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ABSTRACT

The problem of high resolution esti-
mates of two dimensional (2-D) angles of
arrival of coherent narrowband sources for
a two parallel linear sensor array system
is investigated. We extend the spatial
smoothing technique developed by Shan, et
al. [3]), to the 2-D case for the two par-
allel linear array system to improve the
DOA MATRIX method we previously proposed
[6]. A modified DOA MATRIX method is,

therefore, presented here. It allows
uncorrelation, partially correlation and
coherency between sources. Without 2-D

searches, the method is, highly efficient
in computation, and, thus, is applicable
to practical multipath environments.

I. Introduction

The basic signal processing preblem in
direction finding is to combine the out~-

puts of an array system of sensors and
produce estimates of the directions-of-
arrival (DOA) of plane waves propagating

across the array system. An eigenstruc-
ture method known as MUSIC due to Schmidt
[1] has become popular since it yields
high resclution and asymptotically
unbiased estimates. Recently, Paulraj, et.

al. [3,4] have proposed a subspace rota-
tion approach called ESPRIT, which has
better performance and less computations

‘than previous ones. But, in the 2-D case
where radiating sources are not located in
a same plane, MUSIC has to carry out the
-2-D searches requiring a lot of computa-
tions, while the ESPRIT can not be used.
In [6] we have presented a methed named
the DOA MATRIX method, which yields good
performance with 1less cgmputaticons, for
estimating the 2-D angles of arrival using
the largest eigenvalues and corresponding
eigenvectors of a matrix R, called the DOA
matrix. However, like the ESPRIT methaod,
it will encounter significant difficulties
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when some sources are ccherent.

In this paper we present a new method
for the c¢oherent case, which extends the
spatial smoothing technigque, proposed by
Evans, et. al. {2], to a two-parallel-
linear-array system to modify the method
presented in [6]. Theoretical analysis
shows that the new method can ‘"decorre-
late" the coherent signals effectively. It
Yields the estimates of 2-D angles of
arrival of narrowband sources from the
largest eigenvalues and corresponding eig-
envectors of the modified DOA matrix R.
Without 2-D searches, as in the method of
[6], computations can be saved. Computer
simulation results in comparison with
other methods are presented to illustrate
the performance.

II. 2-D Direction Finding Method
Via Two Parallel Linear Arrays

For convenience, the symbols and defi-
nitions in reference [6] will be employed
here. Consider two uniformly spaced linear
arrays of p sensors spaced D apart as
shown in Fig 1. The two arrays, X, and Y,,
are parallel with the array X, lying on
the X axis and starting at the origin; d
is the distance between them as measured
by the Y axis intercept of the array Y,.
Assume that plane waves with known center
frequency , emitted by K narrowband
sources impinge on this array system and
that the DCOA of the sources are
(9,,8,,...,9,), where 8,=(a,,B,), a. is
the DOA of the k-th source relative to the

X axis and B, relative to the Y axis.
Thus, f., the DOA of the k-th source
relative to the 2 axis, can be given by
cos?ag,+cos?f, +cos?y, =1 .y
Let XT(ti=[x, (t),. ..., x,{t)] and
YT{t}=fy, (t),...,¥,(t)] be the simulta-
neously sampled vectors (snapshogs) of

array signals. They can be written in vec-
tor form as

(2)
(3)

X{t)=As({t) + N_(t)

¥Y(t)=Ads(t) + N {t)



where sT(t)=[s, {t),...,sx{t}]; N,"(t)=
[nu(t),---:n;p(t)] and NfT(t)z
[n,l(t),...,n,p(t)] as in [6]. A is the

pxK Vandermonde matrix

A= [ala,),a(ay),...,a(ak)] (4)

with k-th column

a’(a,)={1, » exp(jfo {p-1)Tou)] (5)

is the inter-element path delay
of the plane wave from the k-th source,
Ty =(D/c)cosq,, where ¢ is the wave
propagation velocity. @ is the KxK diag-
onal matrix

where Tg,

(6)

Here <t,, is the path delay of the plane
wave of the k-th source between the two
arrays, Tgn=(d/c)cosp,. Note that the k-th
column of the matrix A, i.e. the a{ag,),
and the k-th element, exp(jfQ;T.«}, Of the
diagonal matrix ¢ are associated with the

®=diaglexp(jQuTa; ), sexp{jReTax )]

DOA, i.e. (a,,Px), of the k-th source.
These parameters are those to be esti-
mated.

The auto-covariance matrix and the
cross-covariance matrix are given by
R,,=E[X(t}X{t)" )=ASA"+0?I=R,,+0%I (7)
R, =E[Y(t)X{t)" J=AssA" (8)
where " denotes the conjugate transpose
and E the expectation  operator.
S=E[s(t)s(t)"]) is the covariance matrix of
source signals, R,.o=ASA", I 1is the

identity matrix, and o? is the variance of
the additive noise.

Using R,,, and R, ,, we can define a
matrix R, called the DOA matrix.
R = Rylnxzo‘ (9)
where R,,,* is the pseudoinverse of R,,q.
which is given by J
K
R:.:IO' = z el-lului" (10)
=]
with {€,2€,2...26,} and {u,,u;,...,u.}
denoting K nonzero eigenvalues and corre-
sponding eigenvecters of R,,,, respec-

tively. As we Kknow, A is a pxK Vandermonde
matrix and & is a KxK diagonal matrix,
they are full rank matrices. Thus, the
rank of R,,q; will be the same as the rank
of 8, and so is the rank of R,,. 5 18 the
source signal covariance matrix, and it
will be full rank, Rank(S)=K, if there are
no coherent sources. The following theorem
summarizes a very important property of
the ICA matrix.

If s

THEOREM 1: is nonsigular, the DOA

od2

matrix R has its K non-zero eigenvalues
equal to the K diagonal elements of & and
corresponding eigenvectors equal to the K
column vectors of matrix A, i.e.

RA = A® (11)

Proof: See [6].

According to the eigenstructure of - the
DOA matrix R discussed above, we can’
estimate the DQOAs of non-coherent radiat-
ing sources, (a,..,B.), from the eigenvector
and the eigenvalues, respectively.

In the subsequent development, we shall
consider the problem of estimating the 2-D
directions of arrival of coherent sources
using the -results in Theorem 1. In the
following section, however, we will extend
the procedure proposed by Evans, et. al.
(2), to obtain both smoothed auto-
covariance and cross-covariance matrices
with their ranks being K. With these “mat-
rices we construct a modified DOA matrix
so that the property of the DOA matrix can
still be used to estimate the 2-D direc-
tions of arrival of coherent sources.

III. A Mcdified DOA Matrix

Consider that we have the same linear
arrays as described in the previous sec-
tion, and also K plane waves impinge on
the array system. Here, we construct p-m+l
subarrays of size¢ m (m>K) for each linear
array, X, and ¥,, in such a way that each
one shares with an adjacent subarray all
but one of its sensors as shown in Fig. 1.
Let R, 1) and R, ("} denote the
auto-covariance matrix and corresponding
cross-covariance matrix of the received
signals at the i-th subarray of X, and ¥,,
respectively.

R, ¢11=A,G'~1S(G! -V )HA H+0%I (12)
Ry (4 V=2, 0G - 15(G' -1 AN (13)
where G is the KxK diagonal matrix

G=diag{exp(3BeTo1), ... ,expP{ReTo1)])  (14)
A, is the mxK Vandermonde matrix and is of

the same form as A in (4).
Define the modified spatially smoothed

autocovariance and cross-covariance mat-
rices R,, and R,,
p-m+1
R,.= (p-m+l}-1 2 R,,'")
[
= A, BA,"+0%1
= R, .o+0%I (15}
-m+ 1 .
Ry:= (P_mfl)-? z Ryl(‘l= A,,.QSA..." (16)
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where 8 is the modified covariance matrix
of the sources, given by




§ = (p-m+1)-0 T G156 1) (17)
=1

Obviously, R,, and R,, still have the
same structure as R,, and R,,. It can be
shown that the modified covariance matrix
of-the sources, §, is always nonsingular.

Lemma: Assume that there is no zero row
vector in any nxn matrix Q, and F any nxn
diagonal -atrix with different diagonal
elements, i.e.

F diag[ £,, ..., £, 1 £f,5f,, iXj.
If Rank{Q)=r<n, then Rank{Q,FQJ]zr+l, where
[Q,FQ] is a nx2n matrix consisting of the
columns of Q a~d FQ.

The new algorithm of 2-D direction
finding for coherent sources is based on

following theorem.

THEQOREM 2: If m is greater than K, the
number of scurces, and p-m+l iS greater
than or equal to the number of the sources
contained in the largest coherent group,

then, the modified covariance matrix of

sources, 8, is nonsingular, and
Rank(R,.o) = Rank(R,,} = Rank(8) = K. {(18)

Proof: We first form the Cholesky fac-
torization of the source covariance matrix

8 (19}

EE®

For the coherent case, S5 is a KxK singular
matrix, and so is E. From {(17)

p-m+ 1l
S = (p-m+1l)-t T G'-1EEH(G*'-! )" {20)
i=]
= (p-m+1)-!(E,GE,...,GP-"E] BY
(GE)"
(Gr-mE)"

We know that G is a diagonal matrix with
different diagonal elements. There are no
zero row vectors in the KxK matrix S
because it is a source covariance matrix,
Therefore, there is no Zero row in the
matrix E. Observing (20), we know that the
rank of 8§ will be the same as the rank of

(e,GE,...,Ge-"E]. Based on the Lemma, here
replacing F by G and Q by E, it follows

that 8 will have full rank if p-m+l |is
greater than or equal to the number of
sources contained in the largest cocherent

group. Furthermore, here we assume that m
is greater than K so that the mxK Vander-
monde macrix A, has full rank. Hence

Rank(R,.o) = Rank{R,,} = Rank(8} = K

'y}

S

According to the properties mentioned
above and using R,,, and R,,, we can
also define a modified DOA matrix R by

-R = vaRxlO. (21)
Here we define
3
Rxnﬂ.= z F|"‘V|V|" (22)
1 & ]
where (p,zp,z...2pc} and {v,,va,...,%]}
are the non-zero eigenvalues and corre-
sponding eigenvectors of R,.o0:
respectively. R,,,* is, therefore, a
pseudoinverse of R,,.* [6].
Based on Theorem 1, R has its K

non-zero eigenvalues equal to the K diag-
onal elements of ¢ and corresponding
eigenvectors equal to the K column vectors

of A,, iL.e,

RA, = A,@ (23)
Thus, we can estimate the DOA of radiating
sources, (a,,pP,), from the eigenvectors

and the eigenvalues, respectively, without
any 2-D searches. In (7], we will present
this new algorithm in detail.

I¥. Simulation Results

To illustrate the effectiveness of the
method presented in this paper, we shall
show some numerical examples, and compare
these results with those obtained from the
widely employed MUSIC method. To obtain a
measure of statistical repeatability, we
make onhe hundred independent generations
of estimates for the auto-covariance and
cross-covariance matrices. The one hundred
resultant DOA estimates are shown in each
figure associated with a different methocd.

Consider three narrowband sources imp-
inging from the directions a,=77°, §,=70°,
a,=70°, p,=76°, a,=62%, P,=64° on a linear
array system with two parallel uniform
linear arrays of seven sensors (p=7),
where D=d=c/(2f,). The first two sources
are coherent but uncorrelated with the
third one. The number of snapshots is
100. SNR=18dB. The results are shown in
Figs. 2 and 3. It is seen that the MUSIC
method can not resolve the signal when it

is coherent with other signals. But the
tiew method presented in this paper can
estimate the DOA of multiple narrowband

sources regardless of their being coherent
or not.

V. Conclusions

A high resolution algorithm 1is pre-
sented for solving the general multiple
source location problem. It uses the

sampled data from two parallel uniformly
spaced linear subarrays for estimating the



2-D DOA parameters. A new spatial smoo-
taing method for two parallel linear sen-
sor subarrays is presented, which can
Zecorrelate the signals effectively. Then,
w2 construct a matrix, called a modified
"OA matrix, from the smoothed auto-
covariance and cross-covariance matrices,
The incident data may be from a mixture of
uncorrelated, partially correlated, or
coherent source signals. It is shown that
the 2-D angles of arrival of narrowband
sources can be estimated from the eigen-

values and the eigenvectors of this DOA
matrix. Without 2-D searches, the new
method is much more efficient in computa-

tion than most other 2-D methods.
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Figure 1 The geometry of the array system
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Figure 2. Three narrowband source signals
impinge from the directions a,=77¢,
By=70° ,a,=70°, B,=76°, a;=62°, [,=64° on

the array system shown in Figure 1. The
first two sources are coherent but uncor-
related with the third one. The results
are obtained by MUSIC method.
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Figure 3. The sources and the array system
are the same as in Figure 2. The results
are obtained by the method of this paper.



THE PROCEEDINGS OF
1989

INTERNATIONAL CONFERENCE ON
CIRCUITS AND SYSTEMS

July 6 —8, 1989
Nanjing,China

Sponsored by:

China Institute of Communications

in cooperation with:
IEEE Circuits and Systems Society

Institute of Electronics. Information and Communication
Engineers of Japan / Circuits and Systems Group

Edited by:

China Institute of Communications

Nanjing University of Posts and Telecommunications

Publishing House of People’s
‘Posts and Telecommunications
1989



