RELATION BETWEEN THE DOA MATRIX METHOD AND THE ESPRIT METHOD
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ABSTRACT

There have been many algorithms dealing
with the estimation of the direction-of-
arrival (DOA) for multiple narrowband sources.
Recently the most well-known of these is
undoubtedly the ESPRIT method. Moreover, a new
2-D eigenstructure approach called the DOA
matrix method has been proposed. Unlike the
ESPRIT method, it estimates the 2-D directions
from both nonzero eigenvalues and correspond-
ing eigenvectors of a DOA matrix. In this
paper the relation between them is theoreti-
cally analyzed. It is shown that the ESPRIT
method may be regarded as a special case of
the DOA matrix method, and that the DOA matrix
method may give more generalized and more per-
fect results.

I. Introduction

Estimation of the direction of arrival
(DOA) from noisy sensor array data has
attracted tremendous research attention for

several decades because of its application in
radar, sonar, seismic, and radio signal pro-
cessing. There have been a variety of tech-
niques and algorithms proposed for dealing
with this issue. The sensor arrays may not be
uniformly spaced and linear. But, with the
uniformly spaced linear sensor array systems,
a very important array system in practice, we
can save a lot of computations and storages.
Here, we discuss the linear sensor array sys-
tem.

In recent years, there has been a growing
interest in eigenstructure based methods.
These methods, pioneered by Pisarenko [1],
Schmidt [2] and Kumaresan [3], are known to
yield high resolution and asymptotically
unbiased estimates. Furthermore, Paulraj, et.
al., [4,5,6] have proposed a subspace rotation
approach called ESPRIT. Like the MUSIC method
[2], it exploits correctly the underlying sig-
nal model to generate asymptotically unbiased
estimates. But it estimates the DOA by using
the eigenvalues of a matrix pair rather than
the eigenvectors of the covariance matrix,
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which are used by most of the eigenstructure
methods including the MUSIC method. Without
the one-dimensional (1-D) spectral peak
search, the ESPRIT method has better perfor-
mance and less computations than previous
ones. But these mentioned above are 1-D meth-
ods. When applying them to linear sensor
arrays, we have to assume that all radiating
sources are located in the same plane. On the
other hand, most available two-dimensional
(2-D) methods need a large rectangular plane
sensor array and have to perform 2-D spectral
peak searches with large computations.

Recently a new 2-D eigenstructure approach
called the DOA matrix method was proposed in
[7,8] and extended to the 3-D case [9] with
good performance in resolution and computa-
tion. Unlike the ESPRIT method, the DOA matrix
method estimates the 2-D angles of arrival by
simultaneously using the nonzero eigenvalues
and corresponding eigenvectors of a DOA mat-
rix. It seems that there is some relation
between these two methods.

In this paper the ESPRIT method and the
DOA matrix method are briefly introduced. The
relation between them is theoretically ana-
lyzed. It is pointed out that the ESPRIT
method is just a special case of the DOA mat-
rix method, and the DOA matrix method gives
more generalized and more perfect results.
Both should have the same performance for 1-D
cases. But the DOA matrix method can be used
in the 2-D case. Furthermore, it even can be
extended to solve the 3-D problem, as we did
in [9], while the ESPRIT method can only be
used in the 1-D case.

II. Problem Formulation

Consider an array system consisting of two
uniformly spaced linear subarrays of p sensors
spaced D apart as shown in Fig. 1. The two
subarrays, the subarray X, and the subarray
Y,, are parallel with subarray X, lying on the
X axis and starting at the origin; d is the
distance between them as measured by the Y
axis intercept of subarray Y,. Assume that
plane waves with known center frequency f,
emitted by K narrowband sources impinge on
this array system and that the DOA of the
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sources are {8,, 6,, ., 8k}, where B8,=(a,,
Bk), a, is the DOA of the k-th source relative
to the X axis and B, relative to the Y axis,
as shown in Fig. 1. The sampled vectors of
subarrays X, and Y, can be written as [7]

X(t) = As(t) + N, (t) (1)
Y(t) = A®s(t) + N, (t) (2)
where
x(t) = [xl(t)l xz(t)l ¥ xp(t)]f (3)
¥(t) = [yi(t), ya(t), ...y yo(E)]7 (4)
s(t) = [s,(t), s (t), ..., sc(t)]” (5)
N.(t) - [nxl(t)r nx?(t)l o nxp(t)].r (6)
Ny(t) o [nyl(t)l nyz(t)l o § nyp(t)]r (7)

A is a pxK Vandermonde matrix

A= [a(al)l a(az): r a(ap)] (8)

with k-th column

a(ay) = [1, ., exp(jQ (P-1)Tpk)]” (9)
Tox is the inter-element path delay of the
plane wave from the k-th source,
Tqx=(D/c)cosa,, where ¢ is the wave propaga-
tion velocity. & is a KxK diagonal matrix

@ -r exp(jRTax)]
<, 8(Bx)] (10)

diag[exp(jQTg1),
diag(g(f,),

T4« is the path delay of the plane wave of the
k-th source between the two subarrays,
Tax=(d/c)cosp, .

Note that the k-th column of the matrix A,
a(a,), and the k-th element, @(B,), of the
diagonal matrix & are associated with the DOA,
i.e. (ayx, Byx), of the k-th source. They are
referred to as the signal vector and signal
element, respectively.

The auto-covariance matrix of X(t) is
given by

Ryx = E[X(t)X(t)"] = ASA" + 0%I (11)
where " denotes the conjugate transpose and E
the expectation operator, S=E[s(t)s(t)"] is
the covariance matrix of source signals, I is
the identity matrix, and o? is the variance of
the additive noise. The cross-covariance mat-
rices of ¥Y(t) and X(t) are given by

Ry, =E[Y(t)X(t)"]
=ASSAM+E[A®s (t)N, (t)"]J+E[N, (t)s(t)"A"]
+ E[N, ()N, (t)*] (12)
and
R,, = E[X(t)Y(t)"] = R, " (13)
We assume that the additive noises are uncor-

related with signals and with each other, in
which case Egs. (12) and (13) can be written

as

R,, = A®SA¥
R,, =R,," = ASEHAM

(14)
(15)

III. The ESPRIT Method
In Egq. (11), the auto-covariance matrix
R,. has two terms. The one associated with
source signals is denoted by

R0 = R, - 0%I = ASAH (16)
Obviously, the rank of R,,, is equal to K, the
number of sources if there are no fully corre-
lated (coherent) sources.

The subspace rotation method (ESPRIT) for
DOA estimation relies on determining & from
the estimated covariance matrices R,,, and
R,,. It is shown in [4] if 8 is nonsingular,
the K nonzero generalized eigenvalues of the
matrix pair {R,,,, R.,} are equal to @(B«).
Thus, if {p,}, i=1,2,...,K, are the nonzero
eigenvalues of the matrix pair {R,.o0, R.,1},
the estimated angles {B;}, i=1,2,...,K, are
given by

c

By = cos~1{ arg(p;)} (17)

2,d

The ESPRIT method is a 1-D method, it
merely estimates the 1-D angles, (8.},
i=1,2,...,K, from the generalized eigenvalues
of the matrix pair {R,,o, Rxy}.

IV. The DOA Matrix Method
In [7], a pxp matrix R referred to as the
DOA matrix is defined

R = Ry,Ru,0* (18)
where R,,,* denotes the pseudoinverse of R,,o
and is constructed by the nonzero eigenvalues,
o,, and corresponding eigenvectors, v;, of
R,xo Via
L3
Ryyxo0* = Z 05~ 1lv; vy (19)

im}

It is shown in [7] that if A and S are nonsin-
gular, the DOA matrix R has its K nonzero eig-
envalues equal to the K diagonal elements of &
and corresponding eigenvectors equal to the K
column vectors of matrix A, i.e.

RA = A% (20)
Therefore, if {€;};%, and {u;};%, are the K
nonzero eigenvalues and corresponding eigen-
vectors of the DOA matrix R, the estimated a;
and B; can be given by
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[ p 1 uy (n)
a, = cos 1{ z arg|[ 1}
Q,D(p-1) "=2 n-1 u; (1)
(21)
and
c
By = cos~1{ arg(e€; )} (22)
2,d

Note the DOA matrix method estimates both
angles, a, and B,, simultaneously. Clearly, in
the special case that all the sources are
located in the same plane, it can also be used
by simply calculating the a, or B,, as with
the ESPRIT method.

V. Relation Between the Two Methods
Let {p;}:%, and {qg;};%; be the nonzero
generalized eigenvalues and corresponding eig-
envectors of the matrix pair {R,,o, R.,} in
the ESPRIT method. We have

Ryx09i = BiR,,Q; L R, T (23)
Substitute R,, with R,, according to (15)

Ryx0Qs = BiRy"qy (24)
Take the complex conjugate transpose of both
sides of (24)

qi"Rexo = Bi*Qi"Ry, (25)
where * denotes the complex conjugate. Then

qi"RxxORulO. = p! .qI"RllelO.

X K
q"[ Soyvyvi"][ 2o, "1V, vi" 1= Qi "Ry« Ruxo”
1=1 f=1

K
qi"[ z V|V|H] = l-h'%"RyxR”o' (26)

i=1

According to the orthogonality between the
signal subspace and the noise subspace,

q.'"'l'{vxon vK"ZI"'I vp}
and

qtv, = 0 k=K+1, K+2, ..., p (27)
Thus, Eq. (26) can be rewritten as

K ]
qin[ z ViV|“ + Z v\'"i"} - pi'q1“RyxRx10.

i=1 i=K+1

(28)

Here K

[ EwwvH +3vwvH] =1 (29)

1=1 i=K+1l

Therefore, we have

Qi "Ry Ryuo® = (Bi*) 1qy¥ (30)
Note that R,,R,,o* is just the DOA matrix R in
(18)

qi"R = (p;*)- g (31)
We know that the nonzero eigenvalues of the
DOA matrix have a unit magnitude, i.e. |p;| =
1. Therefore, Eq. (31) can be simplified to

qi"R = pq;*" (32)
where q;" is the left eigenvector of R rather
than the right eigenvector which is used by
the DOA matrix method. Furthermore, g;" is not
the signal vector in (10). Egq. (32) implies
that the eigenvalues {p;};%X, of the matrix
pair in (23) for the ESPRIT method are also
the eigenvalues of the DOA matrix R for the
DOA matrix method. In the ESPRIT method, only
the eigenvalues are used so that almost half
of the information is lost. But in the DOA
matrix method, both eigenvalues and eigenvec-
tors are fully utilized to estimate the 2-D
bearing angles. From these arguments we know
that the ESPRIT method is just a special case
of the DOA matrix method, and the DOA matrix
method is the generalized ESPRIT method.
Therefore, both should have the same perfor-
mance for the 1-D case. But the DOA matrix
method can be used in the 2-D case. Further-
more, it can be even extended to solve the 3-D
problem, as we did in [9], while the ESPRIT
method can only be used in the 1-D case. More-
over, as both the covariance matrices R,,, and
R., are not of full rank, it causes trouble to
decompose the generalized eigenvalues of the
matrix pair in the ESPRIT method, which has
been discussed in [10]. But in the DOA matrix
method we have no such problem.

It is interesting to note that in almost
all of the eigenstructure methods the eigen-
decomposition merely seperates the signal sub-
space from the noise subspace, but in the DOA
matrix method it gives the original basis of
the signal subspace directly. Without requir-
ing any spectral peak searches, the 2-D DOA
matrix method is highly efficient in computa-
tion. Thus it gives more generalized and more
perfect results.
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