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SUMMARY

Nonlinear phenomens may explain many interesting facts in Hearing
Perception as it is well known [Kim.80, Str.86]. Through the present paper a
nonlinear model for the Inner Ear based on a Transmission Line structure

(Sch.B3] is presented, with the nonlinea
on the basilar membrane equivalent.

rities inserted in the eslastic term

This model may be seen as a chain of

homogeneous sections, for each one a Korteveg-de Vries nonlinear equation may
be stated showing the propagation of solitary waves in one direction [Gar.74,

Abl.74]. At the boundary between two o

f these incremental sections a certain

kind of reflective phenomena should be expected, as detected by many
researchers [Kem.78, Wit.79, Wit.80). For such, a convenient description must
be found in the shape of a two vay nonlinear Boussinesq's equation [Dod.B4A].
Our purpose is to show computational structures amenable of solving nonlinear

wave propagation in one section.

The interconnection of several of these

sections give a global nonlinear model of the whole Inner Ear. This model
could be used to adapt nonlinear theories of Hearing Perception to tha design

of Hearing Alds.

INTRODUCTION

The present work is related with the
development of Signal Processing Algorithms
amenable of being applied to Noninvasive
Methods of measurement in Biomedical Systems,
to Computational Perception and Robotics. Its
final objective is related with the design of
special purpose Signal Processors to be
applied in the above mentioned areas. The
specific problem to be treated is the study
of HNonlinear Models in the Auditory System,
which will be simslated and implemented
through & certain kind of Signal Processors.
These could be used in improving Hearing Aids
and in Noninvasive Auditory Measurements. ¥or
such, the problems posed by the nonlinear
behavier of the Auditory System [Xim.80] have
been carefully reviewed, The frequency
selective mechanisms in the Auditory System
are not well understood yet, although wany
researchers deeply believe that nonlinear
vave propagation phencmena are well behind
them [2Zwi.80]. On the other hand, it has been
experimentally proved that wave propagation
in the cochles takes place with a lov level
of reflection and dispersion [deB.80], these
two characteristics being proper of the
solutions of certain kinds of nonlinsar wave
equations, which are known as “golitons"
(Dod.B4]. Through the present paper wave
propagation in the Inner Auditory System
under nonlinear conditions will be presented.

On this basis, typical Signal Processing
Structures, such as Linear Lattices, will be
modified to allow their use in nonlinear
problems of the before mentionad kind
[Gom.B3). Finally, some words will be said on
possible methods for the characterization of
the nonlinear behavior of the Auditory System
through & generalization of System Inversion
techniques in the linear case [Son.B1].

A NONLINEAR MODEL FOR THE AUDITORY SYSTEM

Through this section a nonlinear vave
propagation model will be presented, from
vhich a set of computationally tractable
equations amenable of being solved by
reasonably simple means will be obtained.
For such we will use a unidimensional
Transwission Line Model ([Sch.73], assuming
the nonlinear behavior to be present in the
capacitive {elastic) element on the Partition
Membranes. The before mentioned model may be
expressed by the set of coupled equations:
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where p ig the differential pressure acting
between both sideg of the partition
membranes, and u ig the volumetric velocity
of the fluid at a Biven point in any of both
scales. One dimensional long wave propagation
and fluid 1ncomprcssibility are assumed. ¢,
¥, © and ¢ are the inertia, mags, viscosity
and elasticity of fluids and membranes, (1-2)
being the equations for the linear case

are introduced by the elastic term on the
membranes, then equation (2) should be
slightly modified to take them into account.
This can be done by allowing the elasticity ¢
to be a function of P as follows:

€c=cg (1l -ap" (3)

€9 being the linear value for the elastic
term vhich in genergl depends on distance, a
being a proportionality factor, and n being
the order of the nonlinearity, assumed to be
an  integer taking the wvalues 1 or 2.
Equations (1-3) are difficult to deal with. A
very sugpestive approach may be derived if g
perturbational method fs uged. Thizs method
assumes long waves in the sense that the
dispersive relationship between frequency and
wave npumber may be expanded for small valyes
of the wave number (n) as g povwer series,
taking only the first two terms into account.
Besides that, the method  assumes gmgl)
amplitudes in the dynamic variables (pressure
P and flux u} this fact being equivalent to
consider a weak nonlinearity. To know what
terms can be disregarded as second ordar
effects the natural scales of apace and time
in the problem must be changed in equations
(1-2). The digpersive relationship in the
linearized case may be stated as:
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We will introduce this approximation into the
phase relation;

Nx-wt=n(x-a;t)+
+ ay ﬂ3 t (5)

This expression SUggests us the change of
variables given by:

E=xl(x-at) (6)
T = y3q, ")

A subsequent power expansion of the dynamic
variables 4in x pmust be introduced in
equations (1-2). After some algebraic
manipulations, following Dodd {Dod.84), these
may be reduced to the well-known Korteveg-de
Vries (KdV) kind of structure [Gar.74]:

Ve taug + B uy t oy, =0 (8)

where we have taken Ugr uy and u, . as the
first time and space and the thlra space

partial derivatives, respectively. The
pParameters a, B and y are given by:
a = 1/(2 o)} (9)
a l:o a
B=— (a 1)n*2 (10)
2t .
Y =a p/(2 1) (11)

This structure explains one-directional Wave
propagation only, For two-way wvave
propagation, a reformulation of KdV equation
leads to Boussinesq's equation:
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This  equation may be useful to study
bidirectional wave propagatior in the Inner
Auditory System, given the great interest
shown by many researchers in the field
[deB.BO). Our aim will be to study the
implementation of computing structures
simulating the behavior of equation (B) to
explain wave Propagation in the Inper
Auditory Systenm by discrete methods.

NUMERICAL METHODS AND SIGNAL PROCESSORS
o A oIGNAL PROCESSORS

In the present work we will show the
methods employed in the solution of the Kdv
equation by finite elements [Pot.73, Duc.86],
vhich are currently being carried out. We
will smolve the problem of nonlinear wave
Propagatlon in one dimension taking a segment
of homogeneous transmission line of a given
length L, and assuming both spatial and
temporal sampling processes on the wave
function e(x,t) as follows:

o(k,n) = o(x=ks,t=n8); OsnsN-1; 0sksK-1 (13)

where 8 and @ are the Space and time sampling
intervals. In these conditions the "wirtual
domain" in which we will have to solve the
problenm, assuming resting conditions for t<0,
will be the one glven by Pig 1.
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Fig. 1. Virtual Space-Time Domain of
resolution.
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We refer to this as the "virtual domain"
(VD) because this time-domain grid of data
given by the K:N matrix in (13) must be
mapped into a smaller capacity "“physical
processor" (PP), which will not be able in
general of handling the whole data structure
at a time. To solve this problem a "mapping
strategy” must be designed to carry data to
and extract data from the physical preocessor
and the "virtual memory"” (VM). To translats
KdV equation into finite elements on the
domain defined in Fig. I, we will find
estimates for the derivativez in time and

space. If we use the TFirst Eulerian
Differences (FED) we may state:
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and extending this same concept to higher
order derivatives we will translate the
normalized EdV equation to:

e2(k,n) + o(k,n}[2 - o(k-1,n)] - 3 o{k-1,n) +
+ 3 of{k-2,n) - o(k-3,n) - o(k,n-1) = 0 {16)

This seems is a quadratic form in the highest
space and time order sample of the wave
function, e{k,n). The nonlinear ters in
itself is given by o(k,n)-e(k-1,n). In order
to obtain a solution for this equation we
need to solve (16) for e{k,n), as:

o(k,n) = - 1 + 1/2 o(k-1,n) ¢ R} Qan)
vith R given by:

Re1l+ 1/4 o*(k-1,n) + 2 o(k-1,n) -

- 3 o(k-2,n) + o(k-3,n) + o(k,n-1) (18)
Expressions (17-18) will be referred to as

the "golving recursion” (SR). As it can be
easily inferred, this recursion may be

implemented by the "minimal wvirtual
ptocessor” (MVP) in Fig. 2.
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Fig. 2. Structure of the Minimal Virtual
Processor.
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We refer to this structure as the
"minimal wvirtual processor" (MVP)} becaus:c
this is the lowest order arithmetic structure
being able of computing at least one date
point of the solution in a sampling interval.
In fact one of these MVP's may be implemented
by ssveral “physical processors" depending on
how wmuch computational power we may
physically assign to solve the problem. To
save the gap betwean tha virtual domain and
the physical domain, we must wuse mapping
concepts, as stated before. Some other MVP
may be obtained in the case that
representations other than FED would be used
for time and space derivatives from Numerical
Analysis [Ger.B4), from which a family of
Signal Processors may be obtained with
different degrees of acecuracy. A Minimal
Physical Processor (MPP)} is under design,
this structure being the minimal amount of
arithmetic hardware and memory which allows
the implementation of one MVP, using the
principle of ‘“maximal compression”, which
means that 4if an arithmetic operator (let's
say addition) is found p times in the MVP,
then we will implement physically only one
such functien, which will be called p times
on different data to implement one MVP. Of
course, this need not be the best solution by
far, but gives a hint on the complexity of
the physical implementation problem, the
mapping strategies to be used, and the amount
of area and pover consumption to be expected
at the time of integrating the result as a
VLSI structure {Gém.87]. The implementation
of the Arithmetic Unit in the MPP can be done
as suggested by Zurawski [Zur.87].

NONLINFAR INVFRSE SCATTERING METHODS

In a rather different approach, the
present study may be generalized to other
problems of the same kind by standard
Spactral Analysis wmethods as in the linear
case, if s counterpart of these methods can
be found in the nonlinear case. This
counterpart is currently known as Inverse
Scattering Transform Methods (ISTH) [Abl.74],
and constitute a generalization of Fourier
Methods to <+the nonlinear domain. These
methods may produce lattice-type algorithms,
presenting the additional advantage of being
strongly connected with the problem of Line
Transmission Inversiom (Son.Bl1). The general
idea behind the IST is to treat the wvaves
travelling along the nonlinear medium as
dispersive potentials for some ficticious
sinusoids. We would find the transmission -or
reflection- coefficients for this vaves as a
function of their wave mumber in a given
instant of time (the Scattering data), and
solving the (linear!) time evolution
equations for the scattering data at a
further instant from which we would finally
infer the scatering potential (the state of
the wave under propagstion). This is
considered as a generalization of Fourier
methods because in the limit, as far as small
amplitudes are involved {weak nonlinear
effects) the IST can be seen as the space
Tourier transform of the wave, solving the



&

evolution aequation for each wave number and
reconstructing the wave by inverse space
Fourier Transform. The main advantage of the
IST comes from the fact that in Linear Systen
Theory it ig straight forwvard to treat
discontinuities by means of the raflection
coafficients at the pPoints where these are
mat, 80 it could also be possible to define
Some  kind of reflection functions for
nonlinear problems which vould enable us to
treaat vave pPropagation in nonlinear
non-homogensous medfa in a similar way.

DISCUSSION AND APPLICATIONS
e e AT LIVATIONS

The present model is being studied using
finite element methods. In a first step the
study has been extended only to homoganeous
media with step-like d:llcont:l.nultiu. in
order to traca the reflection phenomena. The
next steps to be covered will deal with the
simulation of non-homogeneous cases, to be
pracigely represented by empirical
formulation through trial and error methods
and by Mathematical Analysis. The results
will be checked against datg collected
experimentally, sueh as "Kemp  Echoes"
[Kem.78]. Other activities to be further

developed are the study of the optimum
physical processors amenable of baing
implemented ag VLSI structuras + and the

mapping techniques associated. More research
need to be done in testing the numerical
behavior and stabilicy of the FED pProcessor.
The expected results will help to improve the
design of Hearing Prostheses and to develop
the study of Nonlinear [Lattices. A better
understanding of the Auditory System behavior
is also expected.
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