
I and f are the independent variables In
practice, therefore, the two pistons of an
E-H tuner should never be adjusted
separately but always simultaneously,
either m the same sanse (£) or in opposite
senses (£) A mechanical linkage achieving
this objective could easily be devised A
good match would then be obtained m a
few rapidly convergent adjustments, what-
ever the initial mismatch
A L CULLEN* 5th April 1965
Department of Electronic and
Electrical Engineering
University of Sheffield, Sheffield, England

USEFUL TIME-VARIABLE CIRCUIT-
ELEMENT EQUIVALENCES!

Because time variable circuit elements
have properties not possessed by time
invariant ones, such as the ability to
modulate or amplify with low noise, it is
useful to have different ways of looking
at them Here we present general equi
valences for time variable inductors,
capacitors, resistors and gyrators, using
time invariant elements and time variable
transformers, which allow various pro
perties to be determined and interpreted
on physical grounds

Because time-variable circuit elements
have properties not possessed by time-
mvanant ones, such as the ability to
modulate or amplify with low noise, it is
useful to have different ways of looking
at them Here we present general equi-
valences for time-variable inductors, capa-
citors, resistors and gyrators, using time-
mvanant elements and time-variable
transformers,1 which allow various pro-
perties to be determined and interpreted
on physical grounds

We first consider the inductor of in-
ductance l(t), whose defining constraint
is

v = d[li]/dt (la)
= l'i + W (Ib)

where v is the voltage across and / is the
current through the inductor, a prime
denotes differentiation Since no physical
measurement can prove otherwise, we
assume / to be an infinitely differentiate
real-valued function of time t Conse-
quently, we can reasonably assume that,
over any finite interval [a, b], where
a < / < b, / i s a function of bounded
variation 2 Hence we write, over [a, b],

(2a)

where /+ and /_ are the positive and
negative variations,2 except that l(a) is
contained in /+ if l(a) > 0 or in /_ if
l(a) < 0 to obtain two nonnegative, non-
decreasmg functions which are, in fact,

* Visiting MacKay Professor, Department of Elec-
trical Engineering, University of California, Berkeley,
Calif, USA

t This work was carried out under the sponsorship
of the Air Force Office of Scientific Research, Grant
AF-AFOSR 337-63
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7(0 = /+(/) - l-(t)

differentiate, I e
/+ > 0, /+' > 0, /_ > 0, /_' > 0 (2b)

Moreover, it is possible for eqns 2 to take
b — + co and often a = — co [but not
always a = — co, as l(t) = cos t, and
/(/) = e-' show] In any event, we can
choose a (dependent on /) such that
v — i = 0 for t < a, which rigorously3

must be possible for every i (since we
assume all physical i to be zero before a
finite time)

With these preliminaries, consider the
circuit of Fig la, which represents a
time-variable transformer1 of turns ratios
ttj[t) loaded in passive and active time-
mvariant inductors and resistors Using

CAPACITOR

Fig. 1 Time-variable reactive elements

the definition of a time-variable trans-
former, we easily find

v = ' + - t21t21' - /41
2) i

('ii2 - >2i
2) i' (3)

t 2 = I

It 2 — / '
z*31 — *+

t 2 _ /
'21 — « -

Equating coefficients of eqns 3 with
eqn 1, and using eqns 2, we arrive at

(4)

We conclude that over the interval
[a, co], for every finite a, any time-
variable inductor is equivalent to the
circuit of Fig \a with parameters chosen
by eqn 4

At this point, one can apply physical
reasoning to deduce the consequences of
various properties If an inductor is
passive, the negative elements of Fig la
are necessarily absent, requiring

or
>21 = *41 = 0 ,

/_ = 0 (passive /) . (5)

If an inductor is passive and lossless,
then, besides the negative elements being
absent, the positive resistor must not be
present, forcing also t31 to zero and hence
/+' to zero, or

/ = /+ = constant (lossless /) (6)

From this one concludes that the time
variation must be absent from all lossless
inductors The equivalence also shows
that one is naturally led to the considera-
tion of time-variable transformers for
synthesis of time-variable networks 4

An entirely dual procedure yields the
equivalence of Fig Ib for the linear time-
variable capacitor of capacitance c(t) We
have

i = c v + co' (7a)
(Jb)C — C+ — C-

' n 2 = c+

•"31 — C+ 2>4i2 = cJ
. (8)

An equivalence for the time-variable
resistor should now be clear Denoting the
resistance by r(i) with r+ and r_ non-
negative functions, we have

v = n
r = r+ — r_

from which Fig 2a results, with

= r+

(9a)
(9b)

(10)

/(t) 1

PORT 1 PORT 2

b
6YRAT0R

Fig. 2 Resistive equivalents

However, this equivalence is not unique,
the monotonicity of r+ and /•_ is not re-
quired As with / and c, we can actually
add any positive nondecreasing /(/),
which is infinitely differentiate, to r+ and
r_, to obtain a nonunique decomposition
In contrast to the case with / and c,
arbitrary infinitely differentiable /(/) can
be added to r+ anc r_ to obtain non-
uniqueness A dual result holds for con-
ductance, while Fig 26 shows the
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equivalence for the gyrator, which follows
from the time-variable impedance matrix5

0 1

t-i)

r 0
1

0 vim
1

.-HO o j
r
0

V 0"

0 I
. 6 (11)

Here y(t) is the gyration resistance, and
6 is the unit impulse.

As in the time-invariant case, the in-
ductor and capacitor can be interrelated
through the gyrator. Such an equivalence
is shown in Fig. 3, for which we have

d[yci]
dt • (12)

y(l)

Fig. 3 Capacitor-inductor equivalent

To summarise, linear time-variable in-
ductors, capacitors, resistors and gyrators
have the equivalences given. Thus any
connection of a finite number of such
elements can be described by a circuit
having transformers as the only time-
variable elements. This allows us to con-
sider all networks of this class to be
looked upon as a transformer network
loaded by a time-invariant inductor,
capacitor, resistor, gyrator network to
which various physical properties can be
ascribed. Because the turns ratios of
Figs. 1 and 2 are related to the positive
and negative variations of element values,
various constraints on the individual
elements can be easily obtained by
physical reasoning on the equivalent
circuits.

B. D. ANDERSON 6th April 1965
D. A. SPAULDING

R. W. NEWCOMB

Stanford Electronics Laboratories
Stanford, Calif, USA
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ENERGY TRANSPORT AND THE
SCATTERING MATRIX

An energy-transport equation is obtained
for the H-port scattering matrix of a
general lossless anisotropic dispersive
medium. This yields a theorem that in a
lossless nonreciprocal 2-port the sum of
the phase derivatives of the two transmis-
sion scattering coefficients must be
nonnegative.

An appropriate definition of group
velocity to describe energy transport of a
wave packet was formulated and dis-
cussed by Brillouin1 for an isotropic dis-
persive lossless medium. This has been
extended by Hines2 and Auer et al.3 to
anisotropic (nonreciprocal) plasma media.
In general, the delay per unit length
(inverse of group velocity) is shown to be
proportional to average stored energy
density per unit incident power density.
The purpose of this note is to show how,
for a very general lossless medium,
Brillouin's definition of energy-transport
delay is related to the S matrix used in
the theory of electromagnetic scattering
and in linear networks. The starting point
is to extend a frequency-variation theorem
derived by Dicke,4 for an isotropic,
homogeneous nondispersive lossless me-
dium, to a dissipative medium with a
dispersive tensor dielectric and tensor
permeability. It may be shown that
Dicke's frequency-variation integral for
the more general medium becomes

J (E* xH'+ E' x H*) . dS
s

= jj[E*. (cue)' E + H*. (ay*)' H] dx

T+ £* . (e+ - e) E'] dx . . (1)

In eqn. 1, E(co, r) and H(co, r) are the
electric and magnetic complex vector
field functions of position r, under the
assumption that the fields at any point in
the medium have harmonic time de-
pendence of the form eiut.

The notations [ ]*, [ ]+ and [ ]' indicate,
respectively, conjugate complex, adjoint
and derivative with respect to the radian
frequency co. In the surface integral, the
positive normal to dS is into the medium,
and dx is the volume element. All field
magnitudes are expressed as r.m.s. values.
The quantities e(co, r), n(a>, r) are the
tensor dielectric and permeability para-
meters. In the case of a lossless medium,
H and e are Hermitian,5 fi~ = /u, e+= e,
and the second volume integral in eqn. 1
vanishes. The first volume integral is
twice the total integrated stored energy W
averaged in time. For the loss-free
medium considered here, a simple thermo-
dynamic argument indicates that this total
energy, consisting of a contribution of the
electrostatic type as well as kinetic energy
due to motion of charged carriers and
magnetic dipoles under the influence of
the alternating field, is nonnegative.5

Theory,Toky

W>0 (2)

(o>n)'

0 \
o J (3)

where the inequalities imply nonnegative
Hermitian tensors.

The final form of eqn. 1 is

J (£* xW -f E' x H*) . dS = 2jW
s

. . . . (4)
for a lossless medium.

We may presume that any modes (in-
cluding the evanescent variety) may exist
in T, but access to this region is via a set
of n lengths of uniform lossless guide,
each of which supports only one propa-
gating mode at the frequency in question.
This is no restriction, since the existence
of a multiplicity of propagating modes
merely increases the effective number of
ports. Other than these guides, the region
is surrounded by metallic walls. Suppose
we fix a transverse reference plane in each
of the guides. Then the surface integral in
eqn. 4 is zero, except over these reference
planes, and the result may be written as

S ( » » V n 'i*) = 2jW. . . (5)

v+i' + i+v' =jlW (6)

In eqns. 5 and 6, vn and in are the
normalised voltage and current mode
coefficients in the reference planes or
ports, and v and / are column vectors of
these voltages and currents. If the scat-
tering representation is used,

v = a + b

i = a — b

(la)

Ob)

where a and b are column vectors of inci-
dent and reflected complex wave ampli-
tudes at the ports. If S is the scattering
matrix normalised to real positive normal-
ising numbers,

b = Sa

S(a>) = Isd
exp

. . (8a)

r . . (8b)

where Sa((o) and <f>{j((o) are real amplitude
and phase functions, respectively. Since
the medium is lossless, S is unitary.6

S+S = SS+ = I (9)

/ is the identity matrix. Substituting
eqns. 7, 8a and 9 in eqn. 6, one obtains

ja+S+S'a = W (10)

This result was originally derived by
Dicke for an isotropic nondispersive
medium. It may also be noted that
eqn. 6 immediately leads to the general
statement of Foster's reactance theorem:

= i^Z'i = 2jlV . (ID

where Z and Y are the impedance and
admittance matrixes, respectively, and are
not necessarily symmetric.

Suppose the region x has only two
waveguide ports of access. Terminate
port 2 in a nonreflecting absorber, and
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