the correction logic
function is listed in Table I. In the table, d denotes don’t
care, h € L — {0} and A’ € L — {3}. Other entries not
listed in this table are all 0’s. In order to facilitate circuit
implementation, correction logic simplification has been made
by using the values in the parentheses; other entries in the table
without parentheses remain unchanged. These changes have
been verified by Spice3el simulations to check the correct
functionality.

C. Simulations for Neural Multilevel A/D Converters

For our discrete-time neural A/D system, we do simula-
tions by using a synchronously deterministic iteration; this is
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Fig. 12. (a) SPICE3 simulation of 2 multilevel neural A/D converter with correction circuits. (b) The D/A output without correction circuit is shown.
(c) The D/A output of Fig. 12(a) with correction circuit is shown (d) The voitage Vo, shown in the figure is the D/A voltage output after ncuron

current outputs past low pass filters.
represented by (29)

n

k+1 _ Lk

v; 7 =My E wijvi + I
j=1

(29)

where superscript k denotes a discrete time variable.

We have done discrete-time and SPICE3 circuit simulations
with and without correction circuits for comparison. Discrete-
time simulations are all with 0.1 step voltage analog increment
(or decrement) ramp input signal. Basically, discrete-time
simulations represent ideal case computer simulations. For
discrete-time analog neurons with multilevel nonlinearities, the
results we have obtained are shown in Fig. 10. The D/A output

with correction, A, is shown in part (c) of Fig. 10 and the
D/A outputs A, without correction is shown in part (a) and
(b) of Fig. 10. The analog input voltage for part (a) without
correction is from O to 64; the analog input for part (b) without
correction is from 64 to 0; the analog input for part (c) with
correction is from 0 to 64 then back to 0; A,ye, shown in part
(a), (b) and (c), is the D/A output for each run; vz is the most
significant digit, and v, is the least significant digit. As we
can see in parts (a) and (b) of Fig. 10, without correction, the
D/A output formed by summing three neuron outputs currents
directly exhibits a very nonlinear characteristic. Note that the
D/A outputs shown in Fig. 10 parts (a) and (b) are different
since part (a) is for analog input values between 0 and 64, and
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part (b) is for analog input values from 64 to 0, respectively.
However, with correction, part (c) in Fig. 10 shows the ideal
output with analog input values varying from 0 to 64 then
back to 0.

The circuit implementation of Fig. 9 for multilevel neural
A/D conversion is addressed in the following; the multilevel
nonlinearity (MVN) circuit is implemented by applying the
NBB circuit and each NBB is added with a differential
pair preamplifier for increasing voltage gain; neural weight
implementation is implemented via cascode current mirrors
[14, pp. 349]. An implementation of correction circuits for
A/D conversion is shown in Fig. 11 part (a), where [,.¢
currents are constant current sources shown in Fig. 11 part
(b). The values of I,.s currents are set by Table 1. Comparing
neuron outputs with I..s currents, correction circuits decide
whether to furnish correction currents to neuron input nodes
or not. When neuron current outputs reach the preset points,
I.et currents, the correction circuits are activated to elimi-
nate local minima. Simple two transistor nonlinear current
to voltage converters as shown in Fig. 1] part (a) are used
for correction circuits. SPICE3el simulations are performed
with level 2 parameters obtained from MOSIS for a 2-um,

(a) A magic layout of multilevel nonlincarity circuit. (b) Microscope photo of the chip for multilevel neural A/D conversion.

n-well, double-poly, analog BiICMOS process (run N15S of
June 18th, 1991).

The SPICE3el circuit simulation of a three neuron A/D
converter with local minimum correction via the circuit of
Fig. 11 is shown in Fig. 12(a), where the curves are for the
current outputs of neurons 1, 2, 3, Ip(1), Ip(2), Ip(3), in
SPICE3e1 simulations. All circuit simulations are with an
upward then downward 4 V peak value ramp input signal over
a total time of 2 ms. The least significant digit is shown in
the leftmost block, 7y(1), and —4 pA current is used as an
unit in our multilevel neural A/D converter design. There are
four logic levels in each neuron output. Here, we use negative
current outputs for positive number representation. The value
representing logic one for neuron 1 is Io(1) = ~4 pA, for
neuron 2 is Ip(2) 4 times —4 pA, and for neuron 3 is
1n(3) = 16 times —4 pzA. The D/A outputs of neuron outputs
without correction circuit and with correction circuit are shown
in Fig. 12(b) and (c) via summing neuron current outputs,
Iy(1), Ip(2), and Iy(3), respectively. Fig. 12(b) without the
correction circuit is not as desired since it shows a nonlinear
stairway curve. However, from Fig. 12(b) and (c), the D/A
output of Fig. 12(a) is a linear stairway curve if we ignore



pulses in Fig. 12(c). The curve of Fig. 12(c) for the multilevel
neural A/D converter with the correction circuit is a quantized
downward then upward ramp signal. If we ignore pulses in
Fig. 12(c) this is the desired curve that we want since our
input analog signal is an upward then downward ramp input
signal.

These simulations show us that the multilevel A/D con-
verters are more feasible than binary ones. As compared to
the same capacity for representing number, the structure is
simpler, and a smaller number of resistors will be necded.

D. VLSI Implementaiton-Chip Design and Measurements

The circuits for multilevel neural A/D converters were
designed and integrated via MOSIS using BiCMOS n-well,
2-p. double-poly and double metal technology. Since MOSIS
does not optimize the process for npn transistors, the area
of npn transistors in this process is much bigger than for
comparable CMOS transistors as can be shown in the Magic
layout of a multilevel nonlinearity in Fig. 13(a). Also the
collector resistance of a MOSIS fabricated npn transistor is
large when compared with ordinary npn transistors. However,
we can increase a transistor’s size to reduce the collector
parasitic resistance. The microscope photo for multilevel neu-
ral A/D converter with 3 neurons and 6 weights is shown in
Fig. 13(b). The chip is a Tiny Chip with 40 pins and die
size 2250 pum x 2220 pm. The supply voltages are +5 V
and —5 V. Measurements for a four-level neuron output of a
4-level neuron nonlinearity versus input voltage are shown in
Fig. 14(a). The input voltage, of from 0 to 2 V is shown in the
upper part and the output current is shown in the lower part
with a peak-peak current of 48 p:A. Since mismatching effects
in fabrication need to be considered, the neural weights are laid
out as a multiple number of a basic cascode CMOS transistor
current mirror. The size ratios of MOS transistors for neural
weights are designed to have equal lengths and equal widths.
This design tries to reduce the mismatching effect resulting
from the fabrication process. A weight of value 4 is calculated
as the ratio and two signals in Fig. 14(b). The upper portion of
Fig. 14(b) is a multilevel signal input current of peak-to-peak
value of 12 1A and the lower portion is the current output of
peak-to-peak value 48 pA. About 2% mismatch was observed
in this measurement. The correction output currents versus
input voltage are shown in Fig. 14(c). The range of input
voltage is from —0.5 V to +0.5 V. When the input voltage
crosses 0, the middle curve shows a positive 6 £A correction
current and the bottom curve shows a negative 6 1A correction
current.

V. DISCUSSION AND CONCLUSIONS

We have introduced a multilevel neuron and multilevel
nonlinearities for its realization. For then, an energy function
suited for discrete multilevel neural networks has been pro-
posed and we have shown that multilevel neural networks are
feasible. By applying the energy function proposed here, we
have demonstrated an appropriate way of designing multilevel
neural A/D converters. An implementation of this neuron using
current mode transistors is provided, and the application of
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(c)

Fig. 14. Typical A/D component traces (all horizontal scales: time as indi-
cated). (a) A multilevel nonlinearity current output; vertical scale: upper trace,
1 V/div; lower trace, 25 uA/div. (b) A weight of 4 using a current mirror.
The vertical scale for both curves is 3.5 uA/div. (c) The correction current
outputs versus input voltage are shown here; upper trace: 0.25 V/div (£1 V
full scales); middle and lower traces: 2 pA/div (£8 pA full scales).

BiCMOS technology in neural networks is exploited. We have
avoided using weight resistors in our circuit since resistors
usually need large area and accurate conductance ratios for
which a big neural network would be difficult to implement.
As Barkan, Smith, and Persky point out in [19], when resistors
are used to realize the weights, conductance weights will be
affected by voltage x; across capacitor ¢;. Thus an equivalent
conductance weight no longer corresponds to a single coupling
weight, and each coupling weight influences all the weights.
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Our implementation avoid this problem since neuron weighs
are decided by MOS transistor geometry ratio.

As indicated by Lee and Sheu [17], most of their VLSI
chip is occupied by resistors and switches in so doing. In
our multilevel A/D converter, we eliminate the number of
weight resistors needed and simplify the correction circuit.
The compensation for that is the use more amplifiers and tran-
sistors. We consider these will reduce chip area needed since
amplifiers and transistors need less chip area than the resistors
they replace. In our implementation, we need 3 neurons and
6 weights to implement a 6-bit A/D converter. However, for
Lee and Sheu’s implementation, 6 neurons and 30 weights
would be needed to do the same job. The penalty for our
implementation is that the area of multilevel nonlinearity is
bigger than regular sigmoidal nonlinearity. However, for a big
neural network, the reduced synapse weights should overcome
this drawback. Also, some quantum effect devices [21] shown
promising in multivalued logic applications may apply to
multilevel neural network for reducing the complexity of
multilevel nonlinearity implementation. All CMOS circuits are
also feasible to design a multilevel neural networks. Since npn
transistors are big in chip area for MOSIS fabrication process,
we think all CMOS implementation will reduce the chip area
needed. We use p-diffusion resistors for input resistors. These
resistors occupy a small area on the chip of Fig. 13(b) and the
maximum resistor ratio is only 4. The weights connected to the
input of each individual neuron shown in Fig. 8 can be scaled,
as Lee and Sheu did in [17], so that the maximum weight ratio
(the largest weight/the smallest weight) can be reduced. For
A/D conversion, weight matrixes are always symmetrical even
for a mixed radix number system.

As we can see in Fig. 12(c), some pulses are shown during
transitions from one digital level to the next higher digital
level. These noises are able to be eliminated after we use
simple low pass filters, at current mirror neuron outputs to get
rid of pulses in Fig. 12(c). As shown in Fig. 12(d), we obtain
the D/A voltage output from the current output Fig. 12(c) by
using pairs of resistor and capacitor as low pass filters.

Measurements on individual components for an A/D con-
verter are demonstrated. The next work is to make the full
multilevel neural A/D converter.
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