S PO b = o \

RS- S W Ly |

SCHEDULING TASKS IN ROBOT LATTICE PRODUCTION LINES WITH

STORAGE

D. W. Carter, Jr., G. Syrmos, R. W. Newcomb

Microsystems Laboratory
Electrical Engineering Department
University land

Mary
College Park, Maryland 20742

L. INTRODUCTION

In this paper 2 model lattice manufacturing system is
presented, then task scheduling is outlined for an arbitrary lattice
production line. The algorithm presented takes advantage of the
interconnectivity inherent in the Jartice structure. The result is a new
automated production system that provides more flexibility,
utilization, and speed than other systems in use today.

Three problems often found in manufacturing are
maximizing throughput-efficiency, failure recovery, and in more

"advanced systems, concurrency ie., deadlock prevention and

recovery. In attacking these problems a proper choice of models for
the mechanical and communication systems is essential.

There are many ways to represent lattice structures. Petri-
nets are often vsed because they ease many complex calculations
[2). However, our model is more closely represented by a network
lanice with nodes that contain robot{s) at the vertices. The lattice
model proposed in this paper has been proven to be the most
efficient with regards to its interconnectivity capabilities and
reliability [1). In paricular, lattice structures provide maximum
interconnectivity which, in turn, yields maximum flexibility for
routing and rerouting of tasks in the presence of station failures,

The nodes of our model are always stationary. The order of
processing is independently of the placement of the nodes. This is
advantageous because the processing order can change without
having to relocate nodes. Furthermore, all of the major parts of the
system operate independent of each other. The resnlt is massive
parallel processing. Using this architecture, all of the nodes can
operate simultancously while objects are moving between the nodes.

Our algorithm is based upon the central control computer
which determines the optimum routing or rerouting for the flow of
parts in the lattice under the current conditions of the environment.
This computer is connected directly with every node. Each node is
mechanically connected to its adjacent nodes in the lattice
configuration.

IL SCHEDULING TASKS IN LATTICE PRODUCTION LINES
Let us anatyze an example lattice production line. We will use a
simple example that has a link failure between nodes 2 and 4. This
will be helpful in understanding the basic algorithm.

Consider the model of Figure 1. Suppose that all links-

between the nodes can transport a single item in both directions. Let
the transport time berween any two adjacent nodes be the same.
Adjacent nodes are any two nodes that are separated by one link.

We will work through the example by first deciding what 1o
make, Next, we will choose machines or nodes and define the tagks
that can be accomplished by each node. Then we will present a
flowchart, Figure 2, of the general steps of the algorithm. Lastly,

we will step through the algorithm performing each step on the:

example until all of the items are scheduled.

Suppose we want to make desks, chairs, and bookshelves.
From Figure 1, we know there are four nodes Ry, Ry, Ry, Ry, (I=
4). The next step is to define the capabilities of each node. Letus
dmotelhelaskswh;chcanbc ‘ormed by each node as follows:
{Ty. Ts.. is the set of all tasks that can be
pa‘formedbyanymacbmes.
lsataskmatcanbepa-fmmedbyanode:\ix‘y
where 1 cxy<sm, T, =T, => x=y
= lscalledataskmlanveumewghl:t,‘:smeﬁmis
takes to perform task T,;
= the setof tasks that can be performed at node R
= the set of all possible tasks that can be done by the
system, je. P= (P, P3,...P™ }; So,let
PP={T.T;), P={T3), P={T}, P'= (T}

-
]

wwy

Let us assign task relative time weights to each task above,
relative to the longest task. The weighted times indicate what
percentage of a time interval it takes a node to accomplish a specific
task. For P! let P'= (1, =.3, 1;=.7 }. As mentioned earlier,
processing does not take place across time interval boundaries.
Therefore, the time for all of the tasks that occur at any node in a
sequential manner without rest must be less than or equal 1o one time
interval. The converse is also true, ie. the time interval must be
greater than or equal to the time it takes 10 perform the longest task at
any node. Within a given time interval, P! can:

g) performt, 1,2 or 3 times because 3x3 < 1; 0r

b) performbotht; andt; because 3 +.7=1; or
¢) performt; once because 7 <1

For our example let, P2 a (t; = .2}, P = ={y=.35), P=
{ty =1}
accomplished at cach node and how mwuch relative time each

iindividual task takes, we can proceed with the algorithm.

Now that we have decided what tasks can be |

]

| R L

We will use periodic synchronous state switching
imiplemented by the flow chart of Figure 2. The 1st block in this
figure is to compute production ratios for maximum profit. Then the

user would enter the computed ratios into the system. For example,

suppose we obtain maximum profit by producing two chairs, one

desk and a bookshelf. Let these items be represented as follows:
1 = (II;...1) is the setof all items to be made.
$* = asetof finite sequences of tasks that will produce I,;
$% = a particular production sequence of Lasks that will
produce I; J=(1,2, .. q}, J is the number of ways
to produce I, j is a specific method of production;
Let 1, = chairs, I, = desks, I; = bookshelves, and let their
respective sequences be S' for chairs, §? for desks, and s?
for bookshelves; 50, the production ratio is §'(2) : 8%(1):
§3(1). This means that S' will appear twice in the production
chain, while §2 and S will only appear once. A production
chain denoted E, is a time line of k finite intervals s.¢ all
elements of all sequences are mapped berween the intevals.

The 2nd box is used to designate the use of input/output
slots. The lattice model is particularly flexible in this area. Parts can
be introduced at any external slot and finished products can be
removed from any external slot. In our example we will designate
all inputs to occur at R; and all outputs 1o occur at Ry. Letus
suppose that the i/o occurs instantaneously for ease of calculation.

In box 3 we assess the resources needed for each time
interval and construct a resource allocation table. All possible tasks
of the system, P, are available for allocation during each interval.

This step also takes into account the storage capabilities of
the station slots at each node. For example, suppose we have a saw
it a lumber mill that is capable of cutting a block of wood in half
every five seconds. Suppose the next step for the item that is
curreatly being worked on is sanding, which takes three minutes.
In an ordinary system, the saw and the block that was cut in half
must wait until the sander is finished. If this wait occurs at the saw
then the throughput of the saw is gremly reduced.

A common solution is to add more saws, raising the cost of
manufacturing. Perhaps this alternative can be avoided. In a lattice
system with station slots, the two half-blocks can be sent w the
sander to wait at its station slots or they can wait at the station slots
of the saw. This frees the saw to process mare items.

The 4th box involves ordering the itcms to make an ordered
lis. For now let our list be: 1,1, I, . There are instances
where it is necessary 10 prioritize items in the list. The primary
reason for prioritization is when items need to be produced within
time frames that are smaller than the scope of the production chain.
The order in which the items are processed affects the length of the
production chain. Therefore, all permissible permutations of this list
should be computed to produce the optimal production chain. For
our example, we shall not prioritize any items.

In box § we are to select the shoriest production sequence
for each item. First, we must define the production sequeaces of

each item. Let each item have the following production sequences:
s = (T, T.Ts), §%= (T, T, Tsh

§% = [T}, T3, Th),

§3 = (T,,T,T,), Note:], bas 2 shortest sequences.

In the next box, 6a, each item is scheduled as far as possible
within one time interval, This is simulated by marking the resources
as they are gsed. In box 6b, after all of the items have been

processed, the time interval is incremented and a new (unmarked)
resource allocation table is used until the requested items are
produced. In other words, we are computing a production chain, E.
Before we can begin scheduling items we must compute

priarity chains based on the distance between aodes. These chains

 nodes further away from the current node. Thus, distance penalties
are taken into account when allocating node resources. For priority
0 nodes there is no penalty. For nodes with higher priority;

nalty = priority # * (transfer time berween two adjacent
ln:eode;ys 1) and, total task cost = task cost + penalty

Naturally, we always choose the node that offers the lowest total
task cost. Returning to our example we have the following:
(Commas are used 1o separate nodes of the same priority; semi-
colons are used to distinguish priority levels)
R;= Ry Ry, Ry - lllnodespnmlyo
Rz= R], R;; R4 - Rl and R3 have pnority 0, and
Ry has priority 1
Ry= Ry Ry, R] - all nodes have Pﬁo‘l’ity 0
Re Ry Ry, R; -R;and Ry have priority 0, and
Ry has priority 1

So, generally speaking, an object at node R, would try to
- find the next process for it at R, or Ry before trying R,. Therefore,
E can be computed using the methodology of Table 1.

Table 1, Time interval #1
item taks performed nodes where link utilization intervals
[during interval sk wre active
Sll : Tp Tg R]v Rj; linkl,!(-4)- lmkm(l)
st T, R; link; 4(.7)
8 : T, Ry Link, (1)
s T Rg no links used

Between time interval #1 and time interval #2 link, ; is used 10
transfer the object at Ry to R;. The other calculations ornitted
because of space limitations. The resulting E is shown below.

Table 2, Resulting E
Ep E Ep... By
! b [|
sh 1Ty, T2 1Ty ! !
sh I T 1TyTy | b
s . I Ty Ty | 1
sh IT, IT, T3 | I

The lattice production line used in our example is able to
tomplete a single production chain in only two time intervals. The
use of concurrency in this algorithm allows 12 tasks to be completed
using four robots in two time intervals where the time interval is
equnlwﬂaeﬁmcitukestooomplecﬂ:elongestmk

This scheduling technique prevents deadlock in production
chains by elimination of the hold and wait condition that is necessary
for a deadlock to occur [5]. This wraps up the example. So, we
will finish explaining the algorithm.

If there is a production chain with multiple shortest
sequences, such as §%, that has not been checked, then do boxes 7a
and 7b. We will stare the production chain and its total time for later
comparison. Then we choose a S that has not been used for this
ordered list and substitute it for one of the 8% currently in the list.
If we substitute S'2for the first §'! then we have the following

H

v

<y

[P

£

i, E Ak
- }
L G FL A

ordered list: { 82, 81, $%1, 5%). Then we will do boxes 6a and
6b. Afterwards we will check again to see if there is another
substinution that can be made. After we have computed all of the
possibilities for this ordered list of items, we will do box Ba, ie.
store the shortest production chain.

Next, we will check to see if we have all order possibilities.
If not, we will do box 9, ie. reorder the list of items and compute
snother shortest production chain. This process will be repeated
until all possible production chains have been computed. At which
time box 8b will be executed storing the optimal production chain,

In box 10 the system initialization is computed. At time
interval 1, parts are required at two nodes P! and P*. Earlier we
established that all input will occur at R,. So, because R, is further
away we must input the part that is need at that node first.

Hopefully, we have presented enough to give a basic
understanding of how the scheduling algorithen works.

. CONCLUSIONS

In concluding, it should be mentioned that interconnectivity
and storage dramatically reduce the timme lost between different tasks.
Each node can perform different tasks on different items in a manner
similar to multitasking on a computer because of the storage
capabilities. The advantage of high reliability adds significandy 1o
the flexibility of robot lattice production lines and makes them prime
candidates for use in today’s automated manufacturing systems.

REFERENCES

[1). Z.N. Cai, A. Famham, A.Z. Ghalwash, P. Gomez,
V. Rodellar, and R.W. Newcomb, "Petri-Nets for Robot Lattices,"
Proceeding of the 1987 IEEE Intemnational Conference on Robotics
and Automation, March-April 1987, vol. 2, pp. 999-1004.

[2). A.Kusiak and G. Finke, "Selection of Process Plans
in Automated Manufacturing Systems,” IEEE Journal of Robotics
and Automation, vol. 4, no. 4, August 1988, pp. 397-402.

[3]. R. Papannareddy, C.A. Niznik, H. Alayan, and
R.W. Newcomb, "Processor Requirements for Reliable Automated
Manufacturing Robot Networks,” Proceedings of the Mini and
Microcomputers and their Applications Conference, San Antonio,
TX, 1983, pp. 73-77.

f4]. M.A. Peshkin and A.C. Sanderson, “Planning
Robotic Manipulation Stratcgies for Workpieces that Slide,” JEEE

lounal of Robotics and Automation, vol. 4, no. 5, October 1988,
pp- 524-531.

{5). J. L. Peterson and A. Silberschatz, Qperating
System Concepts, Massachusetts, Addison-Wesley, 1895

INPUT FOR PARTS

SO

OUTPUT FOR PARTS
FIGURE 1. Examplg Lattice System

