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Van der Pol Realization of Torus 
Knot Oscillators 

Abstract -Van der Pol type nonlinear oscillators are used for the design 
of a torus knot oscillator. This involves replacing the structurally unstable 
linear oscillators of previous theories by nonlinear Van der Pol ones which 
can be designed using an op amp realized piecewise-linear negative resis- 
tor. The resulting five design cases are then conveniently treated using 
piecewise-linear theory to yield limit cycles from which the torus knots are 
formed. The resulting equations are used to obtain computer generated 
torus knot trajectories. 

I.  INTRODUCTION 
N THEIR everyday lives, humans frequently tie knots, I for example, in wrapping packages, putting on shoes, 

weaving, tieing boats to a dock, etc. As robots take over 
some of these jobs especially in conditions hazardous to 
humans, clearly there will be times when it will be desired 
to have robots forming knots. Consequently, it seems of 
interest to have electronic signals available which describe 
knots so that these may be applied as the need arises, 
perhaps in the coordinated motion of knot-tieing robot 
arms. Among the knots the most frequently met are the 
torus knots, so here we discuss a technique to practically 
obtain electronic signals that describe a torus knot. 

Already it is known that a torus knot oscillator can be 
realized electronically by the use of two linear oscillators 
[l]. However, the system obtained is not too practical since 
it is not structurally stable, that is, with the slightest 
perturbation in the initial conditions there is a correspond- 
ing perturbation in the response. Since Van der Pol oscilla- 
tors are known to be structurally stable [2], here, for the 
design of a torus knot oscillator, we use two nonlinear 
oscillators of Van der Pol type. Of importance is the 
characteristic of Van der Pol type nonlinear oscillators of 
having unique stable periodic solutions. We use this char- 
acteristic to design a torus knot oscillator and show that 
for any positive value of the Van der Pol parameter p ,  we 
can obtain a torus knot oscillator. The resulting torus knot 
oscillator, obtained by employing two nonlinear oscillators 
of Van der Pol type, is structurally stable. 

In Section I1 of this paper we give a brief review of the 
theory of linear torus knot oscillators. In Section 111, we 
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replace the linear oscillators with nonlinear oscillators of 
Van der Pol type and by the use of computer aided design 
methods we find the unique periodic solution of the Van 
der Pol type oscillator. Section IV contains considerations 
for the electronic circuit design of the resulting nonlinear 
torus knot oscillator. 

11. REVIEW OF LINEAR TORUS KNOT OSCILLATORS 
A torus knot can be thought of as a closed trajectory on 

a torus [3]. As such it can be created by coupling closed 
curves that traverse two circles, the coupling being the 
direct product reduced from four-dimensional space down 
into three dimensions. And, since a torus is anything that 
is topologically equivalent to the direct product of two 
circles, we can actually realize a torus knot by coupling 
trajectories on ellipses or square-like closed curves. With 
these ideas on hand we see that a torus knot oscillator can 
be realized electronically by the use of two linear oscilla- 
tors of the form given by (1) [l]: 

dx/dt  = y (14 
dy/dt = - ( wl)’x Ob) 

dz/dt = w (14  

dw/dt = - ( o , ) ~ z .  ( 1 4  

In x - y - z - w space, (1) generates the direct product of 
two circles, defined by (2) and (3): 

( O ~ X ) ~ +  y 2  = ( R,)2 
( w Z z )  2 + w 2  = ( R 2 ) 2 .  

(2) 

(3) 

Here the radii R, and R ,  are fixed by the initial condi- 
tions. The x - y  plane circle is traversed at a radian 
frequency w1 and the z - w  plane one is traversed at a 
radian frequency w2. Equations (1)-(3) describe a torus in 
real four-dimensional Euclidean space R4, [4, p. 1611, and, 
therefore, they describe a (U,, U,)-torus knot. To define 
the trajectories on a torus in the real three- 
dimensional Euclidean space R3,  we follow Pams [5 ]  and 
introduce the following reduction from four to three di- 
mensions: 

Let 

D = w + A ,  A =constant (4) 
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TABLE I 
VARIABLE AND PARAMETER CHOICES FOR THE THREE REGIONS Y 

Region 

I1 (middle) -m 
I11 (left) 

introduced: 

K X - K ’ ,  X > a  (104 
- a < X < a  (lob) 

(104 K X + K ’ ,  - a < X .  Fig. 1. Van der Pol type nonlinearity f( X ) .  

and 

x = x / D  ( 5 4  
Y = Y / D  (5b) 
z = z / D  ( 5 4  

X =  UIX ( 6 4  

Y = y  (6b) 

( 6 4  Z = ( R I w 2 ~ ) / [ A 2 - R 2 ]  2 1/2 . 

These give the following standard three-dimensional torus 
equation in terms of X,  Y, and Z .  

Z 2  + [ R - [ X 2  + Y2]1’2]2  = r 2  (7) 
where 

R = A R l / [ A 2  - R ; ]  

r = R l R 2 / [ A 2  - R ; ] .  
( 8 4  

(8b) 
Equation (7) is the equation of a torus in X - Y - Z  space 

with a meridian circle of radius r revolved around an axial 
circle of radius R with the axis of revolution being the Z 
axis. Therefore, (1) in conjunction with (4)-(6) comprise a 
set of semi-state equations for trajectories on a torus in the 
three-dimensional X -  Y -  Z space. These trajectories form 
(wl, w,)-torus knots. 

111. VAN DER POL TYPE OSCILLATORS 

A .  Defining Equations 
Here we replace the two linear oscillators in the set of 

equations (1) by two Van der Pol type oscillators, where a 
Van der Pol type oscillator is defined via the following 
equations (9). In (9) p is the Van der Pol parameter and 
f ( X )  is the Van der Pol type nonlinearity which, because 
of its ease of realizability, here will be taken to be of the 
piecewise-linear form given by (10) and shown in Fig. 1; T 
is normalized time. 

d X / d T =  Y - pf( X )  ( 9 4  
(9b) d Y / d T  = - X .  

One can look upon (9a), (9b) as being (la), (lb) with 
x =  X ,  y = Y ,  t = T / w l  and the following nonlinearity 

In these equations a ,  K ,  K’ ,  p,  rn are positive constants. 
With this type of nonlinearity a Van der Pol type 

oscillator has a unique periodic solution (a limit cycle in 
the X - Y  plane) and we use this characteristic of Van der 
Pol type oscillators to design a torus knot oscillator. For 
this we merely replace the two linear oscillators in (1) by 
two nonlinear oscillators of type (9)-(lo), with different 
renormalizations of time (to yield the two different periods 
for traversal of the torus circles), and show that for any 
positive Van der Pol parameter, p, we have knotted trajec- 
tories. Preliminary to this design we now proceed to dis- 
cuss a computer-aided method for finding the periodic 
solution and the period of oscillation for a Van der Pol 
type oscillator with the piecewise nonlinearity of (10). 

B. Periodic Solutions 
With reference to the set of equations (9) and (lo), there 

are three regions of the X - Y  plane corresponding to the 
three branches of f ( X ) ,  as shown in Fig. 1. Further we 
observe that there are three possible types of solutions in 
each region depending upon the slope of f ( X )  in the 
region. Thus, in solving (9) we need to consider nine 
separate cases. However, in essence three cases suffice by 
making simple transformations from the X - Y  plane to a 
g - h plane. Table I shows these transformations. 

Therefore, we introduce the general set of differential 
equations (ll), which, with reference to Table I, define the 
appropriate differential equations for each region of f( X ) ,  
as shown in Fig. 1. 

d g / d T =  h - pMg (W 
d h / d T =  - g .  (W 

Here, we should mention that in defining the actual 
solutions X and Y we use subscripts I, IIL, IIU, and I11 
which mean solutions in region I, lower part of region 11, 
upper part of region I1 and region 111. The general solution 
to the set of differential equations (11) are of the following 
form 

where 
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and h ,  and go are the initial conditions which will be (22): 
defined later for each region of Fig. 1. The characteristic 
equation is given by (14): g ( T )  = hoe [sin ( CT)(  C + F * tan +) 

+ cos ( C T ) (  C * tan + - F)] (224 

h ( T )  = hoeFT [cos ( C T )  - sin ( C T )  * tan+] (22b) 
s 2 +  pMs +1= 0 (14) 

and the natural frequencies are given by the following 
equations : where 

I 

With these general solutions on hand we now consider 
Fig. 1 in order to find the periodic solution of the set of 
equations (9). We start at a point A ,  this being on a 
trajectory which we would like to be the limit cycle; for 
convenience we take A corresponding to the boundary of 
the right and middle region. Thus X,, the X coordinate of 
A is known and to numerically determine the Y coordinate 
of the limit cycle we assume a value YA for it, and iterate 
upon Y,. Therefore, we have the following: 

3 2  = (( - PM) - [(PM)’-4] ”’}/2 (15b) 

for which we see from (14) that 

s1 + s2 = - p M ,  (15~) 
S1’S2 =1 

To simplify the following development of solutions suit- 
able to computer calculations we set 

F= - pM/2, 

= j C  (W 
There are three cases to consider depending upon p M .  

Case I :  ( P M ) ~  > 4 
From (15), we have 

s l = F + B  (174 

s , = F - B  07b)  
and the general solutions to the set of differential equa- 
tions (11) are found from (12), on using (15c), (15d), to be 
of the following form: 

To begin, we move clockwise on the limit cycle; while 
- a < X <  a, f ( X )  is given by (lob), and, therefore, we 
replace f( X )  in (9) by (lob); with reference to Table I we 
are in region 11. Therefore, from Table I we make the 
proper substitutions to get the set of equations (11). De- 
pending on the value of ( P M ) ~ ,  we have three possible 
cases with the three different sets of solutions given by 
equations (18), (20), and (22). The initial values h ,  and go 
are defined by (24): 

go = X, = X,,,(O) = a (244 

Case 2: ( p ~ ) ~  = 4 
Then from (15) we have 

s1 = s2 = F (19) 

where F is +1 or -1. The general solutions are of the 
following form. 

g ( T )  = (Fgo+ho)TeFT+goeFT (204 
h ( T )  = - ( g o +  Fho)TeFT+hoeFT (20b) 

Case 3: ( p ~ ) ~  < 4 
From (15) we have 

Now, we continue moving on the chosen trajectory until at 
time T = f ,  we reach point B of Fig. 1. The X coordinate 
of B is equal - a and we call the Y coordinate of B, Y,, 
which is equal to YIIL(tl). These values will, therefore, be 
the initial conditions for the left region. For all X <  - a, 
f( X )  is given by equation (1Oc). With reference to Table I, 
we make the proper substitutions for g and h in terms of 
X and Y to get the next set of differential equations (11). 
Here, again we have three different possibilities depending 
on the values of ( P M ) ~  and three subsequent sets of 
solutions given by equations (18), (20), and (22). go and h ,  
for region I11 are given by (25): 

go = X B  = XIIL( t1 )  = ~ I I I ( 0 )  = - a (254 
ho  = Y, - p K ’ =  YIIL(tl) - p K ’ =  YIII(0) - p K ’ .  (25b) 

The solution continues on the chosen trajectory until it 
reaches point C at some time T = t ,  for whch X ,  = - a 

s l = F + j C  (21a) 

(21b) s 2 = F -  jC .  

Here the general solutions to the set of equations (11) are 
again given by (18) which when expressed in real form are 

and Y, = YIII(t2). We then transfer-to the middle region 
where again - a < X <  a and we have f( X )  given by 
(lob). The resulting differential equations are again trans- 
formed to (11) with the proper substitutions from Table I. 
Here, however, the initial conditions are the coordinates of 
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point C defined by Since we want to design a ( wl, a,)-torus knot oscillator, we 

go=X,=XIII(t2)=-a=X,,U(0)  (26a) 

Moving further on the trajectory, we reach point D at 
T = t 3 .  The coordinates of point D become the initial 
conditions for the right region. We have 

ho=Yc=Y111(t2) =yIIu(o)* (26b) 

X D = X I I U ( t 3 )  = a  (274 

‘D = ‘11, ( ‘ 3 ) .  (27b) 
From Table I, and (loa), we make the proper substitu- 

tions for f ( X ) ,  g and h in the differential equations (11) 
and depending on the values of ( P M ) ~ ,  we have our 
solution given by either equation (18) or (20) or (22). go 
and h ,  for region I are given in the following form. 

go = xIIU(r3) = X ,  = U = x,(o) (284 
ho = YIIu(t3) + p K ’ =  Y, + p K ’ =  YI(0) + pK’ .  (28b) 

At T = t,, we again reach X = a, hopefully at point A, 
where we originated our move. If Y(t4)  # Y, then we 
repeat the process by perturbing Y,, increasing it if Y( t4 )  
< Y, or decreasing it if Y( t4 )  > Y,. This process of itera- 
tion is continued until Y( t4 )  = Y, to within an acceptable 
error. According to [2], there exists a limit cycle, that is, a 
periodic solution, for all positive values of a, m, p ,  K and 
K’. Therefore, with enough iterations and within a pre- 
scribed error we are able to find this periodic solution for 
any value of positive constants a, p ,  m, K ,  and K’. 

If our assumption of being on the limit cycle is true, we 
have the following: 

x , ( t 4 )  = X, = x,,,(O) = U  

W 4 )  = y, = YII,. 

Y, = - Y,. 

(294 

(29b) 

(30) 

Because of the assumed symmetry of f( X ) ,  we have 

The limit cycle looks very much like a circle for p small 
and for larger values of p looks like a rectangle, as with the 
standard Van der Pol Oscillator [6]. 

Now, we proceed to give the theory for the design of a 
torus knot oscillator, using the Van der Pol type oscillator 
whose limit cycles we are able to determine by the above 
equations. 

IV. DESIGN OF A TORUS KNOT OSCILLATOR 
For the design of a torus knot oscillator we begin with 

two identical Van der Pol type oscillators in two different 
time frames of the following form: 

dX/dT = Y - pf( X )  (314 

dY/dT = - X (31b) 

time scale each Oscillator separately, that is, we write the 
following transformations: 

T =  w,t (334 

x = x  (33b) 
Y = y  (334 
T‘ = w,t (344 

z = z  (34b) 
w = w  (344 

where now t is the true time. 
Using (33) and (34), and making the proper substitu- 

tions in equations (31) and (32) we have the following 
four-dimensional description of our knot in true time t. 

dx/dt = U l b  - P f b N  (354 

dy/dt = - U , X  (35b) 

dz/dt = U,( w - pf( z ) )  (364 
dw/dt = - U, Z. (36b) 

We call the true period of oscillation of the oscillator 
defined by (35), T,, and call its frequency of oscillation Q,. 
Similarly, using subscripts 2 for the other oscillator, on 
using (33) and (34), we have 

TI = TP/U1 (374 

52, = 2 T / ( T P )  (37b) 

T2 = TP/% (384 

52, = 2awz/(TP).  (38b) 
Following [l], the set of equations (35)-(36) describe a 

torus in the real four dimensional Euclidean space, R4. 
The x - y  plane liniit cycle is traversed at the radian 
frequency 0, and the z - w plane limit cycle is traversed at 
the radian frequency P,. We then impose the constraints 
of (4) and (5) which reduces the torus from four to three 
dimensions. It should be noticed that since the Van der Pol 
type oscillators’ limit cycles are not quite circles the result- 
ing torus is not quite a circle revolved around another 
circle but is a closed path revolved around another similar 
closed path, and, hence, is equivalent to the torus. For very 
small values of p we essentially do have a meridian circle 
revolved around an axial circle. However, for large values 
of p we have a meridian rectangle revolved around an axial 
rectangle. In any event equations (35) and (36), in connec- 
tion with (4) and (5), describe a (a,, P,)-torus knot, which 
is equivalent to a (U, ,  U,)-torus knot. The latter equiv- 
alence results from the fact that Pl/P, = T2/T,  = ( w 1 / T P )  
/ ( w 2 / T P )  = w 1 / w Z  where we take U ,  and U,  to be prime 
integers. It is to be noted that Tp cancels out, and, hence, 

dZ/dT‘= W - pf( Z )  
dW/dT’= - Z .  

knowledge of its value is not needed to insure that a torus 

Using (11)-(38) we have designed a computer program 
(32a) knot results. 
(32b) 

In (31) and (32), f( .) is defined by the set of equations 
(10) and is shown in Fig. 1. The period of oscillation of the 
oscillators defined by (31) and (32) is the same; call it Tp. 

which draws a (q, U,)-torus knot. In this program we find 
the limit cycles for a given value of p graphically. One 
limit cycle is in the x - y  plane and the second limit cycle 
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licr 
Fig. 2. Spinning and tipping. 

is in the z-w plane. Starting at the time t = 0, and then 
incrementing t ,  we used the set of equations (4)-(6) to plot 
a point on the torus in the three dimensional space. We 
call the coordinates of this point world coordinates 
(Xl, Y1,Zl) in the three-dimensional world space in which 
the torus is placed. From (4) we notice that A is a 
constant. However, A need not be a constant and can be a 
function of x ,  y ,  z ,  w. 

In the program we set A = ( x 2  + y 2  + z 2  + w2) l I2  and 
we have used viewing transformations that take us from 
our three-dimensional world coordinates to the two-dimen- 
sional coordinates of the screen, here called (X2, Y2). The 
viewing transformations have been broken up into three 
sub-transformations: first one or two 3-D to 3-D rotations, 
then a three- to two-dimensional parallel projection, and 
finally a standard 2-D viewing transformation onto the 
screen. Every 3-D rotation is characterized by a world axis 
of rotation and a world plane of rotation as shown in fig. 
2. There are rotations whose plane of rotation is one of the 
principal planes formed by the world coordinate axes. We 
will use two of these: spinning and tipping. For spinning, 
the plane of rotation is the X1-Y1 plane and for tipping, 
the plane of rotation is the Y1-Z1 plane [7]. A spin of 
zero and a tip of 90 degrees will show the top view of the 
knot, that is, the projection of the knot on the X1-Y1 
plane, which becomes the X2-Y2 screen plane. Spin = 90, 
tip=O, will show the side view of the knot, that is, the 
projection of the knot on the Y1-Z1 plane, which in this 
case is the X2-Y2 screen plane. Spin = 0, tip = 0 will show 
the front view of the knot, that is, the projection of the 
knot on the X1-Z1 plane, which will become the X2-Y2 
screen plane [7]. The top views of (3,4)-, (4,3)-, and 
(ll,lO)-torus knots are shown in Fig. 3(a), 3(b), and 3(c). 
From Fig. 3 we notice that the top view projections of all 
these knots are in regular positions, and the (3,4)- and 
(4,3)-torus knots are topologically equivalent, [5] and [8]. 
In the case of the (ll,lO)-torus knot shown in Fig. 3(c) the 
actual shape of a torus on which the knot is tied is quite 
clear. 

Fig. 4(a) and 4(b) show the front and side views of the 
projected images of a (4,3)-torus knot on the Xl-Z1 and 
the Y1-Z1 world coordinate planes. Even though this 
knot is not shown in its regular position in these figures it 

(C)  

Fig. 3. Typical torus knot trajectories, p = 3. (a) (3,4)-top view. 
(b) (4,3)-top view. (c) (11,1O)-top view. 

(b) 
Fig. 4. (a) (4,3)-front view. (b) (4,3)-side view. 

is evident that the trajectories travel four times along the 
meridian circle and three times along the axial circle. From 
these figures it is also clear that all the trajectories close 
upon themselves. 

With reference to (35) and (36), we observe that for the 
electronic circuit realization we need to give the circuit 
design for f (X)  and f(Z). For these functions we have 
followed the theory given in [9] based upon the op amp 
negative resistor of Endo [lo, p. 151. The detailed elec- 
tronic circuit design of f( X) and f( Z )  and a ( wl, a,)-torus 
knot are given in [8]. 

V. DISCUSSION 
Here, we have used two nonlinear oscillators of Van der 

Pol type to design a torus knot oscillator. Van der Pol type 
nonlinear oscillators are structurally stable, and, therefore, 
the system of torus knot oscillators, as a whole, is a more 
practical system than one constructed from linear oscilla- 
tors. It should be noted that since we do not know how to 
determine the period of a Van der Pol oscillator analyti- 
cally we have used identical oscillators as a base since 
these have identical periods. Then by a time scale change 
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on each oscillator we have been able to get desired ratios 
of periods, these being what are needed for the torus knot 
oscillators. Thus even though we do not know the exact 
period it is immaterial since only the ratios matter and in 
the ratios the Van der Pol period cancels out when we use 
identical oscillators. In the electronic circuit design of a 
(w,,w,)-torus knot 181, the ratio of o1 to o2 for the 
realized knot, is obtained as a ratio of resistors. This ratio 
must be rational for the trajectory to be a knot, since if the 
ratio is irrational the trajectories never close upon them- 
selves. On the computer of course we can obtain precisely 
a rational number but in experimental practice it is a 
philosophical question, with various paradoxical responses, 
as to whether such can ever be obtained. However, to the 
resolution of our oscilloscope trace we obtain closed trajec- 
tories from the actual electronic circuits realizing the knots, 
and this should be satisfactory for practical applications of 
the knot theory developed here. Although this question of 
whether rational or irrational ratios are obtained is a 
philosophical question, it is a fascinating one of consider- 
able practical interest since experimentally one may some- 
day need to know whether an irrational number is (or even 
can be) precisely implemented; but any experimental tech- 
nique probably lacks the resolution to determine as to 
whether a number is irrational or rational since the latter 
are dense in the former. Still, in theory some results, such 
as the closure of our trajectories into knots, depend upon 
having a rational rather than an irrational number imple- 
mented. 

In the above we have assumed a symmetric nonlinearity 
f ( X ) .  This is primarily for clarity of the presentation and 
is not necessary for the actual operation of the knot 
operators as long as there is a negative resistance region 
surrounded by two positive resistance regions. 
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