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Abstract’

The wactivities of the Microsystems Labo-
ratory, University of Maryland, are summarized
with emphasis upon the main ideas and their
evolution. Concentrestion is seen to be on the
design of nonlinear hysteretic systems, espe-
cially ones of interest to neural-type micro=-
aystems

I. Introduction

Since 1978 the Microsystems Laboratory
has had ongoing activities in the area we now
call semistate theory and in which our empha-
8is has been upon circuit theory developments.
This activity was triggered by our 1978 meet-
ing in Gdedsk, Poland, under the joint Pol-
ish-American Program on Active Microelectronic
Systems which concentrated upon neural-type
electronic circuits. We had come acroes the
paper of Campbell, Meyer, and Rose [B-1] which
used the Drazin inverse to solve semistate
equations in one-fell-swoop and found that
this would be useful for analyzing and charac-
terizing the circuits that were under develop-
ment in the Progrem. This is because elec-
tronic circuits generally have resistive com-

ponents which lead to nondynamic portions of
the describing equations; to obtain state-
variable equations for these circuita gener-

8lly means reductions of the equations by eli-
mination of the nondynamic portions which in
turn can lead to the use of various tricks and
introduction of errors. Since work was also
being done on hysteresis, it soon became evi-
dent that the semistate theory offered consid-
erable advantage for the characterization and
eolution of hysteretic systems and with thenm
neural-type microsystems in which hysteresis
may be a key design component. At that 1978
meeting the first of us suggested, from which
vwe settled upon, the word "semistate" to
describe the variables used in the resulting
description since the word "state” was inap-
propriate and some suggestive word was needed.
However, it should be noted that the concept
had been in ugse by the second of us BmBince at

least 1966 when stability of time-variable
passive circuits hed been proven using semi-
state equations, which at that point were
called "pseudostate eguations” [1, p.72].
I1. Results

OQur first joint paper (2] was at the 1979
MTNS in Delft where we introduced the semj-

state as a concept into the circuits and says-
tems area. The main idea was to call attention
to the fact that, using a formulation similar
to that of Descer [B-2]}, linear circuit equa-
tions could be written in the form wused by
Campbell, et. al. [B-1]), and that this allowed
for direct solution through the Drazin
inverse. In essence this was & small first
step since at first glance not too much is
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gained by such a description of linear cir-
cuits for which many techniques were already
avajlable. However, it quickly became apparent
that for nonlinear circuits, and especially
ones with hysteresis, the semistate descrip-
tion had something new and powerful to offer
[3]. Consequently, a study was made [4] which
shovwed that almost every finite lumped ecircuit
has a description in the semistate canonical
form

Edx/dt A(x,t) + Bu

= {1a)
¥y = Cx

(1b)

Here B, C, and E are constant matrices and
various equivalences may be needed to place
all of the nonlinearities and time, t, varia-
tions into the A{-,-) term. The input vector
is u, the output vector is ¥, X is called the
semistate vector and we have changed the nota-
tion from the original to follow the more
recent linear case notetion of Lewis
[B-3,p.17] which is more in line with that of
state-variable works and also easier to print
on our letter quality printer. It should be
noted that the form of equation {1) is close
to that of Dolezal [B-4,p.31] except that we
have taken all time variation out of E. Once
{1) is obtained further manipulation can bring
it into other forms that may be of interest
for certuin studies. For example, by constant
matrix transformations on x and on (la), E can
be made a direct sum of an identity and a zero

matrix. In any event, because of the apparent
systems theory use of the canonical equations
we were led to study the behevior of the

canonical equations under cascade and feedback
connections [5].

The real advantage of (1) comes about in
the study of nonlinear circuits and especially
ones with hysteresis. For the latter we often
do not have valid alternate characterizations
since input-output descriptions are multival-
ued. However, (1) allows some classes of hys-
teresis to be described by single valued func-
tions, it being the elimination of some of the
semistate variables in obtaining state-like
descriptions that leads to multivalued solu-
tions including hysteresis. This led us to
obtein deeigns of some interesting classes of
hysteresis [5]}[7). And since the canonical
equations are of such use for systems with
hyasteresis, it seemed necessary to obtain
convenient means to solve the equations. This
led us to the very interesting continuation-
type of method to solve the canonical equa-
tions [8] for which an example [11] shows that

the method could be effective for nonlinear
system analygis.
As mentioned above the research of the

US-Poland Program concentrated upon neural-
type microsyastems, Pushed by the recent inter=-
ests in neural networks, this originel inter-

1



eat has been rekindled. Since the basic neur-
al-type cell of our theory depends upon hys-
teresis, semistate theory has turned out to be
8 natural for characterizing and designing our

neural-type circuits. Three sapecific works
from the Microsystems Laboratory have been
presented. The first is by Professor DeClaris

and A. Rindos, a student working with him, eon

the analysis of "Aplysia Californica" (21) in
vhich clusters of neurons &are described in
semistate form. The other two papers consider

the analysis of two specific transistor cir-
cuits, one being a neural-type junction [16]
vhere neural-type pulses are combined and pro-
cessed and the other being of a neural-type
cell [17]) vwhere hysteresis is used to process,
generate, and code information onto the neur-
al-type pulses.

The above mentioned researches form the
core of our studies, but some other related
works have been undertaken, as per the follow-
ing discussion.

A theme of circuit
that by introducing parasitic effects

theory folklore is
into a

system the semistate variables become state
variables. Interestingly, by an example [9)
of some practical importance, we have shown

that folklore may not be fact in that the sem-
istete equations do not directly become state
variable equatjons by the introduction of
realistic parasitics. On the other hand state
variable equations do not exist if one is
treating a differentiator while one would like
to make differentiators as practical devices.
But semistate equations can be created to give
transfer functions with arbitrary poles at
infinity, including a simple one for e differ-
entistor. Thus, in [12) we have shown that, by
some intriguing manipuletions of Zaghloul, a
differentiator cen be stably designed through
the use of integrators.

PARCOR lattices are of
interest in the area of digital signal pro-
cessing vhere, with our affiliated group in
Spain, we have been able to use them for such
things as noninvesive analysis of the ear
[B-5). Consequently, we investigated the for-
ward-backward decomposition of semistate equa-
tions [B-b) as they relate to the forward-
backward signals of PARCOR lattices [15].
Likewise sensitivity is of considerable inter-
est in the design of electronic circuits since
circuits that are too sensitive to parameter
changes may not perform as designed. This led
us to a study of sensitivity through the semi-
state equations [18].

An interesting area for the application
of semistate theory is to that of robotic syva-
tem design since there are kinematic as well
as dynamic variebles. In thia area some of our
regsearch investigetes the design of knot tying
robots for which a semistate theory of knota
has been developed [20]. The need for semi-
state theory in knot characterization is to
perform a reduction from four dimensions,
vhere two 2-dimensional circles are dynami-
cally created by oscillators in direct product

considerable

form, into real 3~dimensional physical space.
Specifically two 2-dimensional circles are
dynamically created by oscillators in direct

product form with the reduction done via a
nondynamical algevraic equation. Thus, we have
dx/dt = ¥ {2a)
dy/dt = -mix {2b)
dz/dt = w {(2¢c)
duw/dt = -niz {2d)

D =w + 5§, §=constant (2e)
Ry = [(mx)? + yr]is2 {2f)
R: = [Inz)? + w1]1/3 (2g)
X = ax/D {2h}
Y = y/b {2i)
2 = [nz/D]-[R1/(63-Re2)i:2]) 12j)

Even though these may look formidable they are
readily interpreted tec give an (m,R)-torus
knot in three diminsional XYZ-space. Thus,
(2a-d) give two uncoupled linear oscillators
of radian frequency m and n. {2h-j) reduce
these from four dimensions to three with the
ey term being defined by the algebraic con-
straint of (2e); R, & R; are the radii of the
xy and zw circles that are in direct product
form in four dimensiona. The result is =a
knotted trajectory on the torus

Z: + [R-(X2+Y1)3/3)2 = r3 {2k)
of meridian circle radius r=RiR;/[62-R;2])
revolved around an axial cirele of radius
R=§R; /[62-R:? ). Practically the knot is better
realized using van der Pol oscillators rather
than linear ones, however.

Since many knots are connected sums of
other knots, hysteresia can be used to form
the connected sum given two knots which are
already realized {14). Another wuse for the
hysteresis that is conveniently synthesized
via semistate theory is that of chaos gener-
ation [B-7)

Finally we mention that almost all asemi-
state described systems so far studied have
been regular, that is, in the linear case sE-A
is nonsinguler. Since nonregular systems will
either have no sclution or an infinity of
solutions, nonregular systems are less practi-

cal then curious., Still by exhibiting some
nonregular systems [19) we have shown that
through the incorporation of nullators and/or

nullators in a design, as hes been done in
certain transistor and op-amp circuit designs,
if one is not careful one mey meet nonregular
systems in practice.

II1. The Future
At this point it seems clear that semi-
state theory gives a general framework with

distinct advantages for the design of practi-
cal nonlinear systems, especially of ones in
which both dynamic and algebraic constraints
arise, such as those describing robots, knots,

and neural-type electronic circuits. We,
therefore, foresee the need for the develop-
ment of design techniques that take into

account the basic elements of these classes of
systems w&ithin +the framework of semistate
theory. Indeed, in the presence of certain
classes of hysteresis there seems to be few

alternative mathematical descriptions avail-
able, giving semistate theory an wunequaled
position. Consequently, semistate theory

should have a bright and promising future in
the area of engineering design.

The attached figure interrelates
activities mentioned above.
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