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Implementation of Hartline Pools and Neural-Type Cells

1. Introduction

This article treats circuit realizations for the modules of the neural simulation program
SYNETSIM created by D. Hartline (Ha2). In particular, discussion is given for VLSI
hardware implementation of the chemical pools introduced by Hartline for chemical reactions
and of tile Neural-Type Cells introduced by micro-systems researchers for signal transmission
via the generation of trains of action potential pulses otherwise realized by table look up in
SYNETSIM.

The chemical pools, as introduced by D. Hartline (Hal)(Ha3), are used to model chemical
reactions, including enzymes and second messengers, in biological neurons (Be)(HaGr). There
are four types of chemical pools introduced by Harthne and all of these have been
implemented in electronic circuit form, as we discuss here, according to their describing
equations which are based on the phenomenon of the synthesis and degradation of chemical
materials. In VLSI realization, the pool itself (chemical material storage) is implemented by a
capacitor, while the chemical materials are represented by charges on capacitors. The voltage
on a capacitor, that is charge/capacitance, realizes the concentration of the chemical materials.

Repetitive firing modules are used in biological neural networks to transmit signals from
one neuron to another. When the membrane potential is higher than a certain threshold value
this module fires a train of pulses and in these trains information is transmitted. The primary
repetitive firing module used in neurophysiological modeling was described by Hodgkin
Huxley in the 1950's (HoHu). However, the Hodgkin-Huxley equations are so complex that
they are too difficult and costly to be realized in hardware. An alternate circuit is used here to
avoid implementing the complex Hodgkin-Huxley equations. This alternative is the Neural-
Type Cell (NTC) which was introduced in its basic form some time ago to generate neural-
type pulses (Ne). The NTC uses hysteresis to generate its pulses when its input voltage is
higher than a threshold value. One of the basic properties of the NTC is that its output
frequency is a monotonic function of its input voltage.

This article is organized as follows. Section 2 gives an introduction to biological neurons
including the chemical pools, transmitters, receptors and the synapses. Section 3 gives the
hardware realization of four types of chemical pools, which are used to modulate the
conductances of the membrane. Repetitive firing cells are discussed in section 4. Instead of
direct implementation of the Hodgkin-Huxley equations which model the firing cells, we
implement a neural-type cell which is much sirpler and has a similar output form,

2 Generic Biological Neuron

In order to understand the tie of our circuits to biological neurons we review the latter with
especial reference to SYNETSIM of D. Hartline (Hal)(Ha2). Although there are hundreds of
different kinds of biological neurons and interaction means, each with their own features (Gu,
chps. 45-59), we consider only a generic situation which captures most of the features we wish
to emphasize. However, SYNETSIM and our resulting circuits can mimic the features of
almost any neuron ang its interactions.

A generic biological neuron basically consists of three parts: a cell body (soma), an axon
and a number of dendrites. The dendrites form synapses with the branches of axons from other
neurons. When a signal is transmitted from a neuron to another neuron through a synapse, the
pre-synaptic membrane will release neuro-transmitters which can bind to special sites called
receptors in the post-synaptic membrane. Once these sites are bound, ion channels may open
and ions such as Sodium (Na+) or Potassiumn (K+) can then flow into or out of the post-
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Implementation of Hartline Pools and Neural-Type Cells

synaptic membrane in tum changing the membrane potential of the cell body of the neuron.
When this membrane potential exceeds a threshold voltage, it will trigger a firing mechanism
and issue a train of pulses. The axon then transmits these pulses to other neurons through
synapses it forms with the dendrites of other neurons. Figure 1 shows the structure of this type
of generic biological neuron

Deadrites

Figure [. The structure of a biological neuron. The cell body fires a train of pulses when its potential exceeds a
threshold voltage. This train of pulses transmits information to other neurons through the axon via synapses

2.1 Neuron Membrane and Chemical Pools
The membrane potential depends to a large degree on the ionic currents that flow into or out of
the membrane. A circuit model for the membrane itself consists of the membrane capacitance,
Cu, in parallel with a leakage membrane resistance, R;. To include the channels through
which ions flow we add some paraliel
connected branches, with each branch
constructed as a series connection of a
iL _l J_ resistor and a dc voltage source (HoHu).
Ey E, Figure 2 shows the circuit model to realize
the membrane with ion channels of our

+
<+
Culo Ey T T 1 generic biological neuron.
i Rya R &Q Ry In Figure 2, all the conductance of the
X I

I'na ! resistors are  variable with  their
L - conductances being modulated by the

Inside of membrane

Na =1

concentration of chemical materials. In

other words, the concentrations of chemical

materials control the ionic currents that

Figure 2. The circuit to realize the membrane of a flow ,mto or ?m o,f the Fell' .Thus, the

biological neuron. Na is for sodium, K is for chemical-electrical interaction is actually

potassium and L is for leakage the key activity which determines the level
of the membrane potential.

Qutside of membrane

2.2. Neuron Synapse

The signal transmitted from one neuron to another is primarily through the axon and synapse
receptor interactions. When the axon signal reaches the pre-synaptic membrane, the pre-
synaptic membrane releases neurotransmitters and these neurotransmitters can be bound to
receptor sites in the post-synaptic membrane, usually in the dendrites. These bound trasmitters
then open the ion channels. The ions, such as Na" and K*, can travel through the post-synaptic
membrane via these ion channels. The operations between synapse and transmitters can be
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Implementation of Hartline Pools and Neural-Type Cells

demonstrated via Figure 3. In Figure 3, assume there are a total of C receptor sites on the post-
synaptic membrane while x of them are bound with transmitters released by the pre-synaptic
membrane. Assume the concentration of the transmitters is S and the unbinding rate for a
bound transmitter is K. The increasing rate of the bound transmitters is linearly dependent on
the concentration of the transmitters and the number of receptor sites which are not bound.
The degradation rate, however, depends only on the concentration of bound transmitters by a
constant factor K. Accordingly, the dynamic equation for the bound transmitters is

dx
E-S(C—x)—l\’x (1)

where (C - x) is the number of unbound sites for receptors.

Pre-synaplic membrane Post-synaplic membrane
Receptor
o Dentite
o
[t
Juapsmiigss . lon channels

Bound " .
« uansmailter

Figure 3. The transmitters and receplors in a synapse. The pre-synaptic membrane releases chemical
transmitters. When these transmitters are bound by the receptors on the post-synaptic site, they will open
ion channels on the post-synaptic membrane and thus change the membrane potential of the post-synaptic
cell.

3 Chemical Pools

3.1 Introduction
The chemical components in a neuron which govern the chemical reactions and properties are
modeled by a set of diffusionally connected compartments, called ‘pools’ in SYNETSIM.
Therefore, the circuit realization of chemical pools is essential to the circuit implementation of
the chemical reactions in a biological neuron.

According to experimental results from neurophysiology, the chemical pools can be
categorized into four groups depending upon their different rules for filling and emptying the
chemical material in the pools (Hal)(Ha2). The pool levels, that is, the concentrations of the

66

othe

The

3.

fir:
€X

to

pC
ec

A R0 O 5




st-
tic
on

id.
ra

e
of
be

he
he

Implementation of Hartline Pools and Neural-Type Cells

chemical material in chemical pools, of the first two types of chemical pool are conditioned by
the transmitter binding on the synapse. The third type has a filling rate proportional to the
tonic current with first order decay and the fourth one is similar except that its filling rate is
constant. Table 1 shows the pool kinetics for the four types of chemical pools.

Pool types Describing equations
Pool type 1 P=C S/AK;+S)
Pool type 2 dP/dr = [C S/(K;+S)]-C' P
Pool type 3 dP/dt=C I -C'P
Pool type 4 dP/dt=F-K P
Where P: amount of *‘material’ in the pool

C & C’: constants of proportionality
S: concentration of transmitter
Kd: dissociation constant for transmitter binding

I: ionic current flowing in a specified branch of the electrical branch
F: filling rate
K: rate constant for decay

Table 1. Pool kinetics, All the constants in the describing equations can be modulated by the pool levels of
other pools or by itself.

The equations of Table 1 are interpreted in the next section.

3.2 Realization of Pools by VLSI Circuits
A goal for neural research is to build a biological-like neural network via VLSI circuits. As a
first step towards this goal, we present a feasible way to realize the chemical pools using
existing hardware components (TsEN),

As listed in Table 1, the four types of chemical pools are:

Type 1: Bound transmitter pool: The pool level (P/v, v is the pool volume) is proportional
to the concentration of bound transmitters at a synapse. Because the pool level of a type one

pool is assumed to change rapidly, there is no dynamic part in its describing equation. Its
equation is

P=C-SHK,+5) (2)

where CS/(K,+S) is the concentration of bound transmitters that result as steady state solutions
of Equation 1 described in section 2.2 and C is a constant. Because the pool volume v is a
constant, it does not show up in the equation and is counted as part of the constant C,

Type 2. Filling rate of the pool material is proportional to bound transmitter: The filling rate
is proportional to the bound transmitter at a synapse while its decay rate is linearly dependent
on its own pool level. The chemical material in the pool can also ‘diffuse to’ or ‘come from’
other pools which phenomenon we represent by the inter-pool diffusion term Ipy.

B = C-S UKy +8)-C-P a1y ©
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Implementation of Hartline Pools and Neural-Type Cells

where C and C' are constants and P is the amount of pool material.

Type 3: Filling rate of the pool material is proportional to ionic current: In this type of
pool, the filling rate of pool material is linearly proportional to the ionic current which flows
through a specific ion channel and its decay rate is also linearly dependent on the

concentration of itself as for type 2. The inter-pool diffusion term also applies in which case
the full describing equation is

d%, =C-I-C'P+Ip C)

where / represents ionic current and C & C' are constants.
Type 4: Filling rate of pool material is constant: This type of pool is the same as type 3
except that its filling rate is constant. Its describing Equation is shown as 5 and again F and K

are constants, and pool volume does not show up because it has been counted as part of the
constants.

%—F-K-P«r]w )

The inter-pool diffusion term, /pr, in Equations 3 to 5 describes the phenomenon that the
chemical material can diffuse from one pool to another via a resistive path. The describing
equation for inter-pool diffusion from the ;* pool into the &* pool is

P.
Ipy =Z (Kk.j)v_{_[sz.k]f_: (6)

Jek J j=k

where v; is the volume of the j* poo), P/vj is the j* pool concentration and K;; are the inter-pool
volumetric decay rate constants. In fact, inter-pool diffusion can also take place with type 1
pools, but that is not treated here.

3.2.1 Pools of Types 3 and 4

Pools of types 3 and 4 are discussed together in this section because their describing equations
are similar except that the filling of type 4 is constant, as described in Equation 4, while the
filling of type 3 is controlled by another signal as seen in Equation 5. To realize these
chemical pools by VLSI circuits, we can consider P to be analogous to charge with a pool
itself being considered as a capacitor, since it stores the pool material. The volume v of the
pool is analogous to the capacitance, in which case the concentration of the pool material P/v
will be analogous to the voltage across the capacitor. Then F is a constant, bias, current source
and C, C’and K can come from dependent current sources which can be easily modified by the
other pools (TSEN). Table 2 shows the analogues between chemical pools and VLSI circuits.
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Implementation of Hartline Pools and Neural-Type Cells
Chemical Pools Circuits i
: of Pool Capacitor |
):I:: P Material in pool Charges in capacitor f
tace v Volume of pool Capacitance !
P/v_ Concentration of pool Voltage across the capacitor ]
Filling rate Inward current f
Decay rate Qutward current i
Table 2. Analogies between chemical pools and circuit realizations. %
e 3 -
dK According to Equations 4, 5 and Table 2, we :‘
the can view an isolated pool, that is, without *
inter-pool diffusion, as a capacitor with some !
current flowing in (C/ for type 3 and F for i
type 4) and some self-concentration !
dependent current flowing out (C'P for type 3 i
and KP for type four). The terms C'P and KP ;
can be formed by differential amplifiers used 8
the as multipliers, as shown in Figure 4, the basic T
ng i structures of pool types 3 and 4 are shown in i
Figure 5. '
= The differential amplifier (GrMe, p.705) |
in Figure 4, although simple, has two 4
problems when used as an analog multiplier, 3
They are: 1
(1) The load due to M3 and M4 on the i
drains of the two transistors M1 and M2 are :
ool Figure 4 (above). Differential amplifier as an different.
e 1 i analog multiplier (2) The output current of the current
_ source M3 can vary considerably due to
Figure 5 (below). (a) Structure of type 3 pool. variations of the output voltage, ¥,y
{b) Structure of type 4 pool.
o C 1 cC P K P
1es€ Analog _C.l. ..C.:.’: Analog @—’L udig Analog
so0l Multiplier Multiplier Multiplier
“the dP dP.
Piv dr dt l
arce L+ V P —1 + v P
“the = Can = Can :
> o L |
(a) (b) :
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Implementation of Hartline Pools and Neural-Type Cells

To remove the first problem, we can add

Vee Ve an off-set voltage or change the W/L ratios
PMimzr_I EMimr but these are impractical solutions because
l]' the bias current 1ss may be desired to be
modulated by other pools or it may be

BVl different for different pools. Once Iss is
changed, the loading problem occurs again.

+ | Elm N |_1 A better method to remove the first problem

is to make the loads on the drains of M1

. 1 M Thi he circu
_TL e = and M2 the same. This leads to the circuit

! shown in Figure 6.
Ve o To see the resulting improvement, in
PSPICE simulations of both the original
differential amplifier and the improved
) . . ) differential amplifier we made the input
ggu;j 6. Improved differential amplifier (TSEN, voltage, Vi, linearly vary from OV to 1V
~ then back to OV again. When V;, = 0V, the
drain currents of Ml and M2 should be equal because their gate-to-source voltages are the
same. Figure 7(a) shows that the output of a regular differential amplifier for the circuit in
Figure 4 is inaccurate. On the other hand Figure 7(b) shows that this inaccuracy has been

improved by the circuit of Figure 6.

‘Vcc

Regular Differential Amplilier PPN L L sl i SO v - O
130uA s - S R AT O el L H
vn 1 smr) \
H d(MI1} : 100,394
Illhmi
A d gad 1004
woua :
'd(m) 99.5uA
ma; ! gima) |
* J 1588 3 AvmssemmnesasatTan e P o P e e e s i USSR
TIME a|
.l“’“l] . 'J(Ml) ) "uI‘(M“ .l:(-h;ﬂ !f';n Mg 1= 20w

Figure 7. (a) Simulation output for the regular differential amplifier (b) Simulation resull for the improved
differential amplifier The input voltage is swept from OV to IV and back to OV.

The second problem can be solved by cascoding the regular current minors to increase
their output resistance (GrMe, p.712). An example of the implementation of pools type 3 or 4
with triple cascoded current mirrors is shown in Figure 8. The pool level is measured as the
voltage across the capacitor and goes to equilibrium when the inward current, C . / or F in
Figure 8, equals the outward current, C'.P. Two PSPICE simulations of this pool with initial
conditions 0 and 1 Volts for the capacitor voltage are shown in Figure 9. A physical layout for
a 2 micron VLSI fabrication of the circuit in Figure 8 is shown in Figure 10 with a 5nf
capacitor.

Three triple cascoded current mirrors are as indicated in the layout. Areas B2 and C2
locate the p-type current mirrors and area C1 the n-type one.
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.|||_._ i

7 T
J_|J_

(,,C,,':'g, KP

(type 4)

1

+ Y cc
= 5V

Pool _|
[ p—

S g o g

Figure 8 (above). Circuit implementation of type 3 or 4 chemtical pools The inward current is a constant i

current source for type 4 and is linearly proportional to | Jor type. All the current mirrors are triple cascaded ;
10 increase their output resistances. -

Figure 9 (below). (a) Simulation of a type 4 pool with initial condition 0 volt (b} Simulation of a type 4 pool
with nitial condition | volt.

SOBMY 3+ 5 e sy 1 o st s et i e 02 2 -t o e e e

]

I

: Capacilunce = Yolume of pool = 5N Cepacilance = Volume of pool = SN |

F =100 F=10U i

o (132 4

bl V(1) = Capacitor vallage V(1) = Capacitor voltage j

e TR T e —— e e
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F {or Cl)

i i IR
Nmirror Differential pair
e et TN — e
A B C D

Figure 10: A MAGIC layout for the chemical pool shown in Figure 8.
The area of the capacitor is 104um2 and its capacitance is about 5nf.

3.2.2 Pools of Types 1 and 2

In section 3.1 we mentioned that pools of types 1 and 2 are conditioned by the transmitter
binding. Thus, these two types of pools are grouped together and the realization of transmitter
binding becomes the key for the implementation of them.

Conductance lincarly modulated
b)’ conc i 0[ I 1 S

=
[
=
.

=

Figure 11. A basic connection of series resistors to
realize the bound transmitter expression for pool
types 1 and 2.

Figure 12. Simplified circuit for Figure 11.
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To realize the bound transmitter
equation, CS/(S+K), it is impractical to
multiply C and S and then divide this
product by the sum of S and K, because the
circuit will become very complex. Instead
series connected resistors with their resist-
ance modulated by external sources can be
used to implement the bound transmitter
equation using very simple circuit comp-
onents. The concept is illustrated by Figure
11 where V., is a voltage source
representing the number of receptor sites on

the post-synaptic membrane and §
represents the concentration of transmitters
released by the pre-synaptic membrane.

The conductance of the left resistor is
linearly modulated by the concentration of
transmitter S and the conductance of the
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2 p———

right resistor is a constant which equals the dissociation constant K. Next, Figure 11 can be

stmplified to Figure 12, where we use an equivalent resistor to replace the two resistors in |
Figure 11. '

As shown in Figure 12, the resistance of the resistor is

R=l, L _(+K,) o
SVK, '+ SK,
Thus

Vc '0)_ Vch'

_{
=% “(s+k,) ®

From Figure 11 and Equation 8 we get the voltage on the middle of this connection as

. 1 V.SK, 1 V.S
V, o=]——m=pe20d 1 Ped 9
. ? K, (S+K)K, (5+Kp) @

which is exactly the bound transmitter equation mentioned above.

Implementation of Pool Type 1
The hardware implementation of pool type 1 is based on the series connected resistors
introduced in the previous section, except we replace the variable resistors by MOS resistors

iitter with their conductances controlled by their gate voltages. The VLSI circuit for pool type 1 is {
utter shown in Figure 13. 1
In Figure 13 we assume that the £ |

utter ! I-}l | clonductanccs of the MOS resistors are
il to @ L v L[ » {l*  linearly dependent on the gate voltages.
this That is, the two transistors whose gates are
: the + _|_+ tied to VS and VKd are assumed to be
stead VS VKd operating in their ohmic region. To verify
sist- J_ _L this assumption we set V, to be very small
n be = = " (say, 0.1 volt) so that these two transistors
itter are in their ohmic region as long as their
ymp- f Floure 134 e | cireli-Node 52 ef_’fective gate voltages are greater Fhan V..
gure | ingicaledas tzoe‘;fmtygion point of two rra;wsistors Figure 14 shows the PSPICE 'SImulated
nirce i in this circuit, represents the level (material conductances of the MOS resistors and
son { concentration) of this pool. Figure 15 shows the voltage level (pool
S i concentration) of pool type 1. In both
i simulations we have added 1 volt to both gate voltages to compensate for the threshold voltage
Vr of the MOS transistors. When ¥, is not very small compared to VS and VKd, the
ks conductances of these MOS resistors are no longer linearly modulated by their gate voltages
o because the voltage V1 in Figure 13 is no longer small enough to be omitted compared to VS;
2 the thus, the output voltage will not be exact when compared to the desired pool type 1 describing
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POOL 1
SOOU4c-ercrveroraaana. B T R T T TSN A, N et s
: :
i ’
H H
H .
H ’
i *
H '
H VKda 1oV ' ’
¥ .
400v 4 . ot
H VKds eV - :
; d :
g VRd=aV o E
¥ ®. +
H H
H VKd=1¥ H
300u ¢ s - - - it
E VEdes v /", E
H . I :
’ = :
» VKds$V .’ :
: *
200u ¢ VKda v - 1
" .
H ¢ :
' e :
H 13
‘o ; VKd= IV :
H / :
. .
H . H
H VKdu2v H
100u ¥ E l 3
: / :
Y 1]
H i
? . ?.,f . VKde )V E
: 4 :
: .
. VEdeO Y :
Ou s + N N i
oy 2v av ov Y 10v
o bI(V1-V1) & 1/ (Vc- V1)
(Conductence “VKd| {conductance “VS~) vs

Figure 14. The conductances of the MOS resistors in the pool type I circuit. The conductance of the left MOS
resistor is linearly dependent on the concentration voltage VS and the conductance of the right MOS resistor is

constant as long as VKd is constant.

-,.
.
g
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Figure 15. The simulation output of pool type 1.
The pool concentration, represented as V(1), is the
Junction of VS and VKd, P = V(1) = V. VS/(VS +
VKd).

For Figure 14 we made V, equal to 0.1
volt and show the values of VS and VKd to
vary from 0 volt to 10 volts. To make the
MOS resistors work in the ohmic region,
we need VS and VKd to be higher than
about 1.1V, where the first 1 volt is that
added to VS and VKd to compensate for the
threshold voltage. All these assumptions
result in the output graphs of Figure 15.
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1 Implementation of Pool Type 2
The describing equation of a type 2 pool is {

dP C-S
T =2 __cp
&t " K, +5) (10)

| where § is the concentration of the transmutter in the synapse to which the pool belongs.
According to Equation 10 we can view a type 2 pool as a combination of a type 1 pool and

a type 3 pool where the filling current of the type 3 pool is controlled by a type 1 pool. Using
this decomposition, the circuit of a type 2 pool is shown in Fig. 16.

— ! s ¢ F diffusion. That is, chemical material in
L s oLt i i
Anlo %) P anatog pools can diffuse between pools. This
Muliplier » Muiiplier]  phenomenon is simulated via a diode
?l|_+ R connected path between two pools. For

Vo types 2, 3 and 4 pools, the chemical

]_: material diffusing can be realized by

! B charges traveling between capacitors in the g

Fee 3 diode path between the pools with the diode ! '

Figure 16 (above). A circuit for pool type 2. Pool
| type 2 is actually a type 3 pool whose filling
current is controlled by the concentration of a type

3.3 Inter-Pool Diffusion
As mentioned in section 3.1, all pools are
potentially interconnected by first order

forward conductance interpreted as the

Figure 17 (below). Inter-pool diffusion berween
two type 4 pools k and j. The inter-pool diffusion

5 1 pool. between pools k and j is Iprgay = Ty~ I :
F ¥
| in, I in; ]
e - . Diffusion with !
D'I:l'lmo" wl'lh other pools _
he OTerpoos Diffusion from k to j
L \ Iy, ——»
i +J
' M
01 Analog | gﬁ?:?%icr
Lto multiplier | 74— Tout, P
the outy I 1 ouh
on, i —_ - ik T~ ool J
an ! pool X Diffusion from jto k P
hat
the L
ons } - -

ok i
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Implementation of Hartline Pools and Neural-Type Cells

diffusion rate constant. Because the two directions of flow between two pools could be
unequal, two paths are used with different conductances and with diodes to limit the direction
of current flow in each path. Figure 17 shows the circuit to realize inter-pool diffusion
between two type 4 pools with the same connection holding for types 2 and 3.

4. Neural-Type Cell
4.1 Introduction

A primary means of information transmittal between neurons in a biological neural network is
via pulse coding. That is, one neuron will generate a train of pulses which carries the infor-
mation and sends it to other neurons. Thus, implementation of a pulse generation mechanism
is a must if we are trying to realize a biological neuron. The most celebrated analytical
treatment of this phenomena is in the set of equations presented by Hodgkin and Huxley to
model the oscillation in a neuron (HoHu). Although these H-H equations give results that are
very close to experimental results, the H-H equations are so complex that it is extremely
difficult to realize them compactly in silicon. And although SYNETSIM does have an H-H
module, the time taken to solve the equations makes that module inefficient to use.
Consequently, in SYNETSIM a table look up is to generate standard action potentials. But
again, use of table look up in silicon is not the most feasible. Consequently, in this section we

use a completely different oscillating device, the neural-type cell (NTC), to replace the H-H
equations.

R1

aK
iK I

) |
N |
M1 3
(2] 2 |

2
[ =3 vy
R3 +
<+> O I 7.5K
SFADD VIN Vi

<

19V [ds(m)l

-

Figure 18. Basic circuit of an NTC (TsSEN, Figure 1).

The neural-type cell is an oscillating device which can be used to mimic the generation of
biological spiking signals. Because of the simplicity of its structure, it has been studied
through the years, both as to properties and as to circuit realizations (Ne)(KuNe)(El-
Ne}(MoZN1,2)(MoZSNYWoESTN). The original version of the NTC contained resistors
which take a big die area when implemented on a chip while also limiting the oscillating range
to be very small. The NTC we present here is an improved version that contains no resistors so
that its size is dramatically reduced while some simple added circuitry greatly expands its
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Implementation of Hartline Pools and Neural-Type Cells

oscillating range. As we show below (see Figures 19 and 24), the NTC operation rests upon
the proper use of hysteresis, something which is known to be important to the operation of
neurons in the immune system (HoBBK).

4.2 Basic Circuit

The original basic circuit of an NTC contains a capacitor, three resistors, and three MOS
transistors as shown in Fig. 18. The input voltage of the NTC is tied to the gate of Ml and the
output voltage is taken at the drain of M2. Feedback is achieved via the connection between
the drain of M2 and the gate of M3

4.2.1 Analysis of Hysteresis in NTC

An analysis of how the NTC oscillates is best
based upon the hysteresis it contains. The
hysteresis of the NTC can be seen in 1y, (M2) as i
a function of V,; the shape of this hysteresis 1oty

changes with Vin, which can be considered a \
parameter in it. To see this hysteresis, we -
remove the capacitor in Figure 18 and plot the
curve of I, (M2) vs V. The current I(R2) vs V,
is also plotted since this gives the load line on
the hysteresis for NTC operation. Both the

hysteresis curve for Iy (M2) and the load line
for I(R2) vs V, of the NTC are shown in Figure — *=% 5 v o i o o e

VA —

19. One thing to be noted is that the load line T "

(I(R2)) should intersect the hysteresis on the

steep edges B and D so that the intercepts are Figure 19. Hysteresis and load line of NTC
unstable in order that the NTC oscillates; (TsSEN, Figure 2)

typical oscillations for the conditions of Figure

19 are shown in Figure 20, with portions marked A to D corresponding. If the intersection is
not on a steep edge, the NTC’s driving point will stay at that intercept and no oscillation will
result. Although the load line is fixed, when
! the input voltage is raised or lowered the
hysteresis curve will move left or right and
its width will shrink or expand. There exists
1 a range of input voltages over which the
two intercepts of hysteresis and load line
both stay on the steep edges. This set of
input voltages is called the oscillating range
of the NTC. For the NTC of Figure 18 with
/ three resistors, the oscillating range is quite
limited, being under 1 wvolt for Vin
(SaMEZN). In the next section we show

how to expand this oscillating range.

Figure 20. Output of NTC for Vin = 4V (TsSEN.,
Figure 3)
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4.3 Alt MOS NTC

Two major limitations of the regular NTC are: 1) The three resistors in the NTC take a much
bigger chip area than the MOS transistors. The resistances of these resistors are also subject to
being changed by different process parameters. 2) There is a limited oscillating range for
which the regular NTC oscillates. The reason is, as we mentioned in the previous section, the
intercepts of the load line with the hysteresis should be both on the steep edges. When the
input voltage, Vin, is changed, the hysteresis in Figure 20 will either grow wider or narrower
while also moving to the right or left, according to whether Vin is higher or lower,
respectively. That means, once Vin is changed, the intercepts will probably no longer be on
the steep edges of the hysteresis.

S S
i
Qm‘zﬁﬂ {Trw

Figure }f. An NTC with its resistors replaced by MOS resistors (TsSEN, Figure 4).

To remove the first limitation, we can replace all the resistors by diode connected MOS
transistors (which act as nonlinear resistors) as shown in Figure 21. Carefully choosing the
W/L ratios of these MOS transistors will allow the generation of hysteresis with steep edges.
This type of NTC, however, is worse in the
second limitation because the load MOS
resistor is in its saturation mode and it is
more difficult to pass both steep edges with a
load line of its square law shape. Figure 22
shows a typical situation.

The second limitation can be overcome
by shaping the resistor R2 of Figure 18 as a
nonlinear  resistor generated by a
combination of three transistor PM3, PM4
and NMS5, as shown in Figure 23. With this
special kind of nonlinear resistor, the

N | oscillating range of the NTC is now
i v ™™™ increased since the load line can be made to

pass through the steep edges easily even
Figure 22. Hysteresis and load line for an NTC

. 1
with resistors replaced by MOS resistors (TsSEN, L thf.: sha.pe s the R Eo
Figure 5). change with different input voltages, as

mentioned above.
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Figure 24(a). Hysteresis and load line of all
MOS NTC in Figure 23 with Vin = 3V

Iysteresis of NTC
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Figure 24(c). Hysteresis and load line of all MOS
NTC in Figure 23 with Vin = 5V.
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Figure 24(b). Hysteresis and load line of all MOS
NTC in Figure 23 with Vin = 4V

Figures 24(a)(b)(c) show three hysteresis
curves for the input voltages being 3, 4 and 5
volts, respectively, along with the new
nonlinear load line. As we can see, the
hysteresis curve moves left and becomes
narrower when the input voltage becomes
higher. This will result in an oscillation with
higher frequency since it takes less time to
switch between the right intercept and the left
intercept of the hysteresis and the load line. On
the other hand, when the input voltage is
lower, the -oscillating frequency is lower
because of the wider hysteresis curve.
Although the frequency to input voltage ratio
is highly nonlinear, the frequency is
monotonic in the input voltage, as is seen in

79

L e

o et — e 1R

e e

.~ e e s e



i e i —

=L

Implementation of Hartline Pools and Neural-Type Cells

Figure 25 where a 0.1 ms ramp of the input voltage between 0 and 10 volts is used and causes
oscillations over the range 2.7 volts to 5.9 volts.

Thus all MOS NTC have been fabricated by MOSIS using the double-poly 2 micron
technology. Because there is no resistor needed, this NTC occupies a die area of dimension
79um by 75um, excluding the capacitor whose size determines the pulse repetition rate of the
spike train. The physical layout of the all MOS NTC, made in MAGIC, is shown in Figure 26.

In this layout we choose the value of the capacitance to be SpF which occupies a chip area
about /0"um’.

Figure 25. The oscillating range for all MOS NTC (TsSEN, Figure %)

i Figure 26. A physical layout for an all MOS NTC
' via MAGIC (TsSEN, Figure 8)

w ; Oscillsting range for NTC

5 Conclusions

The neurons used in most present-day artificial neural networks (Da)(Ho) are somewhat
primitive compared to true biological neurons. As a means to improve the situation, the neural
modules of SYNETSIM are taken as the starting point for the ideas of this article. Thus, it
presents some circuits which provide possible means to realize in VLSI circuits various
properties of the biological neural modules of SYNETSIM. Specifically, two important
concepts are covered: the incorporation of second messenger behavior through pools and
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spiking behavior via the NTC. There are a number of other modules in SYNETSIM, some of
which have been previously treated (TSCEWN) and others of which remain to be considered.
However, for the pools covered here, there are still a number of items that require more
researches to improve the circuits in order that they can better perform the functions carried
out by biological neurons. For example, analog circuits always suffer from inaccuracy.
Because of the low output resistance of current mirrors, the output voltage cannot be too high
as otherwise inaccurate output currents result. This is why we limit our pool level (voltage
across a capacitor) to 1 volt. The pulsing of the NTC, however, can only be turned on when its
input voltage is higher than about 2.7 volts. This means that there still needs to be designed
some circuits which perform scaling to allow the linking of all modules that need to work
together.

Although the field of VLSI implementation of neurons which are biologically realistic is
still in its early stages, we are very optimistic about its future, which is linked to more and
better knowledge of actual neural systems.
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