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Pression system pnd the system in.fig. 11 are equivalent.
The above restriction. implies delay lines with a large
number of short delay sections. A formal analysis of the
case where this restriction is relaxed is currently under
investigation, and if successful will be the subject of a
further paper.

The expansion-compression system is. still subject to
the limitations which Gabor postulated, namely that it
can only deal with signals having periodic gaps in their
spectrum. = Gabor suggested thig technique for speech,
but a lumped delay line with total delay of 100ms and
adequate bandwidth is not a practicable alternative to
film acanning. However, television signals also have a
spectrum with periodic gaps and the shorter delays
required here, albeit at a much increased bandwidth,
may possibly justify the use of this technique. A delay
network of about the same complexity as for speech com-
pression is required for each line of the television signal
that is-to he stored.

4, Conclusion

It can be seen that there are & number of novel
cireuit situations which can arise when the delay line
filter is extended to permit it a time-dependent impulse
response. At~ the present time, the time-dependent
network is receiving a good deal of attention with the
advent of parametric amplifiers. The examples given in
this paper by no means exhaust the potential of the time-
dependent delay line filter, and one interesting possibility
would be its use as a travelling wave parametric amplifier.
Of the examples given in the paper, probably the most
interesting is the bandwidth compressor and an evaluation
of its potential is now being made. The present state of
development is that successful video frequency multipliers
have been produced. as a by-product of current thin film
research and further progress is awaiting the design of
satisfactory active delay line networks which is being
pursued by another research group in the Electrical
Engineering Department, University of Western Australia.
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Nonreciprocal Transmission-Line n-Port
Synthesis

R. W. NEWCOMB, M.I.R.E.E.(AUST.)*

Summary:

By the use of the theorsm of Richards’ i
As extended toc matrices Z

We oconsider the synthasis of
Nonreciprocal n-poris with lines

Of the type that are lossless and linked
Through thelr Integer multiple lengths ;
Some resistors are there-in ocontained,
As a maximuii n ls thelr number,

1. Introduetion

Until the advent of Richards’ 1-port transmission-line
synthesis' of 1048 there was no rigorous means of de-
signing distributed parameter networks. Following the
appearance of this synthesis it was modified in various
ways to cover specific structures, as well as transfer
funetions® % 4, while other usefnl, but less éxact methods
also appeared®. Somewhat more recently Saito® gave
a 2-port transmission-line synthesis based itpon. Baynrd’s
matrix extension of Richards' theorem?. However,
none of these methods covers the synthesis of non-
reciprocal distributed parameter circnits which are of
importance in many contexts. In particular this is the
case in parametrie amplifier design,
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With. synthesis as the final goal we here develop the
theoretical, aspects of nonreciprocal resistor-transmis-
sion-line n-ports, under the customary assumption: of
lossless lines with rationally related lengths, We assume
linearity, pasaivity and a. finite mumber of elements, the
nonreciprocal ones of which are taken to be gyrators.
Transformers will generally be allowed but their number
can to & large extent be minimized.

2. Properties of Resistor-Transmission-Line n-Ports
Consider an n-port which- is constructed from passive
resistors, gyrators, transformers, and’ Jossless trans-
migsion-lines. whose electrical lengths are all rational
multiples of each other. For convenience such & net-

L Richards, P. I, * Reaistor-transmission-line circuits ', Proc,
{RE, 38, Feb. 1048, 217-220.

. Ozuki, H. and Ishii, J., * Bynthesis of transmission-ling
networks and the design of UHF filters ”, Trans. IRE,
CT-3, Dec: 1055, 325-3386.

. Grayzel, A. L, ' A synthesis procedure for transmission line
networks "', T'rans. IRH, CT-8, Sept. 1958, 172-181.

. Ozaki, H. anid Ishii, J., * Synthesis of & class of strip-line
filters , Trans. 1RE, CT-5, June 1958, 104-100.

- Mumford, W. W., * Maximally-flat filters in’ waveguide ”,
B8PS, 27, Oct. 1048, 684.713.

- Baite, N., '*A coupled transmission line filter!, J. Inat.
Elect, Com. Bngrs. Japan, 44, July 1061, 1030-1040.

. Bayard, M., * Théorie des réseaux de Iirchhoff 't Editions
de lu Revue d'Optique, Paris 1054, 170.
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work will be called a distributed n-port. In a disgtributed
n-port we can then choose a base length, taken to be one-
half wavelength at some fixed bage frequency f,, such
that all line lengtlis are integer multiples of thi; base
length. Any one of these lines of length 1, if we take
ports at opposite ends of the line, can be considered gs
& 2-port, as shown in Fig. 1. For this 2-port, if the Jins
inductance and capacitance are L, henries /meter angd C
farads/meter, the characteristic impedance ig Z,=+/(L/C).

—

N

a

2
Z; —o

x Pigure 1.—Lossless line,

If ‘the line is m half-wavelengths long at the base fre:
quency, then I = m/(2f, /(LC)), and the line is described
by the impedance matrix z,(s) (see Appendix 1)
ctnh (ms/2f,) - ‘esch (ms/2f,) -
Z.(8) =2, [ . ; ; :' (1)
csch (ms/2f)) “ctnh (ms;/2f,)
The admittance matrix y,(s) is the inverse of this,
¥, =2, and is found by replacing Z, by ¥, = Z1
and multiplying the off diagonal terms by "—1.  Here
8 = 0 + jw, w = 2xf, is the a.cf.uai complex frequency.
When, as we are assuming for this*discassion, m is an
integer, the impedance matrix of Eq, (1) is rational in
exp [8/2f,], and if we let -

exp [s/2f] = (p +1)/(p — 1) (2a)

p = ctnh(s/4f,) {2b)

Z,(8) = Z,(p) becomes rational in p. Then given any
distributed n-port the standard descriptions, such as the
scattering matrix S(p) or the immittance matrices Z(p)
and Y(p), considered as functions of p will be rational
in p. This follows because resistor, transformer and
gyrator descriptions are frequency independent and only
rational operations are used to combine these with
matrices Z,(p) = Z,(s) which are rational in p. Further,
these descriptions satisfy the normal reelizability con-
ditions (see Appendix 2), since p, by Eq. (2b),is a positive-
real function of 5; this would not be the case if the right
of Iq. (2a) were replaced by p itself. Consequently,
we can state that the necessary and sufficient condition
for a given scattering matrix s(s) to desoribe a distributed
n-port is that there exists & base frequency f, such that
S(p) = s(s) iz a rational bounded:real, or simply BR,
matrix. Every distributed n-port has such a scattering
matrix, while if Z(p) or Y(p) exist, which they need not,
these must be rational positive.real, or simply PR,
matrices, The sufficiency of these conditions follow
from Section 3 where a synthesis procedure iz given.

It is worthwhile noting that Eq. (1) is valid for non-
integer m since the quarter wave.length line, for which
m = }, has considerable interest. For this value of m,
after arbitrarily choosing the positive branch of Vi =1k
LEq. (I) under Eq. (2) becomes

‘which is
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2, (8)| =2 = 2 =1 2 :
i )m‘ e 1;.:'23(13) [P o 4P ] @)
\/pa -1 za l)zo

Even though this is not rational and thus not PR, it is
positive-real being a positive-real matrix of a positive-real
function. This iz of considerable importance since it
defines the 2-port unit-element. That is the 2-port
unit-element is the p plane device having Z,:(p} ss its
impedance matrix ; it is the p plane equivalent of the
s plane quarter wavelength line. From this is derived
the n-port unit eleglqnt upon which synthesis is based.
For this consider the 2n-port of Fig. (2a) where all lines
are & quarter-wavelength long at the base frequency, and
initially assumed uncoupled.  Defining the ~diagonal
characteristic impedance mafrix by

ns} an P PLANE

a)
s PLANE

Figure '2.—n-porl uﬁit-élemenf.

zo=znl+-'°+zan (4)
where 4 denotes the matrix direct sum® and Zni =1,
- - + I, are nonnegative scalars, Eq. (3) shows that Fig. 2
is also described by Eq. (3) with 2, now 5. 2n X 2n matrix
partitioned into n x n submatrices. - If the lines in Fig. 2
are mutually coupled, then Eq. (3) can still be used to
describe the 2n-port when Z, is taken as a symmetric
positive semidefinite matrix. In either case, coupled
or not, the 2n-port of Fig. 2, when considered in the P
plane, will be called an n-port unil-element, or simply
unit-element, and denoted as showm in part (b) of the
figure. It is of interest to recognize that the admittance
matrix of the unit-element hes the same form as Eq. (3)
except that the (1, 2) and (2, 1) terms are multiplied by
—1,'and Z, is replaced by Y, where Y, = Z,71 when the
inverse exists, When the admittance form is important
the Z, of Fig. (2b) will be replaced by Y,.
If now we load an n-port unit-element by another
n-port as shown in Fig. 3, where the impedance matrices

Z Z,
Figure 3.—Loaded unit-clement.

—— —_—
v “ The theory of mntrices "y Chelsen, Ny,

Ti‘r_!ncDuﬂ'ee, E_()
Yorlk, 1956, a1,

April, 1945
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Z; and Z, arq defined, we find (sce Appendix 3)

ZdP) = [pZ,(p) + Z,] [Zp) + PZ] Z, (6a)

2(p) = 2,[Z(p} — pZ.]-* [Z, — PZD)] (6b)
The results in terms of admittances are identical with
the appropriate Y’s replacing Z’s in Eqa. (5). One of the
most important characteristics to be seen from Egs. (6)
is that Z, is rational in p, with Z,, and vice versa, even
though Zyg is not. This, of course, could have been
guaranteed by replacing f, by 2f, in Eq. (2a), but Eq. (6)
shows that this is- unnecessary when quarter-wavelength
lines are loaded as in Fig. 3. Some simple equivalences
result from the conneotion of Fig. 3. For instance, if the
load consists of short circuits then Eq. (5a) with Z, =0,
gives Z; = Z,/p and the configuration acts as a p plane
capacitor n-port ; here 0, is the nth order zero matrix,
If the load. consists of open cirouits a dual treatment
shows that the input behaves as a p plane inductor

n-port, Y, = ¥,/p. These equivalences are illustrated .

in Fig. 4. Also of some interest ere the n-port Kuroda
identities. illustrated in Fig. 5. The first of these is
proven in Appendix 4 while the second follows in several
ways from the first, for instance by duality or exchange
of input and output. For the figure, Z, is asspmed
nongingular: while D and " need not be.

] UE —_—a— O
Zi—= |n n = =Z=2./p
Z, Ol o—
a)

— e o !
Yi—= In n == %_Yiﬂ./m
b}

Figure 4.—p plane eqnuivalences.

- Z=p/p
S UE —_—
o n n
o= Z,
I T
n n = n n

—] Y . a—ﬁ‘n—,—l_ Yo+l

Y=[/p 24Tl /e - g

)
Yewotzolse ot

li

b)
Figure 5.—n:port Kurodn identities,

3. Synthesis

The synthesis of distributed n-ports can proceed in
many ways. Here we begin by assuming that a PR
impedance matrix Z(p) is given, this being rational by
an appropriate choice of the base frequency for Eqgs. (2).

April, 1965

Given such an impedance matrix we then apply the
idens of & previous paper® and derive from Z an (n +r1) x
(n 4 r) impedance matrix X(p) of a lossless network.
That is, with a subscript asterisk denoting replacement
of p by —p (called Hurwitz conjugation) and. a tilde
denoting matrix transposition, X ~ — X, with X being
PR and r the rank of Z + Z,. A realization for Z then
results from one for X by terminating the last r ports
by unit resistors, as shown in Fig. 6. Sincer < n it is
clear that no more resistors than the number of terminal
ports need be used.

Q-_._
Z——= |n
O
LOSSLESS
%
I <

Feéqure 8.—Terminated lossless (n + r)-port. giving Z,

Sevéral methods are ayailable for synthesizing X,
The first and, most likely, least useful way. is to synthesize
X in the standard’ manner using p plane inductors,
capacitors, gyrators and transformerst?, This method
generally uses: an'excessive number of’ transformers and

the transmission lines do nob ocour in. as useful combina- |

bions as in the following cascade synthesis. . Nevertholoss
the use of the Kuroda identities may:be of some assistance
in making this. type-of synthesis “useful, -as illustrated in
the ‘special case of Fig, 7.

‘ Im0/p 2= Oip e
[ _ﬂ—.l g} UE ]

s e
[ — i ]_"" .--u—

(BY Fig. 41))

= SR ik
Eiv-ru_{r +ol /p

B——o "I +D s —— —

{BY Fic.5a)}
\ Pl UE —a—] UE, o
== ] A L3 n
- = . =]
e T 4D gt :‘n:l’"+n: —e
L ) LT

{BY FiG.4b))

Figure. 7.—Application. of Kuroda's identily.

9. Newgomb, B. W., “A Bayard.type nonreciprocal n-pott
synthesis ', Trans. IEEH, CT-10, March 1963, 85-90. x
10. Oono, Y. and. Yasuurs, K., ** Synthesis of finite passive 2n.
terminal networka with rescribed  scettering matrices ,
Memoirs of the Faculty a}) Engineering  Kyushu Univeraity,
14, May 1054, 155-158,
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The cascade method Proceeds from Fig. 3 in conjune-
tion with a generslization of Richards’ theorem to mat.
rices. Observing Eq. (5b) wo see that the loaded unit-
element gives Z, in terms of Z through the use of Richards’
theorem for matrices (see Appendix 5) if k = 1 ig chosen,
In fact, as k = 1, this is the justification for the name
* unit-element, "', Noting that Richards’ theorem re-

quires the matrix to be symmetric at P=k =1, we
first extract series gyrators by writing
X(p) = X(p) ~ X, (1) {6)

where 2X,, = X — X defines the skew-symmetric pert
of X. While X, remains PR, X,,(1) can be realized with
the use of gyrators since it is a constant skew-symmetrio
matrix. A unit-element is then extracted by forming

Xy(p) = X,()[X (p) — PXADIX (1) ~ PXdp)] (7)
whenever the required inverse exists, By the cited
Richards’ theorem X, is PR, and Fig. 3 shows that
forming X, does correspond to the extraction of & unijt.
element, Further, if we let 6[ ] denote McMillan’s
degree!, then 4[X,] <« O[X,] (see Appendix 5). Ag g
consequence the repetition of this Procedure Jeads to a
matrix of degree zero which must be constant and hence
skew-symmetric since X = — »-  This matrix is realized
by gyrators and terminates the synthesis, if the inverses
needed for Eq. (7) exist at al] stepa.

From this we ean conclude that the singularity of X,(p) —
PX(1) implies that of X'dp) (the converse is also true).
For this conclusion We note that when Xdp) — pXi(1)
is singular there oxists a nongoro vector v such that
X'iply = PX'(1)v. Now if X'dp) is nonsingular then
80 is X',(1) and vice verse, since & PR matrix which is
singular at any one point in the right haif plane must be
identically singular, Thus, if X'(p) is nonsingular,
XL X (plo = P results, which is impossible unless
v 18 zero since the left side hag no Poles at infinity. We
then conclude that if X'ip) is nonsingular then so js
Xdp) — pX,(1). Letting X',(p) be PR of rank m, then
there exists a resl constant m X n matrix T such thati2

X'p) =TX,\(p) T (9)

where X,, is PR and nonsingular of order m. Eq. (7) ean
now be applied to X, as the required inverse exists,
and the process can therefore be continued. Physically
Eq. (8a) represents a series extraction of a p plane inductor
n-port and Eq. (9) states that X'; results by terminating
a transformer (n m)-port in' the m-port®® for X,,.
This completes the synthesis which takes the form illus-
trated in Fig. 8, Part (a) of this figure shows the overall
form when no singular matrices are met, while part (b)
shows a typical singular section. The actual transmission
lines are, of course, obtained by converting from the p
plane to the s Plane by the use of Figs. 2 and 4. Tt

Z=x (1)
O—[GYRATORS]-—a UE GYRATORS UE
n n n l'l‘o_j
X;(n
X(p) ¥(m) Xdp)
3 a)
2=pA
GYRATOR!
T UE
n m m m
TRANSFORMERS| X0
x,e) X{ip) X,,tp) XgfP)
b)

Figure 8.—(a) Nonsingular canonscal realization of X,
(b) Singular section.

If at any stage X(p) — pX (1)} is singular then we can
make the following considerations, Any pole at infinity
of X,(p) can be extracted by writing

Xip) = X'ip) + pA,, (8a)
where A, is the positive semi.definite, symmetrie, residune
matrix at infinity and X’y is again PR but now analytic
ot infinity. Then

Xdp) — pXy(1) = X'y(p) — pX’((1) (8b)

11. McMillsn, B., “ Introduction to formal malizamy theory-
II”, BsTJ, 81, May 1952, 580,
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should be mentioned that in the matrix case Richards’
transformation sometimes yields g reduction in degree
when applied directly to Z. In such cases the extra
steps involved in finding X can be avoided. However,
as yet, the conditions on Z for thig degree reduction are
not known,

" Properties of positive-real matriceg *,

LabsfeTR No, 21‘)354-4, Dec. 1962, 19.9).

13. Belevitch, V., * Synthéso des réseaux électrigues pasa;‘fs an
paires de bornes de matrice de répartition prégétvermmée a
Annales de Téldcommunications, 6, Nov. 1951, 307,

12, Newcomb, R, w.,
Stanford Electronieg

April, 1945
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Although distributed n-ports can be specified through
the impedance matrix Z(p), the most general specification
is through the scattering matrix S(p), which by a sunitable
choice of base frequency must be BR. For such a speci-
fication we can revert to the impedance matrix, which
will be PR, by

Z(p) = (1, + S(p)) (1, — 8(p))- (10a)
whenever the inverse exists, and then apply. the theory
given above to Z; here 1, is the nth order identity

matrix, If the inverse of 1,, — S does not exist then there
exists & real constant orthogonal matrix T such thati¢

S =78 +1, T (10b)

where 8'is anm x m BR matrix with 1, — §' nonsingular,
8" cen be used in Eq. (10a), with n replaced by m, to
obtain a PR impedance matrix Z’ which is in turn syn-
thesized as above. The realization of 8 results by ter-
minating a 2n-port transformer of turns ratio matrix T
at-its last n — m output ports by open cireuits and at its
firss m output ports by the realization of Z!. If the
admittance matrix Y is given, then it-can be synthesized
directly by a process dual to that used for Z. Alter.
natively Y can be made nonsingular by & transformation
similar: to that in Eq. (9) and the above impedance
synthesis used on the inverse with transformers realizing
the transformation.

The following example illustrates almost all of the
interesting points of the synthesis method.

Ezample ;

Suppose it is desired to design a. 2-port. one way;
matched, second order, Butterworth transmission-ling
filter, perhaps for an antenna feed, as deacrib_gd_by' the
scaftering: matrix

0 0

Spy=|v2p o7l (11a)

P+ v2p+1
" Hweletd =p* 4 4/3p 1 withﬂeve%and odd. ports
evd = p? + 1, 0d d = +/3 p, then ths (2, 1) term is

897 = (0d d)/d and Eq. (10s) gives

5 1 0
Zp)= |20dd (11b)
d
Using the Case 1 method of a previaiis paper® gives
x|l (122)
~V. W

which is obtained by factoring
2" = U2 + Z,) = N(L)-dL),-'N, ~ (12h)
d 0 rd 07 rd, 01-ird, odd,
=[Odd evd] [0 d] [O d,.] [0 evd,,,] G
which defines L = 1, and N, and forming

L lications of scattering matrices to the aynthesi.
14. 3‘0?1?1'@'3“35 " %Pmm. IRE, CT-8, June 1956, 112, " "thesis

April, 1965

V = N[0d(dL}™] (12d)
W = [ev(dL)] [Od(dL)-1] (120)
~U=Z - V(W + 1,17, (121)

Performing these operations gives
evd —0dd 'd 0

X(p)gm- e e R s G ST 12,
B oua| a5 oa a Ted 0| 8
0 evd , 0 evd
Then
0 -1 1 9o
I5El05 8% 50
Xul gy
{1) TS e s (12h}
L. 0 0 o0 o
[ 0] . 0 =17 rL 9 1 ¢
_0'[1 0][0 Yol 0]
bty
LG 0
='I',Z,T,, (12i)

Letting x({p) = (ev d)/(0d d) which is & reactance function
we have

X4(p) = X(p) — X,,(1) = x(p)
x(p) 0 1
[0 ; x(p)] [D

=TX,.(p)T . (12k)

R | :
In our cese Xy,(p) = x(p) 1, = Iy with X,,(1) =
2 p ;
V21, Applying Eq. (7) to X,, gives
Xw(p) = V2 pl, (121
Transformers can be used to realize T and T, but those
for T can be omitted since they merely connect port

1 0
01
1 0
0.1
0-1
1.0

1.0
0.1
10
01

" three to one and port. four to two. Most turns for T,

can also be omitted since the - 1 entries, which. give
unit turns ratios, represent direot connections ;- however,
the 6-port transformer realization of T, is given to illus-
trate the general case. This is given on the leff, of Fig. 9
which shows the final realization of the given S(p). By
clogely -obgerving the calculations, the results of this
example up to Eq. (12e) are seen to be valid for any
Hurwitz polynomial d. For arbitrary d the only change
in the reslization of Fig: 9 is the addition of more
cascade sections on the right.

4. Conclusions

In this paper a synthesis of nonreciprocal resistor-
transmission-line n-ports has been given. Although
several alternatives exist, the method using the matrix
Richards’ transformation seems the most useful, and
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Figure 9. —Second order one-way  filter example,

therefore, has been presented in some detail, singe 5
cascade type realization is obtained. Transformers ‘may
be required at severg] Places, such as when converting
St0.Z or at more ‘bothersome pointa, i

lines for a unit-element. However, at higher frequencies
transformers are not such a nuisance as at lower fre.
quencies. As yet, as with general resistive networks,
the conditions for realization: without transformers are
unknown, but a congruency transformation allows any

symmetric- positive semi-definite Z to be realized fram

Tices may very well ooour in the procedure, requiring the
considerations of Egg, (8) and (9). However, as also
seen by the example, the
not always have to be separately extracted. It would
be vseful if all the gyrators could be removed at an Initial
or final step, ag actually ocourred in the example, since
then the unit-elements shown in Fig. (8) could be more
conveniently physically connected, However, series and
shunt transmission.line conneetions can often be physic-
ally realized by the uge of Grayzel’s connections® general
ized to n-ports where possible,

At Eq. (2b), in order to get the simplest rational ex-
Pressions, we uged the transformation p — cfiﬂh(ﬂ/%fa)'
However, the transformation P = tnh(s/4f,) is possible

140 Proceedings ILR.E.E, Australia

and common!. Singe for p = jw both transformations
are periodio, identica] ‘TeSponses over a given finite fre-

lated_wprk by Matsumoto* ‘discusses the Physical para.-
meters of multiwire reciprocal transmission lines,
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Appendix i
Lossless Transmission Lines

The lossless transmiggion, line of Fig. 1 js described by
the two dual equationg

’

Ov(x, t) 13 ifx, t)
S L)
0 j!(xl t) Ca v(x, t)
e L)

N e

7 ynthesis with Multiwire Lines

ﬁonugfaph No. 11 + The Research Inatitiyte of Applied Electricity,
okkaidg University, Sappore, Japan, 1pg3.
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respect to port one, Taking the bilateral Laplace trans-
form wig}, respect to time yields

d V(x, s)

dx
and its dual, Here wo have roplaced the partial de-
rivativeg by total derivatives, which allows the time
differentistion to go into multiplication by s, and is
justified by x being independent of . Differentiating
Eq. (A-1¢) with respeet to x and using the dual equation
yields

= — 8 LI(X, S) (A-lc)

d? V(x, s)
dx2

This can be solved using the unilateral Laplace trans.
form in conjunection with Eq. (A-1c) evaluated at x = 0
to give

V(x, 8) = cosh (84/LC x)V{o, s)
| —/EG sinh (5T x)1(0, 8) (A-28)
I(x, 8) = cosh (34/LC x)I(b, 8) _
~+/CLT sinh (s¢/LC x)V(0, 5) (A-2b)

where the second follows by duslity from the first. De-
fining

= 82 LC V(x, 5) (A-1d)

Z, = LG | (A-2c)
letting Vofs) == Vi, B), VII(S) == V{o,s), Iys) = — I, 8),
I,(8) = — I(o, #), and solving. Egs. (A-2a, b) for the
voltages in terms of the ourrents yields

Vl] z [ctnh (s+/LC1) csch (sﬁm)] [11].
Vel Lesch (s4/LC 1) otnh (svLCyH] LI,
which gives the impedance matrix for the line, A wave-
length is defined ab a given frequency f by 1 = 1/(f4/LC),
and, thus, if the line ijs m half-wavelengths long at the
frequency f,, then [ = m/(2f,4/LC). :

If we have a 2n-port of coupled lines, then Egs. (A-1)
remain valid with v and i n-vectors and L and C co-
efficient matrices. Assuming these latter positive de-
finite L and C-1 can be simultaneously diagonalized by
properly choosing T in the following equations!® -

(A-2d)

vg =Tv (A-3a)
i = Ti, (A-3b)
L; = TLT {A-3¢)
Ci; = T-1CT1 (A-3d)

Wo also define the diagonal characteristio impedance

matrix

2oy = [LC 1)1/ (A-30)
which is formed by taking the square root of each element
in LGy~ I all lines arc a quarter wavelength long at’
some frequency f, we then obtain, in partitioned form,
Vi [ctnh (8/4£,)Z,, csch (/4% 7 1, |
[ng] - cﬁch (5/4fn)zod ctnh (s/4fﬂ)zod] [I zd] (A~4ﬂ.)

. R., * Introduction to Matrix Analysia ™, McGeaw.
I o York, 1000, 16, MeGin

April, 1965

where the functional multipliers of Z,, can be taken as
scalars, Defining

Z, = T-1Z,,T1 (A-4b)

shows that, in this case, tho coupled lines can he de-
scribed by the impedance matrix in Eq. {A-4a) when the
subscripts d are omitted. Note that here

! Z, =TT LTTCITpE T2

which is not Eq. (A-2¢} with scalars replaced by
matrices ; this latter replacement causes frouble in
previous works!® 17,

Appendix 2
BR and PR Mairices

An n x n mairix S(p) is called bounded-real'® if in
Rep > o:(1) S(p) is analytic, (2) S(p) = S*(p)*, (3)
1, ~ 8* (p)S(p) is positive semi.definite ; here the super-
script asterisk denotes complex conjugation. A rational
bounded-real matrix is conveniently called BR and then
condition (1) follows from (2) and (3) with analyticity
even holding gn the w axis. Every BR scattering matrix
coincides with a passive network!® and vice versa, The
passivity conditions on the impedance matrix Z(p) are
thatin Re p > o: (}) Z(p) is analytic, (2} Z(p) = Z*(p*),
8) Z(p) + 2Z*(p) is positive semi-definite. Such an
B X n matrix is called positive-realls, or PR if Z is rational
in which case condition (1) is again a consequencs of
(2) and (3). Givena PR matrix Z(p) it can be synthesized
by & passive network®, but every passive network need
not possess a PR impedance matrix, as shown by the
transformer.. Eq. (1) defines a positive-real matrix in
8 which through Eq. (2) becomes PR in p-

Given an n X n matrix S(p) of rational functions with
real coefficients the following conditions are necessary
and sufficient for it to be BR : (1) 8(p) is analytic in
Rep = 0,(2) 1, — 8*jw)S(jw) = Djw) is positive semi-
definite. These conditions are relatively easy to apply,
since D(jw) need only be considered on the w axis ; they
follow by applying the maximum modulus theorem to
the BR definition. A similar test holds for PR matricesl?,
but it is often convenient to recognize that Z(p) is PR if
and only if § = (Z 4 1,42 — 1,) is BR.

Appendix 3
Loaded Unit-Element .

Here we derive Eqs. (5). For this define voltage and
current variables for the network of Fig. 3 such that

[V‘] = [ PZ . vP=1 Z"] [I‘] (A-5a)
V. vp—-12, pZ, Iy
{A-5b)

18. Rice, 8. O.; * Steady state solutions of transmission line
equations ', BST.J, 20, April 1941, 135-137.

17. Pipes, L. A, * Matrix theory of multiconductor transmission
lines ', Philosaphical Magazine, 24 (Tth eeries), July 1837, 102,

18. Youla, D. C., Castriota, L. J. and Carlin, H. J .+ * Bounded
real scattering matrices and the foundations of linear passive
network theory , Prane. IRE, CT-8, March 1059, 118 & 192,

I9. Neweomb, R. W., “ On network realizability eonditions *,
Proc. IRE, 50, Sept. 1982, 1956.
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Eliminating V, from these two gives
[—2; —pZ]1, = pF =1 ZI,
Substituting this in the first of Hgs. (A-ba) gives

Vi=0DZ +vp*<12z,(—7, — Pz,

(A-50)

VPP —1Z,]T, {A-5d)

= [p(Z, + pZ,) — (p* — 1)Z,] 4
(Z; +pZ11 21, (A-5e)
= [pZ:(p) -+ Z,] [Z:fp) + PL) 1 Z,T, (A-5f)

which iz Eq. (b8). Setting the coefficient matrix of I,
equal to Z, gives

-ZfYa (Z, 4 PZ,] =pZ, +Z,
[zlYn = Pln]zt o Z’o o Pzi

or
(A:5h)

which is Eq. (6b) after multiplying by the appropriate
*inverse,

Appendix 4

n-Port Kuroda Tdentity ! T
Consider ‘the loft hand network of Fig. (5a). This is

deseribed by ithe impedance matrix

PZ, Vl;r—j Z,
Z(p) = [ . ; J
'\/-P =1l za qu = D/P
the inverse of which is
Yp) = E i
[cz, TD L DY g +D)-1]
VR ST D g

{A-6a)

(A-6b)

Since Z, Z,, and D are Bymmetric, we see that the residue
atrix at p = 0 of the (1, 1) term of this is also equal
to Y, D(Z, -+ D). (This matrix is easily seen to describe
the right hand network of Fig. (6a). :
Appendix 5
Richards' Theorem for Matriceg

Here we state and Prove & generalization of Richards’
théorem for PR, but not hocessarily symmetric, matrices,
Given o PR Z(p) we make ijt Symmetric at the point
P =1kby defining, |

Z(p) = Z(p) — § [Z(k) — 2(k)] (A-7a)

To simplify the proof we firat normaliza, Abtp =L, Z,

18 symmetric and- positive semi-definite and henee c&n
be factored to

. (A-7b)

(A-5g)

Tf Z(p) is nonsingulor then go i K and we form

Zn(p) = R~1 Z,(p)K 1 (A-Tc)
This normalized marix i still PR and has Z,(k) = 1,
For the theorem we assume that pZ.(p) — ki, is non.
singular, the singuler case being handjed by Egs. (8) and
(9) of the text, .

Richards’ Theorem :
If Zip) 5 PR then
Z(p) = [kZ,(p) — p1,] [k1, — pZ,(p)] {A-8)
isPRforanyk > ¢ 3'P.—k cancels from the two terms,
a8 does p + k if Z(k) — = 2(— k),
Proof : Clearly Z, is rationa] with real coefficients when
Z 8. We form ths scattering matrix 8y for Z,.
e = (Zy +1,)0(7, 1,

(A-0a)
k . e
-] erinm s

5 k
[P +1J s,
S odnalt A
where 8, is ‘the Soattering matrix for Z.. To thig we
apply the BR. test of ‘Appendix 2. 8y is analytic in
Re p > 0 since Bni8 & p — k cancels into Zu(p) — 1,
by the rationality and the fact ‘that-this is zero at p=k
> 0. Further, for Pi=ijw, /8%, §ri=
i+ k) /(o =) =1 Therefore, 8, is BR and
thus Z, .is PR. Clearly*p — Lk cancels from Eq. (A-8)

e

(A-9¢)

8ince both factors have a zero atp.= k ; “the same i true

8bp = —kif Z(k) — —Z(— k) since Zo{—k)= 1,
then. QE.D.

Denorma.li@g Eq. (A-8) gives

ile) = RZ,00K = 7(k) (kz,p) — pz,002

[kZy(k) — pZ,(p)) {A-10)

where Z, has the properties of Z, given in the theorem,
The choice k' =1 is special and corresponds to the result
used in the text. Singe 0[Z,] = 48 2): Eq. (A-90) shows
that 4§[Z;] = 0[Zs) < 9[2,] = 0[Z] = 6[Z] because
P — k oancels and § 2 can have no pole at infinity.  When
P + k cancels, considerstion of ‘MeMillan’s canonical

case where Z = X =

The result is valid for positive-real matrices and g
bridge realization of Z, in terms of Z,, analogous to that
used in the Bott-Duffin synthesis, can be given?o,

20, Newcomb, R. W., * Richerds’ theorem for matrices *, Stay.
ford. Electronicg Labs., TR No. 2254.1, July, 1082,
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