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ABSTRACT

A new approach of high resolution
estimates of fregquencies and wavenumbers
of multiple narrow band sources is pre-
sented in this paper. By fully using the
properties of the auto-covariance and
cross-covariance matrices, we construct a
new matrix called the signal matrix. The
theoretical analysis shows that the non-
zero eigenvalues and the corresponding
eigenvectors of the signal matrix are
related to the center frequencies and the
wavenumbers of incident source signals.
Therefore, they can be used to estimate
those frequencies and wavenumbers, With-
out  2-D spectrum-peak searches, this
method is highly efficient in computa-
tion. Computer simulations showing
improvements on an example from the lit-
erature are given.

I. Introduction

Estimation of the frequency and the
wavenumber (which yields the direction-
of-arrival (DOA)) of multiple narrow band
sources by passive array systems is cur-
rently a topic of considerable interest
in many areas, such as radar, sonar and
seismology [3-5)..Generally speaking, the
problem can be referred to as a two-
dimensional spectral estimation problem.
In recent years several eigenstructure
approaches for 2-D spectral estimation
have been proposed [1,3], but few of them
are efficient 4in computation. They have
to carry out the eigenanalysis of the
mpxmp covariance matrix (p is the number
of sensors and m the number of delay line
taps fonllowing each sensor). Then they
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search for the spectral peaks
frequency domain, Both steps entail a
great deal of computation. Although the
method proposed by the authors [7] can
separately estimate the frequency and the
wavenumber without 2D searches, it
requires extra computation to correctly

in a 2-p

‘pair one frequency with its associated

wavenumber. Thus, it will be difficult
to use for multiple incident source sig-
nals,

In this paper a new high resolution
method 18 presented for estimating the
frequency and the wavenumber of multiple
narrow band sources. The pxp auto-
covariance matrix and the pxp cross-
covariance matrix are formed from the
data of a sensor array that is sampled at
each sensor and after one delay element.
Using these two matrices, we define a pxp
matrix, called the signal matrix. It is
shown that the largest eigenvalues and
corresponding eigenvectors can be used to
estimate the frequencies and correspond-
ing wavenumbers, respectively, without
any searches. Hence, it is highly effi-
cient in computation. Some computer simu-
lation results are presented to illus-
trate the performance of the new method.

II. Problem Formulation

We consider a uniformly spaced linear
array of p identical omnidirectional sen-
sors, each followed by a tapped delay
line with T delay units, as shown in Fig.
1. This array ‘receives d narrow band
signals centered at frequencies @,,8,;,
++v 48y radiang (i.e. the source bandwidth
is much smaller than. the reciprocal of
the propagation time of the signal across
the array). Assume that the source sig-~



nals are stationary stochastic processes
and that they are not fully correlated or
coherent. The signal received at the i-th
sensor can be expressed, using the nar-
rowband assumption, as

x,(t) = T 8y (t)exp[-30 (1-1)T,] + 0., (t)
hm}

(1)

where 5, (-) denotes the signal emitted by
the k-th source observed at the first

sensor; fy=2nf,, T, is the path delay of
the plane wave from the k-th source,
T,={D/c)sing, , where ¢ is the wave

propagation velocity, and D is the spac-
ing between two adjacent sensors (note
that the wavenumber I', is related to the
angle 8, of arrival of the k-th source by
rg(f,/c)eind,); n,,{t) 18 the additive
noise on the i-th sensor, which is
assumed to be a zero-mean white Gaussian
stationary random process that is inde-
pendent from sensor to sensor, Simi-
larly, the signal,  y;(t)=x,(t-T),
received at the delayed tap of the i-th
sensor can be written, again using the
narrowband assumption, as

d
Yi(t)= E 8, (t)exp{-jQ, [T+(1-1)T,]}+n, (L)
kel
(2)

where n,,{t) is the additive noise, with
the same properties as the n,,(t) in Eq.
(1).

Let XT(t)=[x, (t),..., % (t)] and
¥ (t)=[y.(t),...,¥,(t)] be transposes of
the simultaneously sampled vectors of

array signals (X"(t,)} and Y'(t,) for
k=1,2,...,N are called snapshots). Equa-

tions (1) and (2) can be written for all
sensors in vector form as

X(t) = As(t} + N, (t) (3)

Y(t) = A®s(t) + N,(t) (4)

where s8T(t)=[s,(t),...,84(t)]; N, T(%t)=
[n.ll(t)-"-lnup(t)] and N, T(t)=
{nyl(t)f--'fnyp(t)]a' A is a pxd

Vandermonde matrix
A= [a(e,), a(8,), ... , a(8y)] (S)

with k~th column

AT T
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_a(eh)l

ar(8,) = [1, ..., exp(-3a.(p-1)7,)} (6)

and ® is a dxd diagonal matrix
® = diaglexp(-jo,T), ... ,exp{-38T)] (7)

Note that, since t, varies with 6,, the
k-th column of the matrix A, i.e. the
and the k-th element, exp{-jQ,T),
of the diagonal matrix & are associated
with the DOA and frequency, 1i.e.
{6,,2,), of the Xx-th source. These
parameters are to be estimated.

The auto-covariance matrix of X(t) is
given by

Rex = E[X(t)X(t)"]

‘& ASAH 4 021 = R,,, + 021 (8)
where ¥ denotes conjugate
E[.] the expectation operator.
8=E[s(t)s(t)?] is the dxd covariance
matrix of source signals, I is the iden-
tity matrix, and o? is the variance of
the additive noise. R,,, is the term in
(8) associated with the source signals,
Ry xo=ASA". The cross-covariance matrix of
the vector ¥(t) and X(t) is given by

transpose and

Ryy = Efx({e)xi{t)»]

= AQSAM+E[AZS(t)N, (t)]

+E[N, (t)s(t) A J+E([N, (£)N, (t)*] (9)
We assume that the additive noises are
uncorrelated with signals and with each
other, in which case Eq. (9) can be writ-
ten as

Ry, = AOSAY (10}
All elgenstructure methods for estimating
the DOA of narrow band sources are based
on exploiting the structure of R,, and/or
R, .. For instance, the MUSIC method [4]
estimates only the parameters (8,} by
using the eigenvectors of R,,. The ESERIT

method ([5,6) estimates the parameters
{6,} fxom both R,, and R,,. The 2-D MUSIC
method ([3) has to carry out the eigen-
decomposition of a mpxmp autocovariance

matrix and 2-D searches to obtain both
parameters, (f,,9,}. Here, we propose a
new 2~D method to estimate both parame-
ters, {2,,0,}, from the two pxp matrices




R,, and R, ,.

III. Estimating Frequency-Wavenumber
via Signal Matrix

Now we define a pxp matrix R referred
to as the signal matrix

R = R,,R,o* {(11)
where R,,,? denotes the pseudoinverse.
The following theorem provides the foun-
dation for the results presented herein.

Theorem: If 5 is non-singular, the signal
matrix R has its 4 non-zero eigenvalues
equal to the d diagonal elements of ¢ and
corresponding eigenvectors equal to the &
column vectors of the matrix A, i.e.

RA =

A2 (12)

Proof: Prom R,,o=ASAW we directly obtain
SA" = (AYA)-1AMR,,, (13)

-Substitute Eq. (13) into Eq. (10) to get

Ryx = A®(AMA)-1AMR,,, (14)
Using the pseudoinverse R,,,* of the
matrix R,,.o., Wwe obtain

R,.R,.o"A = A (15)

where R,,,* is constructed by the
d=Rank(S) non-zero eigenvalues, p,, and
corresponding eigenvectors, v,, of R,,o-

Ruao. ='z‘p|"viv_1“ (16)

From Eq. (11) and Eq. (15), we have

RA = A g
Obviously, the signal matrix R has
all the desired information of incident
signals, and the frequencies and the
wavenumbers {or DOAs) of radiating
sources can be estimated from the

eigenvalues and the eigenvectors, respec-
tively, as seen from (6) and (7).

IV. A Naw Algorithm

According to the properties of the
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matrix R in (11), we obtain a new algo-

rithm = for array signal processing. It
may be summarized as follows:

1) Estimate the pxp (p>d) auto=
covariance matrix, R,, and cross-

covariance matrix R,, using N snapshots
by

Ryx = N-2 ; X(t}x(t)“
te]

(17)

N
Ry = N-3 T Y(t)X(t)¥ {18)
tal i
2) Compute the eigen-decomposition of
R,, with {€,} denoting the eigenvaluas
and {v,} representing tha corresponding
eigenvectors. Use p,=€,-0? in (16), where
0? is the average of the smallest eigen-
values. Then, construct the signal matrix
R from Eq. (16) and Eq. (11),
3) Compute the eigen-decomposition
(12) of R to get the @ largest eigenval-

ues {o,} and corresponding eigenvectors
{u1]-.

4) Estimate the frequencies {f,} by
[observe (7)]
By = -T-larg(o,) (19)
and corresponding wavenumbers (I,} or

DOAs {8,) by [observe (5) and (6)]

I, = -(p-1)-2Z(2nD(1-1)]-larg(u, (1)] (20)
imn2 .

8, = ain-1(ecr,/£f,) {21)

reapectively.
V. Bimulation Results

We use the example, which is proposed
by Wax et. al., [3], of two uncorrelated
narrow band signals with normalized cen-
ter frequencies 0.2, 0.3 and normalized
wavenumbers 0,125, 0.2 that impinge on a
linear array of 9 sensors, each followed
by a delay line as shown in Figure 1. The
number of snapshots is 100. To obtain a
noasure of statistical repeatability, we
make . one hundred independent trials in
each figure. In Figure 2 for 10dB SNR
values, it 1is shown that the new method
can yield good estimates with low vari-
ance. When we reduce the SNR to 04B, in



Figure 3, the new method can still
resolve the two incident signals in such
a low SNR, where as the method of [3] has
great difficulty.

VI. Conclusicns

Through a theoretical analysis, we
propese a new method for estimating cen-
ter frequencies and wavenumbers of mul-
tiple narrow band sources. It 4is ahown
that the center frequencies and wavenum-
bers of sources can be estimated from the
noh-zero eigenvalues and the correspond-
ing eigenvectors of the signal matrix.
Without any searches, this method is
highly efficient in computations and
resolves signals that cannot be resolved
by other popular methods,
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Figure 1.The geometry of the Array system
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Flgure 2. Two narrowband source signals
with normalized frequencies 0.2, 0.3 and
normalized wavenumbers 0,125, 0.2 impinge
on a linear array asystem (p=9). N=100,
SNR=10dB. Results consist of 100 inde-
pendent trials.
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Figure 3. situation as in Figure 2 except
ENR=04B. Results also consist of 100
independent trials.
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