Modelling the logical
structure of flexible
manufacturing systems with
Petri-nets

P David Stotts*, Robert W Newcomb ' and Z Ning Cai' review the use of
Petri-nets in FMSs and discuss the robotic lattice structure

Flexible Manufacturing Systems are computer-integrated
systems which have many concurrent components, very
complicated logical relations, and a distributed computer
system structure. They have been increasingly and rapidly
adopted for use in industry. Basic Petri-net definitions, both
classical and extended for timing analysis, are reviewed in
the paper. In addition, recent research using Petri-net
theory as applied to the design and analysis of FMSs is
reviewed. In particular, one of the most flexible of
manufacturing line structures is discussed, the Robot
Lattice Structure, which is analysed using a new form of
timed Petri-nets, termed Binary Timed Petri Nets. A
graphical modelling language for BTPNs is also briefly
discussed,
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Petri-net theory was originated by Petri in 1962 with his
doctoral dissertation Communication with Automata'. in
the 1970s, Petri-net theory was developed much further
by two projects, the ‘Information System Theory Project’
and the ‘Project MAC' at the US Massachusetts Institute of
Technology*. In the 1980s, Petri-net theory has been used
for advanced computer integrated system design, such as
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for Artificial Intelligence (Al) in network systems*-*, and
for Flexible Manufacturing Systems (FMS)® 7. With tech-
nology developing so fast, most high technology systems
must use computers as elements integrated into the
system. Such systems are usually very complex and very
large, with many interactive components, concurrency
requirements, and a hierarchical controlling structure, The
circuitry of a computer itself is vastly complex in terms of
possible and desirable analyses. How can Petri-nets be
used to model such systems precisely? How'can a model
be analysed to efficiently obtain a satisfying design?
Considerable research has been undertaken in recent
years to answer these questions. As mentioned above,
Petri-nets offer one approach for solving these problems.

Research in Petri-net theory is very active, and is
growing in visibility. Petri and his group in West Germany
concentrate on basic theory, which they call General Net
Theory (GNT). Petri himself has given the following
synopsis of GNT®:

For the treatment of very farge, very small, very fast
or highly complex structures under the aspect of
information processing, general net theory offers a
set of new conceptual and mathematical tools, GNT
i5 a theory of structured signal flow in spatially
extended systems; it is accordingly founded on
axioms which express or respect the combinatorial
properties of real-world signals as viewed by physics
{upper bound for velocity, for distinctness, for
packing density, for precision of timing).
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Classical Petri-net theory has been widely applied
throughout computer systems research, including areas in
computer software modelling?, industrial flexibie manu-
facturing- 1%, parallel computation modelling'?, and Very
Large Scale Integration (VLSI) design'2, Recent papers
show that the research interests in other subjects have
increased, among these being: applying Petri-net theory
to modelling and analysing software systems with timing
constraints™; modeliing techniques for production
scheduling and control based on extensions to Petri-
nets> ', software techniques for generating actual
programs'3; simulations and animations from Petri-nets'®;
and logical languages and intelligent decision theory for
Petri-nets 17.18,

A number of projects are underway in Europe specifically
applying various forms of Petri-nets to automated manu-
facturing. For example, Petri-nets with coloured tokens
have been used by French and Spanish researchers to
create a FMS model'®: they present techniques for
verifying logical properties of such systems with their
model. (A recent survey by Valette?® presents a good
overview of other current uses for Petri-nets in industrial
applications.) As pointed out in this survey, the logical
structure of FMSs is very complex. Generally, a system can
be decomposed into several levels:

® local machine control level: lowest control level for
specific automachine or devices;

e workstation level: control and coordinate a group of
automachines and robots;

e coordination of flexible cells: a set of workstations in
the FMS;

® and the global control level: coordinate the whole
system’s workings, making production planning and
intelligent decisions.

The activities at each level can be represented by various
forms of nets, perhaps augmented with data structure, In
particular, Valette mentions that the French automobile
manufacturers Renault and Peugeot have applied Petri-
net concepts to Programmable Logic Controllers (PLC) for
manufacturing. PSI and Siemens of Germany are also
using Petri-nets for the design of real-time process
controllers.

BASIC FMS MODELLING WITH PETRI-NETS

Petri-net theory is a tool for modelling and designing a
system in which there are interacting concurrent com-
ponents and complex logical relationships, Petri-nets
provide a mathematically precise representation to
directly describe the control flow and control structure of
asystem, and to indirectly describe the data flow and data
structure derived from a real system. The evaluation of
these mathematical net modeis is only practical with
computer software. Analysis results can tell designers
important information about a system'’s structure, and can
suggest improvements to the design.

Informally, a Petri-net is an automaton composed of
an interpreted directed graph structure and an execution
rule. For example, Figure 1 shows a simple Petri-net in
which the circular nodes are termed places and the bar
nodes are termed transitions. The dot in place 517 is called
a token; its residence in place s7 represents the existence
of some condition modelled by that place. The vector
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Figure 1. Marked Petri-net example

showing the number of tokens in each place in the net is
termed the state. A state change occurs when a transition
fires, causing a token to be removed from each of the
transition’s input places, and causing a token to be
deposited in each of its output places. Execution
continues until no transition can be fired.

Because FMSs work in real industrial environments,
their models have to be based on realistic requirements,
such as the system should have: the capability to deal with
both linear and non-linear systems; continuous processes
and discrete time processes; numerical approaches and
logical approaches; and automatic machine action control
and system supervisor control, All of these represent
challenges to traditional modelling concepts and tech-
niques. It is very important to find the appropriate
techniques for modelling, design and analysis of such
complex systems. So far, research has shown that Petri-net
theory is one of the most promising techniques with
which to approach these FMS modelling problems.
However, many factors such as parallelism and flexibility
are used in these complex systems, leading to very
complicated Petri-net models. To overcome this difficulty,
Petri-net models have been developed rapidly in recent
years, and separated widely among scientific and
engineering fields. Research usually extends the classical
Petri-nets to general conditions (i.e. the extensions
embed the model into atimed environment) by associating
a time either to transitions or to places of the Petri-nets.
The most general extension allows the use of stochastic
times and probabilities, which leads to a classification
called General Stochastic Petri Nets (GSPN).

Petri-net theory comprises two related areas: pure
Petri-net theory, and applied Petri-net theory. Pure Petri-
net theory focuses on theoretical principles and basic
concepts, whereas applied Petri-net theory is the appli-
cation of Petri-nets to the modelling and design of com-
puter systems and computer integrated systems. Actually,
applied Petri-net theory yields construction techniques
for significant Petri-net models of a physical system, gives
a means to analyse such models, and converts these
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models back to real systems after modifying the original
designs. Use of applied Petr-net theory is cumently
widespread in computer operating systems, computer
concurrency, distributed operated systems, asynchronous
systems, hierarchical controller design, and Al. In recent
years, many research projects have focused on the
modelling of FMSs, among many other new application
fields.

For the application of Petri-nets to FMS$ modelling and
design, the following procedures are customarily used:

1 Specify a physical system's design or performance
requirements. One may need to understand the
systemn an different levels. At a low level, very detailed
information is required: at a high level, computer
scientists and manufacturing engineers can give the
requirements of the model controllability, reliability,
and complexity.

2 Construct Petri-net models to accurately reflect the
interesting behavior of the specified system, The
inherently hierarchical structure of Petri-nets can be
effectively applied to limit the complexity of such
models. Different levels of Petri-net design involve
different details of the real system. Hierarchical
modelling allows Petri-nets to represent a complex
system, and enables the use of computer software for
analysis.

3 Apply Petri-net theory to analyse the model, and then
to modify the model to more accurately realize the
system requirements.

4 Convert the Petri-net to a real system design so that the
production tasks can be accomplished.

The above procedures can be repeated until the design
satisfies all requirements. By these procedures, a system’s
dynamic behavior and structure can be fully analysed
{(such as concurrent characteristics and system control
structures). Steps two and three involve analysis tech-
niques from several areas of mathematics, such as formal
language theory, automata theory, graph theory, abstract
algebra, and linear algebra.

APPLICATIONS TO FMSs

A FMS may consist of many workstations. An individual
workstation may be composed of several robots for which
there is a local controller. Each local controller is
associated with the FMS central controller, which is global
in scope. A local controiler mainly performs functions for
managing and controlling the work of the machines in
each workstation. The global controller performs functions
to control the entire FMS's information flow and decision
making.

Petri-net theory is a powerful tool for FMS modelling
and analysis. First, Petri-nets can express precisely in a
mathematical form the logical relations among interacting

, system components. Because a FMS has not only many
concurrently executing components but a distributed
computer structure as well, these logical relations quickly
become very complicated. The Petri-net model can be
used for the analysis of system-wide concurrent com-
putation, dynamic task scheduling, and intemal com-
munication protocols.

Second, a Petri-net model can be constructed with a
natural hierarchical organization. For manufacturing system
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flexibility there must be numerous different functions in
the robots or automatic tools of each workstation.
Because the global controller and the local controllers
have different emphases, and because the system has too
many parameters to be computed at one time, it is
necessary to use a hierarchical structure in system
modelling. Without hierarchical decompaosition, a system
model cannot usefully represent most industrial FMSs in
practice. Therefore, this is one of the most important
issues in applying Petri-nets to FM5 modelling.

Third, Petri-nets can deal with the system data
structure and data flow indirectly. Because Petri-net
models can be constructed to an almost arbitrary degree
of detail, computer programs can be automatically
generated from them. This feature provides a way in
which a computer can automatically produce source
code for the simulation or implementation of a complex
software system. The ability to construct extended Petri-
net models that represent both control flow and data flow
in a system allows their use for programming controller
actions.

Control structure design

Petri-net models can accurately represent an FMS control
structure. As mentioned above, a Petri-net structure
includes places, transitions, directed arcs showing inputs
and outputs, and (as discussed below)} it may include
related timings. One can use places to represent the
system processing conditions, and transitions to represent
the system actions or the events. The tokens in the model
are ideal for representing available resources, control
signals, or other predefined system parameters. For
example, in Japan, Hitachi Inc. has been doing research
on FMS controller design with Petri-nets’-?'. The local
controller is part of Hitachi’s factory manufacturing
system. The controller's task is to coordinate and direct
the 68 000-based sequencing operations of manufacturing
workstations. In their work, Petri-nets model the inter-
action of the local controller with the sensors and
actuators of the physical system under control. Tokens
represent a system control signal. A token arriving at a
place means that a controf signal is triggering an action.
While a token resides at a place it means that the
workstation is in a busy condition. When a comesponding
input signal is received that indicates the current work has
been completed, the token moves cut of the place,
representing the end of the action. The input signal can be
one of several to indicate conditional completion for
enabling and firing transitions. In a physical system, this
signal acts as a gate signal to be implemented in the logical
system. A transition cannot be fired until the gate signals
are activated. A Petri-net can also be used in a program-
mable logic controller to activate and respond to the
discrete Input/OQutput (I/O) of a manufacturing system® 7,

On-line visible control

In real-time industrial processes many production pro-
cedures should be tracked and monitored by the system
control operator. Visual graphs and real-time execution
tracing techniques can greatly aid the operators in
keeping appraised of the cument process states, and in
adjusting control variables for optimal system functioning.

Being directed graphs, Petri-net models are well suited
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to visual presentation and manipulation. Crockett and
Desrochers® show a Petri-net control description entered
into a FMS using an interactive graphics terminal. The
visual form is used to generate a tabular representation of
the actions and conditions associated with places and
transitions. By using a tabular representation, places are
contents in the table. Structure pointers in the table are
used to specify I/O events, which means that the place
table contains the transition list. Similarly, each transition
table has the related place list and comesponding data
structure pointer. Therefore, the FMS control flow can be
clearly illustrated on the graphical terminals for operators.
Because coloured tokens can recognize similar but
different actions, some FMS controllers adopt coloured
tokens at a particular place by using a coloured Petri-net
model. The colour of a token might indicate which
portion of a part is proceeding through the controlled
manufacturing system,

Automatic controller design

An FMS controller may be a very complicated software
system. For increasing the reliability and optimum ability
of system performance, techniques for the automated
generation of controller software have been developed.
These methods are based on well-known engineering
techniques in Computer-Aided Design (CAD), and Petri-
net theory again plays an important role.

The University of Montreal has one research group
working in this area of FMS modelling with Petri-nets (see
Chocron and Cemy®? for some of their research results).
This sequencer directly implements an interpreted safe
Petri-net by a high level language, and it generates
prototype code and tables for Intel 8085-based controllers.
The interpretation of a net is that output signals are
associated with places, and input signal functions are
associated with transitions. As stated by Crockett and
Desrochers®:

An interesting aspect of Chocron's paper is the
description of the development flow during the
design of applications. The design stages are as
follows: (1) a written description of the control
function; (2) interactive graphics input of the system
and controlled system models; (3) conversion from
graphics description to Petri-net language description;
(4) compilation of the language description to
produce code and tables; (5) the use of compiler
output by the on-line controller or by simulation
package.

This topic has also been studied by the research group at
the Robotics Institute of Camegie-Mellon University:
Ekberg and Krogh'® have applied Petri-net modelling
techniques to the automated generation of prototype
software for manufacturing control systems. For a
complex concurrent system, their techniques can save
significant software development time, as well as make
the resuiting software more reliable than that of traditionally
programmed systems.

HIERARCHICAL GRAPHS FOR HIERARCHICAL
MODELLING

The Hierarchical Graph (HG) model of concument
systems'? uses a combination of timed Petri-nets for
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control flow description, and HGs?? for data modelling.
This model has been successfully applied to the analysis
of combined concurrent software/hardware system archi-
tectures?®, and is also serving as the formal basis for a
concurrent software development and analysis environ-
ment'’. An HG procedure mode! has three components:
the data model; the static program madel; and the control
flow model. The data model describes the composition
and organization of the data to be manipulated; the static
program model describes the form and relationships
among the instructions that directly manipulate the data;
and the control flow model describes the possible
execution sequences of groups of these instructions. A
mathematical basis in set theory and formal grammars
provides the framework in which programs are analysed.

Systems modelled in HG are composed hierarchically.
One three-part HG model represents a callable procedure.
In the static program portion of an HG procedure model,
other procedures are called, and the HG model of an entire
system is then composed of the collection of individual
procedure models, To analyse one HG procedure, the
results of analysis from lower-level procedures are used.
Timing results are developed from the bottom-up, based
on the assumptions that timing durations are available for
low-level hardware operations, and that recursion is
absent.

In the next subsection, the formal definitions of the
timed Petri-nets employed in HG semantics are presented,
along with a short discussion of the execution rules
associated with these nets. A graphical notation called
PFG (Parallel Flow Graphs), used to construct HG models,
is then described — in essence, a modelling language.

Formal definitions

The basic formal definitions of Petri-nets that deal with
the control aspects of a computation are introduced
below, i.e. describing FMS organization, controller functions,
and software system implementation, showing the various
possible sequences of parallel code block executions that
an algorithm will allow. An extended form of a Petri-net is
used to do this. Parts of the following definitions and
notation are adapted from classical Petri-net theory (a
good synopsis appears in Reference 25). Though the
standard net structure is employed, modifications have
been made to the surrounding net theory to allow time
bounds to be placed on the components of a modeiled
software system. The definition of a marking has been
extended to facilitate the timing. In the following
definitions, N denotes the set {0,7,2,...} of natural
numbers, and Z denotes the set {--.,-2,-7,0,7,---| of
integers,

Definition 1: Net.
A general net structure is a triple N = <5, T.F> in

which
S = {s1,...,s,}is afinite nonempty set of places:
T=1t;,....ty} is a finite nonempty set of

transitions, with SNT = O;
FC (S X YU (T X S) is the binary flow refation
for N.

The net structure can be thought of as a bipartite graph in
which S U Tis the set of nodes. The flow relation F defines
the directed arcs connecting places to transitions and
transitions to places.
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Definition 2; Marking.
A marking M for a net N is a function
M:S—=NXxZ
mapping each place in the net into an ordered pair
of numbers, the first a non-negative integer and the
second an integer.

A marking can also be described as an ordered n-tuple of
pairs, M = <M, ... ,M,> inwhicheachM; €N X Z and
n =15/, The two representations are related by M(s;) = M;,
where 5; € 5.

Each ordered pair in a marking provides information
about a particular place in the net, For a particular ordered
pair M;, the notation <MY, MT > is used to distinguish the
individual compaonents, The first component M} is the
number of tokens residing in place s;: the second
component M represents the age of the ‘active’ token at
place s;, i.e. the token of the current resident group that
was first to arrive. A positive value is placed in M} when a
token first arrives, and it is then decremented by one with
each state change. A value of 0 indicates a fully aged
token. A negative value in M} indicates that the active
token is fully aged, but is waiting, i.e. has' not been
consumed by a transition firing, due to some synchron-
ization constraint.

Maodelling real-time software requires analysis tech-
niques for determining the time bounds on execution of
portions of the system. Towards that end, timing figures
are included in the Petri-nets used for programs. As other
researchers have done?®, we associate a number of time
units with each place in the net; transitions are still
considered to fire instantaneously, as in classical Petri-net
theory.

Definition 3: Timing.
A timing t for a net N is a function
5= N \{0}
mapping each place in the net into one of the
positive natural numbers,

The timing can also be described as an ordered n-vector,
t=I[ry,...,0,] in which n =}§|and each t; €{1,2, - }.
The two representations are related by ©{s;} = t;, where
5 € S,

Definition 4: Marked timed Petri-net.
A marked timed Petri-netis atriple TP = <N,Mg, t>,
in which:
N is a general net structure;
M is a marking for N, termed the initial marking;
and r is a timing for N.

In a marked timed Petri-net, execution begins in the state
defined by the initial marking M,. When a token arrives at
a place s;, it must reside there for r; units of time before it
can enable, or participate in enabling, the transitions that
fallow s;, defined as the set {t,-| Gy e Fl.

Thus, a token residing in 5; could represent the
condition that a corresponding instruction or group of
instructions in the modelled program is executing, and
the timing figure would then represent the relative
amount of time required for it to complete. On completion
(i.e. after r; time units), the transitions following s; are
partially enabled by the resident token, and may fire when
fully enabled. Firing a transition r; causes a token to be
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placed in each of its output places, defined as the set
{s;[{t; s;) C F|. Forexample, consider again the Petri-netin
Figure 1, and let its timing vector be tr = [2,4,3]. With
initial marking My = <7:2,0:0,0;0>, the state of the net
after three state changes could be either <0:0,7:3,0:0>
or <0:0,0:0,7:2>, depending on whether t; or t, fires
during the second state change.

For modelling concument software and its logical
relations on data, several aspects of a marked timed Petri-
net require special interpretation. If a token arrives at a
places; in which atoken s already resident, the new token
does not begin to age until the active token has resided
for the full duration r;, and has been consumed by a
subsequent transition firing. Thus, when interpreting a
Petri-net in terms of a concumrent program and its
execution, a place represents not only a block of
instructions, but also a single processor resource to
execute those instructions. This processor is assumed to
satisfy only one request at a time.

A concurrent transition firing rule is also used, in which
the classical Petri-net execution paradigm of firing one
transition per state change is relaxed. The get-the-next-
state-from-the-current-one, @ maximal subset of the
enabled transitions, is fired, and their token movements
collectively determine the new marking. The reachability
set of such a concurrently fired Petri-netis then a subset of
the state space under classical execution; a state obtained
by collectively firing a set of transitions can also be
obtained by a sequence of single transition firings. For
timing purposes, though, the length of the sequence is
important. A concurrently fired transition set creates a
single state change, thereby using a single time unit, This
reflects concument activity more approprately than a
sequence of single firings.

PFG language

The PFG?’ graphical notation is cumently being developed,
which has a direct interpretation in the HG formalism. PFG
is a language for the expression of concurrent, time-
dependent computations. Its syntax is graphical and
hierarchical to allow the construction and viewing of
realistically sized computations. Figure 2 shows an
example of a parallel flow graph in PFG. In this figure, a
rectangle icon (bearing the notation bb1, bb2,..)
represents a basic block, containing a sequence of
procedure calls, A base-down triangular icon (bearing the
notation sell, sef2, ...} represents a concumrent branch
point. The selectorin the icon designates a location in the
data state to be examined when a thread of control
reaches the branch. All arcs bearing the value of that
location as a label are followed in parallel. In Figure 2,
when control arrives at the topmost parallel branch, the
selector sel? is evaluated, and if the value is a then two
threads of control go on to bb2 and bb3 in parallel. If no
out-arc bears the value of sel?, then that thread expires.
A base-up trangular icon (bearing notation T) is a
synchronization node. Execution waits at the icon until an
active thread has arrived on each in-arc, and then a single
thread goes on from there. The semicircularicon is similar
in execution to the parallel branch, except that it does not
create parallel threads. After the selector is evaluated, a
non-deterministic choice is made among the arcs bearing
the selector’s value as a label, and a single thread of
control continues down the chosen arc. With these few
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Figure 2. Parallel flow graph

structures, PFG is rich enough to express many of the
commeon concurrent control structures found in parallel
languages, as well as some less common ones.

The execution semantics of PFG programs are defined
by the HG concument system model. Each syntactic
structure in PFG has a direct translation into a portion of a
place-timed Petri-net model. Figure 3 illustrates this
translation process for the PFG shown in Figure 2. The net
created by legally combining PFG structures is guaranteed
to be well-farmed, in the sense that each Petri-net is in a
restricted subclass of general nets, and each has a clear
interpretation in terms of the hardware and software in a
robot lattice structure (considered below). It is important
to note that PFG techniques can analyse the concurrency
properties of a robot lattice such as deadlock freedom
and proper mutual exclusion on shared data.

BINARY TIMED PETRI-NETS FOR ROBOT
LATTICE MODELLING

This example discusses the most flexible of manufacturing
line structures, the Robot Lattice Structure. The lattice
configuration for a production line of robots is one of the
most flexible for industrial manufacturing®. As can be
seen in Figure 4, a high degree of flexibility can be
obtained with a lattice configuration, because alternate
paths exist between workstations, even in the presence of
a single down station®®. In fact, numerous faults can be
accommodated as long as both workstations in a vertical
pairare not simultaneously cut. Among the available tools
for analysis of such structures, Petri-net theory appears to
be the most promising. The robot lattice structure is highly
reliable and highly concurrent, with multi-channel com-
munication protocols used for communication among
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Figure 3.

Petri-net cornponents for PFG shown in Figure 2

multi-robot workstations, represented by nodes of the
lattice.

To analyse the behavior of a robot lattice a form of
Petri-nets called Binary Timed Petri Nets (BTPN) are used.
These are an extension to an earlier model called Binary
Petri Nets by Alayan and Newcomb??, which have been
shown to be useful for describing and analysing complex
FMSs>. BTPNs are formed by combining the binary Petri-

A-line k-i’a
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a

/ N\

k
a
.

N\ /

*® [ ] @ ——n
B-line k—-!b kb k+ ,b
Figure 4. Graph nodes representation of on-line work-
stations
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net model with the determinate timing aspects from
previous Petri-net applications. For BTPNs, an integertime
is associated with the place. Analysis of the reachability
graph of a BTPN provides deadlock detection and
calculation of minimum/maximum execution times for
each station, using techniques employed for earlier timed
Petri-net models?.

In summary, the advantages of these technigues are
listed here. BTPNs provide a means of analysing both the
temporal and concurrency behavior of robot lattice
structures for automated manufacturing. This flexible
structure has several characteristics that are accurately
reflected in BTPN models:

@ there is consistency throughout the entire lattice;

@ no workstation or robot in a workstation repeats the
task already completed by another workstation. This is
accomplished by allowing only one Central Processing
Unit {(CPU) to direct all firing functions;

e the implementation consistency is maintained by
setting the communication protocols in the central
CPU and each of the related local controllers;

e and these are simple logical relations and simple
mathematical representations.

With the BTPN models, the behavior of robot lattices can
be analysed in terms of both concurrency aspects and
execution time aspects. In particular, we can determine:

e minimum and maximum execution times for robot
workstations performing particular tasks;

e improper simultaneous access by two or more con-
currently operating robot controllers to shared data
structures;

e and the possibility o. deadlock of the robot workstation
network during manufacturing.

General behaviour equations for a BTPN

The formal timed Petri-net definitions given earlier remain
in effect for BTPNSs, but a different firing rule is employed
due to the logical differences between software behavior
and physical communication line behavior. For BTPNs,
this execution rule prohibits having more than one token
in a place, and this is enforced by nommalization after
every state transition.

In FMSs, in the processors, when an output signal is
present, the signal will get transmitted to all parts
connected to it, and enable it to receive signals. In terms
of Petri-nets, these properties mean that at most one
token will appear on all places fed by the transition. Thus,
the transition state equations for general timed Petri-nets
are developed here with the restriction that the number of
tokens in a given place is a binary number, and with the
execution extension that a token in a place can cause all
transitions connected to that place to fire. The develop-
ment is similar to the earlier work of Alayan and
Newcomb??; a mechanism for aging tokens has been
worked into the behavior equations.

To designate a positive, integral firing time A is used,
and tokens are moved through fired transitions to create a
state change from time A to A + 1. For binary nets, a place
may contain either one token, or none. If it contains one
token, then that token is propagated by firing all the
transitions connected to the place containing it. Tokens

viml 1Y A A AviAses 1000

can enter the net from external inputs X and leave via
external outputs Y by the firing of output transitions. As in
classical Petri-net theory, a transition is only enabled to
fire if all the places incident upon it are marked. In BTPNs,
however, a place is marked only if it contains a fully aged
token.

Given a BTPN of n places and m transitions, we let £2(A)
be the n-vector containing the number of tokens in each
place at time A; it is composed of M} fori=1,2,-++,n
from our earlier definition of marking, In addition, the age
vector A() indicates the age of each token in the net; itis
composed of the Mf components of a net marking. ®{1)
is the m-vector of transitions to fire at time A. The extemal
inputs are denoted by the n-vector X(1), and the extemal
outputs are denoted by the n-vector Y(A); all of these
vectors contain integers, and all but A{4) are restricted to
being 1 or 0 in a proper BTPN marking. The flow relation F
of the BTPN is represented by a m X n connection matrix
F, where:

F=F"-F (1)

in which, for a transition t; and a place s;, the element f,-'}' is
1if (t;,s;) € F, and the element f;;is 1 if (s;, ;) € F; all other
entries are 0.

As Alayan and Newcomb??, we work with both binary
and normal integers in the same equations. Consequently,
several vector operators are required to normalize results.
The dot equality = transforms its right side by converting
each positive value into a 1, and every other value into a
zero; it is used to normalize the marking at each place s;
after concurrent transition firing. Conversely, the double
dot equality = transforms its right side by converting any
vatue not 1 into a 0; it is used to normalize the token aging
vector. The unary operator dec takes an age vector and
leaves all 0 and 1 entries unchanged, but subtracts 1 from
all others. The O operation is defined fora row n-vectora,
having 0 and 1 entries, and a column n-vector b, having
integer entries, to yield a scalar value given by:

aOb=1 (2)

if at least one of the pairs a;and b;has a; = 7 and > 0, and
nopairhasa; = Tand b; <0, fori = 1,2,3, - - - ,n. Otherwise:

ab=0 (3)

defines the result. The O operation is used to normalize
the firing vector at time A.

Using these operations, the following behaviour
equations for BTPNs are obtained:

Q,(4) =Q@) + XQ@) ()
A Q) = pmax{AQ), [XQ)*<l} (5)
in which t is the n-vector interpretation of the net timing
function, pmax is a pairwise comparison of vector

elements, producing a new vector, and * is a pairwise
multiplication of vector elements, producing a new vector:

Aza) = decfA;(A)] {6)
sz = 010.) * Aza) (7)
PR+ 1) =F 00,0 (8)

LT



O U+N=FTa+1) (9a)
B*A+N=F Tl +1) (9b)

QR+ =0,W+0 A+ 1N -0 (A +17)
+ Q1a) ‘Azu) (9C)

in which the bar indicates Boolean complementation of
matrix elements:

AQ + 1) = pmax{ldeclA; ()] = 0~ R + 1)1,
Ot + 1) ¢} (10)

Y() = D ®R) _ (11)

in which D is a matrix describing transition connectivity to
external outputs.

The effect of equation (4) is to add extermnal inputs into
the current marking. Then, equation (5) adds the timings
for these extemnal tokens to the age vector. Equation (6)
decrements by one the age of each place having a token,
and then produces a normalized mask indicating which
places are fully aged. Equation (7) uses this mask to
produce a new intermediate marking composed of those
places containing fully aged tokens, which may participate
in enabling transitions. Equation (8) then computes the
transitions to fire as before. Equations (9a) and (9b)
compute normalized versions of the contribution each
connectivity matrix component makes to the new
marking generated by firing: equation (9c) then computes
the new marking using these nommalized components.
Equation (10) generates the new age vector after firing,
and equation (11) gives the output at each step.

Execution of BTPNs, as defined by equations (4 to 11),
proceeds synchronously, and no decisions are made
when places are in classical conflict over enabled
transitions, A token that participates in enabling two or
more transitions is replicated as required so that all may fire
in the next state change, If firing a transition deposits a
token into a place in which another token is present, but
not fully aged, then the age for that place is reset to the
timing value t for the place. This approach is useful in
modelling hardware and communication structure, e.g.as
in Figure 4. To illustrate this firing rule, consider again the
marked Petri-net shown in Figure 1, with timing vector
T = [2,4,3]. After two state changes (to age tokens), both
transitions t; and t; are enabled, and both fire to create
state three, with marking <0:0, 1:4, 1:3>.

Example using BTPNs

The following example shows how the matrix equations
describe the behavior of a system modelled with BTPNs.
This development uses the same example which can be
found in Alayan and Newcomb's paper on (untimed)
Binary Petri Nets?, illustrated in Figure 5. Let the net
timing vector, the initial marking vector, and the external
input vector be:

T= [l.'s-;, Ts2: Ts3s Tsqs rsslr = [320701T
Q) =[1107017

X = [1000017,ifA =0,2,4,--
[00000]", otherwise

200

Y
Figure 5.  Petri-net for BTPN example. Place timings:
t=1[32010]
respectively. According to our BTPN algorithm:
£,(0) =Q(0) + X(0) = [17070]" + [10000]"

is the expression for the intermediate marking. The
normalized result is then:

Q,0) = [11010]"

The initial age vector A(0) giving the age foreach place has
a value of:

AQ) = [32070]"
corresponding to the timing applied to the initial marking

02(0). Adding the input vector X{0), we get the new age
vector:

A;(0) = pmax{A(0), [X(0)* 7]} :
= pmax{{320101’, [3000017}| = [32010]"

and the age of an input place can be considered to be

reset when there is a new token inserted into it from

external inputs. After the dec operation, we have:
dec[A;(0)] = [27070]"

According to equation (6) the normalized age vector is
given by:

Ax(0) = [o1070)7
Because only the fully aged places can be used for BTPN

transition firing, the new marking 0,(0) identifies all

computer communications



places that have fully aged tokens. WithA = 0in equation
(7), we get:

0,0 = (7107017 * (0701017 = [01070)7

as the value of this marking. To get the next iteration firing
vector ®(4 + 1) in which A = 0, equation (8) is used:

H

This means that no transitions fire, since none are
connected to places all of which contain fully aged
tokens. By equation (9c):

11010
P =F 00Q0)= |oo0100]| O
010711

O—=0 =0
]

Q1) = 0,(0) + (1) - 07(1) + 0,(0) * A,(0)

is then the starting marking for time A = 1. Its normalized
value is:

Q@) =I[11010]7
From equation {10):

A1) = pmax{[dec[A,(0}] - @ (1)1, @* (1) * ¢}
=[2101017 '

is the initial age vector for the A = 7 iteration. Let the
external inputs (defined by the mddeller) attime A = 7 be:

X(1) = [00000]7

From equation (4), then, the new intermediate marking
is:

0,(1) =(11070)" + (000001" = [11010]7
Similarly, from equation (5) we get:

A;(1) = pmax{[2707017, [00000]1"} = [27010]7
The normalized timing is then given by:

Ay(1) ZdeclA (1] = [17010]7
and the new fully aged marking is:

(1) = Q,(1)* A, (1) = [11010]7

Therefore, we obain the new firing vector from equation

(8):
1
H
0

The third set of calculations, forA = 2, are presented here
without further explanation:

11010
P2)=F a1 = [00100]| O
01011

O—Io_l-—l
!

Q2 =[01100]7
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A(2) = [0200017

X(2) = [1000017
Q4(2) 2 (0110017 + [100001" = [171001"
A;(2) = pmax{[0200017, [3060017} = (3200017
A3(2) = 0100017

Applying equations (7) and (8), we find:
(3) = [000]"

which shows that there are no enabled transitions to be
fired.

CONCLUSION

Petri-net theory and its applications are among the most
active current research topics. Research on Petri-nets
focuses both on basic theoretical problems, such as
concurrency modelling and state-space analysis, and on
applications, such as in robotic system modelling, FMS,
and software algorithm verifications. Recent projects
demonsrate that Petri-net models can be used for
automatically generating controller source codes for an
on-line computer in a FMS. This means that difficulties in
going from design toimplementation can be overcome by
computer-aided techniques. Researchers have introduced
the concepts of Coloured Petri Nets, General Stochastic
Petri Nets, Place Timed Petri Nets, Transition Timed Petri
Nets, and Discrete Time Petri Nets into parallel computation
systems, distributed computation systems, and FMSs,
These investigations are still under development, and use
high level languages and CAD techniques® & 17.24,30,31
To date, Petri-nets have been studied from topological
aspects, functional analysis aspects,.computer software
engineering aspects, microelectronics aspects, and manu-
facturing and quality control aspects. It is, therefore, clear
that many new concepts and new application areas will
become a part of Petri-net theory and applications.

This paper contributes to the body of Petri-net theory
and applications in several ways. First, BTPNs have been
presented, a new place-timed formalism of Petri-nets that
allows modelling of both the software structure of a FMS,
and its communication lattice. The behavior equations for
BPTNs are presented, and an example of theiruse is given.
Finally, a graphical language for easily constructing these
BTPN models for individual robot lattices has been
mentioned. Though the analysis techniques described in
this paper are appropriate for a large class of BTPNSs, not all
such nets represent appropriate structures for robot lines.
The PFG language restricts the BTPN structures to those
that are interpretable in terms of manufacturing lines. The
syntax is more easily employed than constructing Petri-
nets directly, and it incorporates both a data state and a
control state.
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