A VLSI ARITHMETIC UNIT FOR A SIGNAL PROCESSING NEURAL NETWORK

V. Rodellar!, M. Hermida', A. Diaz', A. Lorenzo', P. Gémez', P. Aguayo?, J. C. Diaz’ and R. W. Newcomb*

' Dept. Arquitectura y Tecnologia de Sistemas Informiticos
Universidad Politécnica de Madrid
Campus de Montegancedo, s/n
Boadilla del Monte
28660 Madrid SPAIN

! CIEMAT
Avda. Complutense, 22, Edificio 22
28005 Madrid SPAIN

* Microsystems Lab
Electrical Engineering Department
University of Maryland
College Park, MD, 20742 USA

Abstract

Through the present paper, the design of a VLSI Arithmetic Unit for the
support of Signal Processing and Neural Network Algorithms is being
discussed. The Arithmetic Unit is conceived to allow the execution of Inner
Product O, maintaining the silicon area and development costs
under reasonable limits, and allowing the parameterization of the design in
a modular way. For such, a Serial-Bit Pipeline Multiplier and a Fixed-Point
Number Format have been successfully used. These aspects are justified by
a study on the accuracy required when implementing certain Signal
Processing and Neural Network Algorithms, for which some numerical
examples are given. A panoramics of the design of a whole chip
incorporating such Arithmetic Unit and the structure of the required Control
Unit are also given.

Introduction

Nowadays the application of Signal Processing [1] and Neural Net [2]
techniques is knowing an everyday raising interest and proliferation. This is
in part being so because of the spread of VLSI Design techniques, which
allow the design of more and more complex chips amenable of supporting
end-user products on Application Specific Integrated Circuits (ASIC's).
VLSI Design Tools have opened the possibility of designing chips on
general purpose workstations affordable by most laboratories in factories
and universities, spreading the knowledge and easing the process. Among
the different types of ASIC's, one of the most important is that devoted to
Numerical Applications, under which we should classify these based both
in Signal Processing and Neural Network techniques. Numerical
Application ASIC's (NAASIC's) share certain features in their architecture,
because of the common structure of the algorithms used in both fields, and
this fact introduces certain similarities in their architectures which make
them differ from other VLSI processors devoted to numerical applications,
such as Digital Signal Processors (DSP's). In this sense, Fig. 1 shows a
general structure of a NAASIC, where its main characteristics are made
explicit. The general structure is divided classically in the Functional
Structure, Data Paths and Control. Regarding the Functional Structure
NAASIC's are composed of an Arithmetic Unit specialized in addition-
subtraction, products and division, and tables to implement special
functions (as for example nonlinear transformations or trigonometric
expressions), a Data Memory, to hold coefficients and sampled signals in
array-like data-structures, temporary registers, and an interface with the
outer world, which in many cases may include Analog/Digital circuitry.
Data paths, on their tum are designed to produce flexible connections
among the different functional resources before mentioned, allowing
different schemes of computation to be carried out. To simplify the design,
and render it less expensive both in development time and in silicon area,
they use simple data formats (byte, digit or bit) for routing. Data switching
is provided by blocks of multiplexers or switching matrices.
0-7803-0510-8/92503.00 ©1992IEEE

I — U= 1
e || e ||] | e [
[1 I1 1 [T

Fig. 1. General Structure of NAASIC's

Usually the Control is not software-programmable, in the general sense, to
avoid the cost in resources and clock cycles which has to be devoted to
instructuion fetching and interpretation, and in this sense, they operate more
like Finite State Machines than general purpose processors, this feature
being one of the most important differencies characterizing NAASIC's.
Instead, programming is done by a PLA, a ROM memory or other related
structure, which has to be personalized during the design process. From this
preliminary study, we may infer that the Arithmetics, Data Path and
Memory resources take most of the Silicon Area in the chip, and are an
important factor on the final cost. As these functional structures are
completely dependent in their complexity and size on number formats, it
will be determinant to study the numerical behaviour of the algorithms
under consideration to determine the best candidates among number formats
for an optimized design of a given NAASIC . Based on this study we
propose a general structure of such a NAASIC being currently designed to
give support to Neural Network and Signal Processing Algorithms in
Speech Processing [1, 2, 3] and Spectral Characterization applications [4].

c leorithmic § { Arithmetic Reci

When comparing the general structure of both Signal Processing and Neural
Newtork algorithms certain most common features come to light, as that
both work on array-like data structures, that data may be divided into
varying objects (signals or states) and more permanent objects (coefficients,
weights), and that number representation is a crucial fact. According to the
kind of operations performed, these may be reduced most of the times to the
well-known Inner Product between array-like data structures, without a loss
of generalization. Besides, other not so frequent operations, such as
divisions, factorials, square roots and trigonometric (non linear in general)
operations, have also to be performed. The /nmner Product between two
given vectors, @ and b is a common operation which may be defined
recursively as follows:

c,=c,*ta*h, (N

1044

where a_ and b, are the n-th elements of vectors a and b, and c, is the n-th
update of an accumulator holding the value of the Inner Product being
evaluated. Under the arithmetic point of view, the operation in (1) presents
interesting properties when a given number format is chosen. Without a loss
of generality we will focus our atention in m-bit two's-complement fixed-
point number formats (m=p+g) in which a given number x may be
expressed with p bits for its integer part and ¢ bits for the fraction as
follows:

x= (X, 2+ Y x,2) 2+ ()

-0

Then it may be easily shown that the product of two such numbers will
produce a 2m-bif fixed-point number with 2p bits for the integer part and 2¢
bits for the fraction. As our basic number format consists in m bits, we will
have to reject m out of the resulting 2m bits in the product. If we want to
keep the same significant bits, this could be done as shown in Fig. 2a,
elliminating the first p and the last ¢ bits in the product.

R O 1 . el

-

P i e e e
S Fig. 25
Fig. 2a

Fg. 2¢c
Fig. 2. Influence of arithmetic operations in number formats.

This loss of residual bits may result in a given error. To infer how
problematic this process of re-fitting would be, and without a loss of
generality, consider that our data are normalized fixed-point numbers. In
fact, in certain applications which involve inversion processes, like the
solution of systems of equations, the arithmetics with fixed-point numbers
works better if a pre-normalization process has been carried on the data.
This process consists in determining the highest absolute value among the
data, and dividing every data by such value. This produces a data set in
which the p bits of the integer part of the format (guard bits) will be all 0's
(positives) or all /'s (negatives), as they will be defined in the interval [-1,
+1]. When two of these numbers are added, the resulting number may be
out of the interval if its absolute value is higher that the unity. This will
result in the invasion of the less significant guard-bit, that is x, or in a
displacement of the significative bits to the left (Fig. 2.b). On the contrary,
when two of these numbers are multiplied, the absolute value of the
resulting number will be in general lower than the unity, as the absolute
value of both factors is. This may produce a displacement of the
significative bits to the right, having in mind Fig. 2.c. In this sense, both
operations exert an oposite action on the bits. As they appear combined in
(1), one may infer interesting properties which may be reasonably exploited
to build low-cost arithmetics. For example, the optimal value for the
number of guard bits, p, may be deducted from the fact that the absolute
value in (1) will in general be:

lev| <N 3)

as a result of the addition of N products of numbers with absolute value
under the unity, when N-dimensional vectors are considered. Of course, this
will be the theoretical upper limit, because in real applications the result

will be much under that limit. Experimenting with randomly generated
numbers, as commented in the results, it may be established that a rather
conservative value for that limit should be around N/3. This fact gives us a
clear hint to establish p:

p>log,N3 +1; with p integer 4)

On its tumn, the number of bits of the fraction g, will have to be determined
according to the absolute error desirable in the estimation of the /nner
Product. If we consider this operation as the addition of N partial products
of type a *b,, and we call these:

Y.=a®, (5)

then considering the error implied in the truncation of the 2m-bit number y,
to a number in m bits y’,, and calling this error £,

%=V, +§)
it may be established that:
le,| <20 ™

We will assume that statistically, when adding up ', / Sn <N, this error
will accumulate to produce a total error &, limited as:

le| < e ®)
Then, from (4):
N<32 ©)

with which a simple expression may be given for (8) in terms of p and ¢

le | <3201 2¢=3200 (10)
Expressions (4) and (10), should be taken as approximate rather than as
exact rules for choosing p and g, but at least may give a hint on how better
determine their approximate values, althouth a final decision should be
taken on the basis of simulation results. In a practical case discussed in [3],
with N=24, a format of p=6 and g=10 would yield a total expected absolute
error lower than 0.09375. As the lowest absolute limit of the /nner Product
may tend to zero, the definition of the worst relative error does not have any
meaning in this case. As an example, which will help us to fix most of the
ideas we have commented above we will consider the case of the Mixture
Problem [4), defined as the determination of ¢ assuming that R and x are
known from the following expression:
x=Rc (1
where R is a NxK matrix composed of K N-dimensional reference vectors, ¢
is the K-dimensional vector of contributions or weights of the linear
combination, and x is the N-dimensional vector resulting from the linear
combination given in (11). Obviously, this problem, when K<N is
overdetermined, and it will not have an exact solution if more than X
column vectors in R are linearly independent to each other. In the case that
both x and R were composed by radiation spectra, their elements would be
energy counts, whose values are typically well above the thousands, and as
such, a fixed-point format would require many bits for p. It may be seen
easily that if M is the highest absolute value among the elements of both x
and R, the following set of expressions, when inverted would yield the
same value for the contribution vector ¢:

x'=R'c (12)

=i (3)
,_R

r-2 a4)

with the important that both x’ and R’ are now composed of normalized
numbers, much more suited to a fixed-point format as assumed in the
present work. This is a typical example of a linear problem re-scaled for its
solution in a much simpler hardware than is usual in general purpose DSP's,
a set of simulation results of which is presented later. Nevertheless there are

other even better examples to be considered in favour of this methodology,
as is the case of Nonlinear Neural Networks composed of layers of Inner
Product evaluators, followed by a Nonlinear Function, whose role is to
map the result in the interval [-1, +1]. These subsystems are especially
suited for their implementation in a fixed-format arithmetics, as the
Nonlinear Function is a true Normalizing Device of numbers, in the sense
described here. Most of the conclusions drawn from this study can be easily
generalized to other number formats, such as floating-point ones.

Proposed Architecture

Based on the considerations exposed in the preceding section, an
Architecture for a NAASIC devoted to support both Signal Processing and
Neural Network Algorithms has been conceived for its modular
parameterization, in the sense that the structures of the arithmetics being
sensitive to format-number parameters, have been designed for their
modular automatic re-sizing. Figure 3 gives a general idea of the structure
being considered.

oRio

o

Fig. 3. General Structure of the NAASIC being designed.

The general structure shown is composed of several parameterizable
modules, in function of the arithmetics being used, among which we find a
Two-Port Memory which stores data structures in a p+g fixed-point format,
plus an Arithmetic Unit, and general Data Routes. The Arithmetic Unit is
designed as an Inner Product Unit, although it may perform several other
operations. It is composed of a Serial Multiplier (MUL), a Serial Adder (+),
an Accumulator (AC) and a Look-Up Table (LUT) to implement different
nonlinear mappings and functions. The Arithmetic Unit uses on-line serial
arithmetics, because in this sense the Multiplier may be very much reduced
in size, keeping the cost in area well under 1 mm? for a CMOS Technology
of 1.5 um and m=16. The Serial Multiplier is based on Radix-4 Recoding
[5). using modular substructures, which are easily parameterizable. Three
types of macrocells are used in its design, named initial, middle and final.
For a given fixed-point arithmetics with p+¢=m bits (m even), it requires an
initial cell, k middle cells and a final cell, with k=m/2-2. With this simple
rule a multiplier for any data size may be easily synthesized using a
Structure Compiler. In this was the productivity factor, defined as the ratio
between the total amount of transistor gates used and the real amount being
actually designed, is very high.

Fig. 4. Microphotograhy of the Multiplier

One of these multipliers for m=16 was designed, and is shown in Fig. 4.,
where the 8 cells composing it may be clearly distinguished. This kind of
multipliers may be easily folded following simple rules, to keep their aspect
square. The Serial Adder has been designed to accept data coming from the
Multiplier, the Two-Port M v, the Acc I or the Input-Output
Ports (S0, S1, E0 and E1) under the control of two 3:1 multiplexers (C10-1
and CDO-1). The Serial Accumulator (AC) uses its 6 most significant bits
to read data in serial format from the Look-Up Table (LUT) implemented as
a ROM. The Data Routes are composed by two Serial-Parallel Interface
Registers (100 and 101), which allow the bidirectional flow of data between
the Two-Port Memory and different origins and destinations by means of
two 5:1 multiplexers (C00-2 and C10-2).

e
|] 1l 1 - |

Fig. 5. Floorplan of the NAASIC.

The described structure is being designed for its integration under the
EUROCHIP fabrication programme, a floorplan of which is given in Fig.
5., showing other complementary structures as the Control PLA, and the
Clock&Power block.

Programming

The programmability of this structure is based in the Control Unit shown in
Fig. 6, consisting in a Finite State Machine supported by a PLA.

i1ypgzeee
T

|
|

Fig. 6. Control structure.

As data formats are routed serially, the timing of each data transfer is more
complex than with parallel formats. For such, the basic timing is divided in
Transfer Cycles, Phases, Loops and Macros. The basic clock timing for

1046

each transfer is controlled by an external Cycle Counter (CC), which counts
the number of clock cycles contained in a given Trangfer Phase. This is the
basic time-interval for which the output word of the PLAor Plane has to be
maintained without any change end is made of m clock cycles for
transfering a serial m-bit datum from one resource to another, although
there are Transfer Phases with other dumations. The Transfer Loop counts
the times a basic Arithmetic Operation has to be repeated within a Transfer
Macro. A list of these may be used to specify a given Signal Processing
Algorithm. The relations among the different timing levels is controlled by
a battery of external counters (CC, PC, LC and IC), whose contents are in
part used to address inside the PLA. The Control Word has several fields,
the first one being the Function Field, used to define the contents of the
Timing Counters when a new Transfer Macro is initiated or at the end of a
Transfer Phase or Loop. The Memory Field is used to address the Two-Port
Memory (SELO and SEL1) and to determine the sense of a Memory
Transfer. Finally, the Field of Route and Arithmetics controls the routing of
data to and from the arithmetic resources, and synchronizes the operations
in the Arithmetic Unit. A specification of the Arithmetic Unit, Data Routes,
and Control Unit is being carried out in VHDL for its evaluation.

Practical examples

To illustrate the behaviour of such arithmetics with real cases, several
simulation processes have been carried out. In a first approach, the
possibilities of p+q fixed-point arithmetics to support Inner Product
algorithms have been tried. For such, a set of sixteen 48-element vectors
were produced using a random-number generator. The vector elements were
normalized and coded in different p+g fixed-point formats. Taking all
possible combinations of 2 vectors out of 16, up to 128 inner-products were
evaluated. This was done using alternatively a 64-bit floating-point and a
p+q fixed-point format. The first fact checked was the ability of the format
to support guard-bit invasions during additions, and the second one was
precision.

Table 1. Maximum number of sign bit invasions in a typical eu%
| Sign Bit 0 1 2 3 4 5
Invas. 0 i 1 2 6 8

Sign invasions were listed in Table 1 for p=6 and ¢=/0. Having in mind
that sign bit 0 in Table 1 is the most significant one, it may be seen that
using such format with N=48, there are no fatal invasions of the most
significant bit.

Table 2. Maximum absolute error in a typical inner product simulation

Floating-point result Fi 1 result Maximum abs. error
13.788 13.747 0.041
14.162 14.118 0.043
15.814 15.773 0.040
16.949 16.900 0.049
14.751 14.707 0.044
15.680 15.639 0.041
16.816 16.768 0.048
15.514 15.475 0.039

Regarding precision, Table 2 lists the results for several maximal-norm
vectors. As expected the /nner Products yielding highest values were those
produced when operating a vector with itself. It may be seen that the
maximum absolute error listed is about one half the value predicted using
expression (10), which is of 0.09375,

Table 3. Typical results for the Mixture Problem

Weight | Float (64 bits) | Fixed 8+10) | Rel. Error (%)
ct 3.404786 3.413901 0.3478
2 -0.001420 -0.005679 0.1421
a3 0.000492 -0.003873 0.0969
oA 2,100587 2.093908 0.1524
cs 0.001761 0.006941 0.1736
6 0.002730 -0.002231 0.0558

Finally, to illustrate the performance of such arithmetics in a real problem,
Table 3 shows the results of solving the Mixture Problem as described by
equations (12-14) applying the method known as the Pseudoinverse
Operator and Widrow-Hoff's Algorithm as stated in [4). Given a base of six
reference spectra [r,] with N=/28 and the contribution vector ¢ = [3.4, 0,
0, 2.1, 0, O, the results using a 64-bit floating-point format and a p=8
g=10 fixed-point format are compared. The right-most column lists the
relative error between them. It can be seen that the resolution obtained is
quite good having in mind that this algorithmic variant is very intensive in
computations (1787648 products and 908436 additions were required to
evaluate the Pseudoinverse Operator), and in this sense, the results show
the possibility of trading silicon area (simplicity of arithmetics) vs.
computational complexity (execution time). In some applications this
trading may reduce strongly the costs of the final NAASIC.

Di .

Through the present work the definition of a methodology to use simpler
number formats for the realization of Arithmetic Units for Signal
Processing and Neural Network algorithms has been explored. It has been
shown that the parameters of fixed-point formats may be inferred from the
dimensionality of the data structures and from the desired accuracy on the
representation adopted, thus allowing the parameterization of important
hardware structures, such as Memory, Arithmetics and Data Routes. One of
the most important conclusions derived from this fact is that a modular
design of an Arithmetic Unit may be realized. The same principles may be
extended to Memories and Data Routes, thus permiting the semi-automatic
synthesis of the NAASIC. The accuracy of the approach in specific
problems have been tested, showing that simple data formats may produce
rather acceptable results, when considering that other perturbation factors,
such as noise or instrumental drifts may produce higher levels of error. This
Arithmetic Unit is presently being incorporated in a general purpose design
to be used in Speech Processing Applications (1, 2].

Acknowledgements

This work is being carried out under Grants Nos. TIC90-0109-C01 and
C02, and TIC92-1239-E from the CICYT, and Nos. MIC88-0398-E and
MIC-90-1219-E from the Programa Nacional de Microelectronica, and
under a Cooperation Agreement between the CIEMAT and the UPM.

References

[1] "A VLSI Architecture for the support of an Auditory Model for Hearing
and Speech Processing”, V. Rodellar, P Gémez, M. Hermida, A. th and
R. W. Newcomb,

Systems, Calgary, Alberta, Canada, August 12-15, 1990, pp. 787-790.

[2] "A Neural Network for the Extraction and Characterization of the
Phonetic Features of Speech”, V. Rodellar, F. Naharro, C. Garcla, S.
Martin, M. L. Muiloz and P Obma.

NEURO-NIMES"91, Nimes, France,
November 4-8, 1991, pp. 203-212.

[3] "A Specific Processor for the Computation of TDNN Algorithms with
application to Phonetic Coding", M. Pérez, V. Rodellar, V. Peinado, A.
Diaz and P. Gémez, mmmmmm.
Brussels, August 24-27, 1992.

[4] "An Associative Memory to Solve the Mixture Problem in Composite
Spectra”, J. C. Diaz, P. Aguayo, P. Gémez, V. Rodellar and P. Olmos, 35th
Midwest Symposium on Circuits and Systems, Washington DC, August 9-
12, 1992, (in these same Proceedings).

[5] "A Nonredundant- Radlx-4 Serial Multlplm" K. K. Primlani and J. L.
Meador, , Vol. 24, No. 6, December
1989, pp. 1729-1736.

1047

