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ABSTRACT

Can the physiological results of individual neurons in insects, which help experimenters determine proposed
interconnections of networks, be used in simulation programs to further develop models to provide insight
into the control mechanisms of the networks? Artificial neural networks are being used to provide a
general model of a system (such as insect locomotion) which, through weighting structures and leaming
patterns, can provide the specific functional output. These networks are very powerful and can be modified
easily to change their output, but these do not model the actual neural structure of the original system. By
using networks of the proposed neural structure, based upon physiological evidence of the interconnections
of elements, in neural simulation programs, specific control of portions of the system and control of the
developed model can be investigated. These networks may be idiosyncratic and unique in their details of
operation, but these may lead to a better understanding of the morphology of the structure, and to new
implementations of control for a specific function [1].

INTRODUCTION

Locusts fly with two sets of wings (the forewings and the hindwings) at a frequency of around 20Hz. The
hindwings are activated before the forewings by about 5 to 10 milliseconds [2]. The wings themselves are
structured to provide the st and pitch and provide a certain amount of control during the flying motion,
but each wing has about 10 muscles controlling it. These are divided into two sets of synchronous muscles,
the elevator and depressor muscles, which alternate their control of the wing to provide motion. There are
about 20 motoneurons associated with the muscles of each wing and most of these are identifiable and
physically located in the portion of the insect’s body attached to that wing. The forewings are associated
with the mesothoracic region of ganglia (which is a grouping of neurons and their connections) and
hindwings with the metathoracic region. Therefore, homologous sets of motoneurons and sensory neurons

(which provide feedback from the stretch receptors and depression receptors) are found in the two thoracic
regions.

The neural circuitry which provides the rhythm for flight and controls the activation of the
motoneurons is more complicated, because the interneuronal organization is not set up as two distinct
controls for forewing and hindwing motor activity. There are three different categories of interneurons;
Some are members of one of two serially homologous groups controlling either the forewing or the
hindwing, some are unique individual interneurons without any homologues, and some are members of a
set of serial homologues in the metathoracic and first three abdominal ganglia regions [3]. The fact that
similar interneurons which are involved in flight control were found in the abdominal regions added to the
complexity of the neural circuitry controlling flight, until it was viewed from an evolutionary perspective
(4] The idea that the locust has evolved from an insect which had movable appendages serially repeated
along its body, but has adapted and been selected for flight locomotion could explain the serial repetition
of these flight interneurons in the abdominal region for whick there is no functional significance,
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The pattern generating mechanism for flight is determined by interconpections of the interneurons
in the thoracic region. When the insect is deafferented and isolated from all seasory inputs as well as
cerebral ganglia inputs, this mechanism can still produce repetitive and alternating contrel to the elevator
and depressor muscles. This is not to say that the sensory inputs have no effect on the rhythm, in fact,
they modulate and reset this rhythm, which is necessary for natural flight. The flight rhythm determined
by these interneuronal connections drives both pairs of wings. The rhythm seems to be generated by
synaptic interactions of the interneurons [5]. These connections are of three types: chemically- mediated
excitatory connections, similar inhibitory connections, and delayed excitatory connections. Some
subthreshold interactions amongst the interneurons have also been found. Through physiological
experimentation many specific interneurons have been described in detail along with their interconnections,
but many other interneurons, and especially their interconnections have not fully been mapped out. This
network relies on reciprocal inhibitory and excitatory feedback, which in itself would be a trivial problem
to generate alternating activity, but the hard part is to coordinate all the oscillators and organize their output
timing as well as their inputs reccived from the sensory systems. Therefore, the locust flight system is
a complicated and unique network of many different peuronal interconnections for which a specific model

may provide insight in the actual control mechanisms.

A PROPOSED MODEL OF LOCUST FLIGHT SYSTEM

A simplified view of a proposed model of the Jocust flight system is shown in Fig. 1 below [6).

DEPRESSION

Figure 1 : Diagrammatic representation of the connections found between flight neurons.
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The model is based on physiological results from experiments determining monosynaptic connections
between one labelled interneuron and another. There were found to be at least 50 intemeurons phasically
active with flight rhythm, and the generation of this rhythm depends upon the interaction of a group of
central and peripheral cells, Interneurons 301 and 501 are involved in the central pattern generator and
can reproduce the flight rhythm without sensory input at a lower frequency than normal, but can maintain
altemate activity between the elevator (E) muscles and depressor (D) muscles, Different portions of the
model need to be developed independently and simulated with realistic test inputs. The system can be
broken down into at least three main control networks. One network consists of the interneuron interactions
with the motoneurons which contro} the flight muscles, another network consists of the different pattern
geaerators and their interconnections to provide the alternate synchronous rhythm of flight, and the last
network involves the sensory neuron feedback control of the geverators. Building these smaller portions
of the control system at the cellular level points out questions about the proposed interconnections of the
interneurons, as the simulations may not corroborate the experimeatal results. This problem arises for
many reasons. The model of the cell may not be accurate enough , or the constraints on the parameters
in the equations of the cellular functions are not adjusted correctly, or the interconnections from one neuron
to the next are not modeled correctly,or inputs or outputs may be missing from the original proposed
model. These questions can be posed to the neurobiologists to determine new experiments to provide more
details on a specific function to redefine the parameters associated with 2 particular part of a model element
or to redefine the equation or the model itself. The program for modeling must be reprogrammable at the
element level and provide an easy way to change the initial parameters or constraints on the model.

DETERMINATION OF A MODELING AND SIMULATION PROGRAM

One of the key elements of all modeling and simulation research, during present times, is the computer
program written to implement the model and provide the simulation results. Biological neural network
programs provide a different aspect to the research of physiological functions than artificial neural network
programs. The former will provide information about the control of the actual networks in the biological
system. Designing a biological neural network program relies upon detailed models of the individual
elements within the system, the type of computations involved to describe the action of each element, the
model of different types of element connections to inputs and cutputs. The biological neural network
program could be designed to be very detailed about the individual elemeats and therefore try to mimic the
actual biological elements themselves, but there is a limitation on this as many of the biological elements
are not truly defined, Therefore, these networks will be working with a proposed model with a limited
degree of detail and equations to describe their interactions.

The most important individuzl element which the biological neural networks are based upon is the
neuron cell, and in particular, its membrane, which is the key to all interactions. Hodgkin and Huxley in
1952 came up with a model of a cell’s membrane based upon its conductivity to certain ions and related
this to the voltage potential across the membrane [7]. They explained the classical phenomena of electrical
excitation due to sodium and potassium influx and efflux. Using hand calculations, they came up with a
model based mainly on developed equations which fit the curves of experimental observations. This in tum
provided insight into the mechanisms of changes in Na+ (sodium icn) and K+ (potassium ion)
permeabilities. The HH Model of the cell membrane became the backbone of biological research of
systems [8]. Even researchers at the cellular level used the model and then tried to research how the
mechanisms at the atomic level verified this model. Hille describes the model workings by the opening and
closing of specific ionic channels created by proteins oriented within the membrane structure according to
the voltage potential that the atomic structures of the protein sees [9].

Many biological neural network programs have developed their models based upon the HH model
kinetics. Usually these programs were modeled around the specific neuronal properties of the researcher’s

2301

3ISN3dX3 INIWNH3A0D IV Q3IDNA0HLIY



e

'REPRODUCED AT GOVERNMENT EXPENSE—

—_ e

e e =

interest. To develop a large network model and simulation of neural systems in general, certain factors

‘become important in choosing the neural network program. First, a modular format for the program makes

& much more efficient way to define similar elements and even similar networks and reprogramming and
deleting is much easier, Next, a graphical interface to the program, which is interactive with the
simulation, provides a means to change simulation parameters as well as neuronal properties and see their
results while a simulation is taking place. Lastly, as the networks grow, so does the computation time and
the type of computer used for the program becomes important, in fact, the program should eventually be
able to port to parallel processing machines as the number of elements increase.

NEURONAL MODELING USING THE GENESIS PROGRAM

Genesis, a general modeling and simulation program, runs on a Sun or Sparc workstation and uses
XODUS, a graphical interface built upon MIT's X11 library. This program provides a modular,
interactive, graphical means fo build a network of biological cells and gives researchers the opportunity
to probe at the elements of the network to study their control functions.

This program has been utilized by many researchers working on different systems. The program
can be tailored to provide the idiosyncracies of the individual elements and connections that each system
needs. This structural modeling provides a means 1o study the functional properties f complex networks
which are constrained by the detailed experimental biological data. As a network is broken down into
subsystems, the different complexities of the definition become important. The model and simulation of
the neural system for control of flight of the locust is still under development, but portions of the system
have been input and analyzed. The specific interconnections between the interneurons 301 and 501 and
others involved in the flight central pattern generation may require less specification of the models of the
interconnections at first, and more detail about the individual cell model [10]. Whereas, the
iaterconnections from the pattern generators to the motoneurons, muscle activating neurons, require more
specification of the details of the interconnections, specifically the dendritic tree branching and length of
connection {o provide proper time response for that system [11].

The input/output relationship for each neuron is defined by specifying the passive or active
membrane properties and repetitive firing characteristics associated with each particular interneuron. The
time course and strength of each synaptic action is specified. The axon and dendritic tree is
compartmentalized and provided with parameters to simulate linear cable theory. The network is developed
and provided with realistic parameters from experimental data which provides the constraints for the
simulation runs. The single compartment model for an individual neuron incorporates passive and active
membrane properties shown with the equivalent circuit, Fig.2. This shows the passive properties to include
a resting potential (E,.., ) and membrane resistance { 1/ g, Jand cell capacitance ( “c, ) whose parameters
fit those measured for the particular neuron from the membrane potential exponential.
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Figure 2 : Circuit model of neuron. 4
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The active properties are based on an integrate and fire model. The neuron sums inputs and fires
when the membrane potential reaches a threshold level ( © (t)). After each spike the level increases and
is allowed to decay towards an asymptotic level. There are three contributions of current in the cellular
model, the leakage current due to the passive jonic channels, the voltage-dependent currents which
correspond to the active ionic channels present in the cell membrane, and the synaptic currents which
correspond to the chemically-gated inputs. The postsynaptic potentials are proposed to be due to the binding
of transmitter substance and supposed opening of channels, which is modeled by a time-generated
conductance increase in association with a reversal potential. An externally applied current (I, ) can be
applied at any time with any waveform, this provides a way to control the cell or provide test inputs. The
currents and their equations in the circuit model show their different relationships due to their conductances
as described below. The membrane poteatial is described in relation to these currents {12].

For each cell, the membrane potential is described by

. V()
‘m :jnt, = ~Jioaqp(Vm) - Isyn(vm' )= LotV ) = 1 545 (2)

V,n = membrane potential(mV)

€ = membrane capacitance(nF)

I;,q.1 = leak current(nA)

I5yn = synaptic current(nA)

I ac.t = intrinsic voltage-dependent current(nA)

I = externally applied currents(nA)

stim

Leakage Current

Voot =V — By eak)91eak

E} .k = resting potential(mV)

91eqk = input conductance(uS)

1

R, = input resistance(MQ) = Tk
eak

Synaptic Current
JTsyn = ysyn : gsyn(t){vm - Esyn)
Tsyn = maximum conductance for a given synapse (15)

L sy = synaptic reversal potential{mV’)

9syn(t) = synaptic conductance time course
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N
T t-t) /T t-1)/T
Isyn(t) =T—7, jro Z (3( cra_ {5/ °)
i=1
T, = onset time constant (msec)
74 = decay time constant (msec)
N = number of presynaptic spikes before time ¢

t; = time of ith presynaptic spike (msec)
Voltage-Dependent Current

Ioer= ﬁactm’:h(Vm ~E 1)

Fpc¢ = maximum conductance (u5)

m = activation parameter

z = exponent on activation parameter
h = inactivation parameter

Eact = reversal potential of active process (mV)

dm __TMe— M

dt - ™m
- 1 - . 0
m,, = 0+ e(vm T B)/C] = steady state activation
B = shift parameter (mV)
C = shape parameter (mV)
T, = activation time constant (msec)
dh _ h=h
dt = Ty
1 .
h = = ivat.
1 0 +e(vm T B)/G] steady state activation

B = shift parameter (mV)
C = shape parameter (mV)

7}, = inaclivation time constant (msec)
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Threshold
8(t) =80 + (6 — avoo)e(‘ac ~8/7g

0 = steady-state threshold (mV)
6y = threshold value immediately after a spike (mV)
t, = time of last spike in cell (msec)

74 = threshold time constant (msec)

The single compartment is the basic element of the modeling program, but it is built upon
components which can be changed easily and the parameters constraining these components can be changed
even during simulation run time. Each interneuron bas its own compartment specifications representing
its particular characteristics which were extrapolated from experimeatal data for that interneuron. The
model of the system is built upon the interconnection of many of these elements, therefore the simulation
results are only as good as the individual parameter specifications because it is developed upon structural
and physiological results. The simulation can be run using a script as input, or it can be run interactively
through a graphical interface and the changes can be stored as a new script. An example of the types of
interaction with the simulator is shown in Fig. 3 [13].

Graphics Interface

. \

Genesis command Interpreter

Script Files

L]

al
-
-

dow and ke bod Simulation
Genesis 1% ]
o
Figure 3 : Levels of interaction with the simulator.
CONCLUSIONS

The results from models and simulations from the biological neural network program have provided
respecification of parameters for the individual elements. This bas lead to better definition of the model
which provides closer similarities between simulation results and physiological results. In the redefinition
of the mode! interconnections are better understood and this provides more insight into the control
mechanisms of the system.
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