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ABSTRACT

A novel fast convergence iterative method is pre-
sented for multiple source direction finding. The method
is an extension and improvement of the high resolution
bearing estimation technique proposed by Yeh and Bayri.
A high convergence rate and a high efficiency in compu-
tation are obtained. From the examples presented, it is
seen, when compared with eigenstructure methods, that
the technique can yield bearing estimation with higher
resolution and lower variance, especially when the num-
ber of samples is small and the SNR is low.

1. Introduction

The problem of estimating the directions of arrival of
multiple sources from measurements provided by a pas-
sive array of sensors has been extensively treated in the
literature [1]-[5]. With & few spatial samples, the con-
ventional DFT method can not obtain high resolution.
Thus, alternative methods that provide higher resolution
have been developed, for instance, the maximum entropy
(ME) method, the minimum variance (MV) method and
others [1]. These methods have provided increased res-
clution in the spatial domain. Furthermore, in recent
years, there has been a growing interest in eigenstruc-
ture based methods, These latter methods, pieneered by
Pisarenko [2], Schmidt [3] and Kumaresan [5), are known
to yield high resolution and asymptotically unbiased esti-
mates {4]. These modern high resolution methods provide
excellent performance often approaching the Cramer-Rao
lower bound at high SNR and with long data samples
{7]. Unfortunately, the performance of the methods men-
tioned above degrade severely when the available number
of data samples is small and the SNR is low. The maxi-
murm likelihood estimation is, therefore, of interest in ap-
plications. Bresler and Macovski [7] have presented an
exact maximum likelihood (ML) estimation method. And
Kumaresan and Show [8] independently have derived an
almost identical algorithm. The ML methods do have ex-
cellent performance at low SNR. But a lot of computation
is required.

Besides these ML methods, Yeh and Bayri (6] have
presented an iterative high resolution bearing estimation
algorithm by Covariance Matrix Approximation (YBCMA).
This algorithm is simple in structure and of low SNR
threshold. It has been extended to the wideband source
location case in [9], and good results have been otbtained.
Based on these results, a new fast convergence iterative
method is presented in this paper. With this new method,
the direction of arrival of ench source signal can not only
be estimated independently, but also can be fully utilized
in following estimates. Thus, the iterative method is of

a fast convergence rate. Meanwhile, according to some
properties of a matrix and its inverse to be estimated, the
method substitutes a simple approach for the complex
computation of finding the matrix inverse in the iteratjon
process so that high efficiency in computation is obtained.
An example is given for testing the convergence rate and it
shows that the proposed method has significant improve-
ment compared to the method presented in {6]. Finally,
some computer simulation results are given to compare to
two of the more popular methods as reported in [3] and
(5], namely, the MUSIC (Multiple Signal Classification)
and the Minimum-Norm methods.

II. Problem Formulation

For convenience, we consider now that M narrow-
band sources with known identical center frequency f,
impinge from directions 8,,0;,...,8s on a linear array
of p sensors with a uniform spacing [12). We also as-
sume that the source signals are stationary uncorrelated
stochastic processes. The signal at the output of the ith
sensor is, therefore, to be described by [4, p. 638]

M

i)=Y sm(t)
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exp{—j2x fo(D/e)(s — 1}sinbn) + n,i(t) (1)

where 3., () is the signal received by the first sensor emit-
ted from the M-th source, D is the spacing between two
adjacent sensors and ¢ is the speed of propagation. n;(t)
is additive independent noise at the i-th sensor.

Assume that the received signals are sampled simul-
taneously at times {),%;,...,t,, yielding N “snapshots”
with each consisting of p samples z,(¢:),: = 1,2,...,p.
Grouping the samples corresponding to the P sensors into
a p x 1 vector, we can rewrite (1) in matrix form

X(t) = As(t) + N(t) (2)
where X(¢) and N(t) are the p x 1 vectors

Xty =[n1(t),...,zp(0)", N =[na(t)...,np(t)]T

4(t) is the M x 1 vector
s(t) = [s1(), .. sm(®) T
and A is the p x M matrix

A = [a(8h),a(bs),...,a(6m)] (2a)

of k-th column



a(fi) = [1,exp(~j2n fo(D/c) sin 6i),
.-rexp(—j2x fo(D/c)(p — 1)sin )] (2b)
Note that each column of A is associated with a dif-

ferent source. We shall refer to these columns as the
signal direction

yectors.

The covariance matrix of the received signals can be
expressed as

R=E[XX") = as5A" 1 oI (3)

where ¥ denotes the conjugate transpose and E the ex-
pectation operator, [ is the identity matrix and o2 the
variance of the additive noise, and § is the covariance
matrix of the sources, i.e.,

S = E [s(t)s(t)¥] (3a)

Here, we have assumed that the sources are uncorrelated,
50 § is a diagonal matrix with diagonal elements s,,,, m =
1,..., M. The signal component is

R, = ASAY (3b)

In practice, the matrix R can only be estitnated from a
set of N snapshots, i.e.,

N
R=N"'3"x()x(1)# (3¢)

tm]

Under the assumption that the number of sources is known,
we can construct a matrix R, to approximate R in the
least square error sense, subject to the constraint that
these matrices are of the structure of R, in (3b), i.e., to
minimize

e=lt R, - R|*=|| ASAY - R|? (4)

by choosing estimated directions 8,,,m = 1,2,..., M,
where || - || denotes the Euclidean norm. According to
this, C. Yeh and H. Bayri [6] have presented the YBCMA
method. In the next section, we will extend and improve
it to yield a fast convergence iterative method.,

IIX. A Fast Convergence Iterative Method

Equation (4) can be rewritten as
ASAM =R (5)
where = denotes equal in the least square error sense. Set
Q254" = (4#4)™ Anr )
and define two M x M matrices
veinj (7a)
and
wav- = (4H4) )
where the elements of V' can be expressed as

?
Um1=§

k=1

exp (j21rfg(k — 1XD/e)(sin by —sin ém)) (8)

Hence, each signal direction vector can be obtained from

Q=WAHR or

gm = waASR m=12,... M (9)
where g, and w,, are the m-th row of Q and W, respec-
tively. The search function for 8,, is as follows
En=lgma(®)| m=1,2,.... M (10)
Here 9,.. is chosgn as the angle forﬁwhich En is a maxi-
mum. The new &, is then used in 4 and V to update one
column in 4 and one row and one column in V, respec-

tively. Then, the new W can be obtained by inverting V
according to (7b).

In each step of computing W, the inverse of V is
calculated by using the new iterative algorithm summa-
rized below. Its elements change only a little at each step,
which means that only one estimated bearing angle has
a little change and will make a little change only in one
column and one row of the matrix V. Thus, the inverse
can be made by the one step iteration algorithm [11].

W = wo-1 4 qwG-1) [I -yl nw(-—:}] (11)

where a is an acceleration factor which can be adjusted
to accelerate th convergence (for simplicity, a = 1). The
matrix V and its inverse W are Hermitian matrices, so
only about half of elements in (11) need to be computed.
Hence we can substitute (11) for the complex matrix in-
verse computation.

The new iterative algorithm is summarized as follows:

a) Choose a set of initial values d,,,m = 1,2,..., M.
Set i =0.

b) Compute A(i), V(i) according to (2a), (2b) and (7a).

c¢) Compute W from (11) except in the first step of
the iteration, where the Gauss-Jordan Elimination
method, or any other, may be used.

d) Compute g,, from (9).

e) Find 4, according to (10). Update A(i) and V(i).
Then, return to c} until each fpm,m = 1,2,..., M,
has been estimated in the i-th iteration. Then, set
i=i+1,

f) Repeat from b) to e) until convergence is achieved.

IV. Convergence Rate Analysis

In the YBCMA method of [6], we have noticed that
errors of the initial values {6,,} will influence each other,
i.e., the error of an initial value 8 will influence estimates
of all other signal direction vectors. In the whole iteration
process, although each of 8, can be estimated indepen-
dently, each of the signal direction vectors is estimated
without fully utilizing the preceding estimated #;_; so
that these influences are severe in the signal direction es-
timation process.

Observing a practical iteration process, we could well
verify the qualitative analysis above. In Table 1, the it-
eration convergence processes of two methods have been
listed. Assume two ideal narrowband source signals im-
pinge from 30° and 60° on & uniform linar array of § sen-
sors with D = ¢/(2fa). Assume that there is no noise so
that R is accurate. We set the initial values 8,(0) = 33°
and 8;(0) = 60°. Here 5;(0) is taken to be the actual



value, while 6,(0) is taken with some error. From the
YBCMA method side of the Table, it can be seen that an
initial error in ,(0) will influence #,{1), which was ini-
tially precise, and then, they will affect each other so that
we can not obtain an accurate estimate of both bearing
angles even at the 10th iteration.

Unlike the YBCMA method, the new algorithm es-
timates each signal direction vector by fully utilizing the
newest estimation of the preceding bearing angles. The
influence of the error of each bearing angle of scurces on
the other signal direction vectors is greatly reduced. In
the right side of Table 1, the same experiment is done
by using the new method, and results are listed there,
We see that accurate bearing angles are obtained in just

the first iteration step. A lot of similar experiments have
shown that the convergence rate of the new method is
much faster than that of the YBCMA method. Clearly,
with the convergence rate increasing and the number of
iterations decreasing, the number of computations of the
non-linear search function (10) will be greatly reduced.
Hence, this method is of high efficiency in computation.

V. Simulation Results

Some computer simulation results are presented in
order to test the algorithm proposed in this paper and
compare it with the MUSIC method {3] and the Minimum-
Norm method [5]. To obtain a messure of statistical re-
pealability, we make one hundred independent genera-
tions of the covariance matrix estimate. The one hundred
resultant bearing estimates are shown in each figure asso-
ciated with a different method,

Two narrowband sources impinge from 30° and 48°
on & uniform linear array of 7 sensors. SNR = 15dB.
The number of snapshots is 15. The initial bearing angles
in the new method are 18° and 52°. Figure 1 has shown
that the MUSIC method and the Minimum-Norm method
can resolve most of these signals, while the new method
can resolve them in each experiment with small variance.

To look at worse conditions we lower the signal to
noise ratio and we take a smaller difference of bearing
angles. This is shown in Fig, 2, where SN R = 10dE and
the bearing angles are 30° and 40°, other conditions being
the same as in the above simulation. It is clearly seen
that the MUSIC and the Minimum-Norm methods can
not resolve the two sources at all in such severe conditions,
but the new method still has good results.

Conclusions

Fully utilizing each preceding bearing angle estimated
we have obtained a new fast convergence iterative algo-
rithm for estimating the directions of arrival of radiating
sources. The algorithm simplifies the matrix inverse com-
putation involved in the iterative procedure by taking ad-
vantage of the special structure of matrices involved. It is
of high efficiency in computation. The simulations have
shown that the algorithm has higher resolution and lower
variance than the eigenstructure methods and with less
computation.
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TABLE 1.

YBCMA Method

New Method

8,=30°

8,=60¢

8,=300 8,=600°

33.0000

60.0000

33.0000 60.0000

30.0000

62.5000

30.0000 60.0000

30.6400

60.0000

30.0000 60.0000

30.0000

60.5210

30.0000 60.0000

o W | = O

30.1450

60.0110

30.0000 60,0000
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Two Narrowband Source Signals Impinge from 30° and 48°
on a Uniform Linear Array of 7 sensors. SNR = 154B.
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¢. The new method

Two Narrowband Source Signals Impinge from 30° and 40°
on a Uniform Linear Array of 7 sensors. SNR = 10dB



