Binary Petri-nets and FROLOG for Intelligent Robots*

. Cai®, A. Farnham®, P, Gomez ™, M. Hermida™,

R. Newcomb®™, V. Rodellar™, and J. Tian®
®Microsystems Laboratory -
Electrical Engineering Department

University of Maryland -
College Park, Maryland 20742 USA

Fhoner (301) 454-4B4%
*Computer Science Department

University of Maryland

College Park, Maryland 20740 usa
"Groupo de Gistemas PARCOR

Facultad de Informatica

S Universidad Folitecnica de Madrid
Ctra. de valancia, Km 7,00

28031 Madrid

Abstract:

This paper presents two algorithms <for
implementing binary Petri-nets ucing the
logical 1anguage PROLOG. The first
algorithm is derived directly #rom the
characleristice of the Petri-net graph.
The second algorithm is an implementation
of the equations governing binary
Petri-nets. We wuse the implementation of
the equations to verify the results of the
first algorithm.

We use PROLOG to analyze the
implementation of a binary Petri-net graph.
FROLDG and binary Fetri-nets are reviewed,
and the program structure for the two
algorithms is given. The implementation of
the binary Petri-net graph is identical to
the implementation of the binary Petri-net.
Cunsequently, if a line of robots is based
on the binary Petri-net, the behavior of
the line can be analyzed. When used with
direct executing computer architectures,
the binary Petri-net becomes an extremely
efficient method of modelling intelligent
production lines.

1. Introduction

Binary Pelri-nets can be used to
model intelligent robots and related
systems, such as flernible production lines
[11l. In such an application, the
implementation of the Petri-net graph is

identical to the implementation of the
FPetri-net mathematical mode] .
Consequently, the qualities of the

productien line can be analyzed prior to
building the line. The equations describing
the Fetri-net provide for a high level
logical I anguage that, when executed,
enactly represents the binary Petri-nets
logical equations. Therefore, implementing
the binary Fetri-net equations with the
high level logical language PROLOG Qives us

© This research was supported in part by
the US-BPAIN Joint Commission under
Grant CCE-B4-02-002.

TH0199-0/R7/0000-0057501 )0 © 1987 JEEE

57

Spain

an opportunity to investigate the behavior
of an intelligent robot systesm,

The advantages of using a computer to
analyze the model aret (1) The computer can
implement a 1logical program based on the
Petri-net model; (2) After the CFU reads
the system’'s states, the computer databases

can be altered to represent the
implementation of the binary Fetri-net
system. The continuous monitoring of the

databases allows for deadlock and conflict
actions to be solved immediately; (3} The

high-level PROLOG 1l anguage can be
associated with high lavel computer
architectures, thus providing an efficient

means to implement the binary Petri-net
system (23[3).

In section i1, we review the equations
that gavern the behavior of binary
Fetri-nets. In section 111, we present an
algorithm for a PROLOG program derived
directly from the FPetri-net graph,
Additionally, we give a brief discussion on
the behavior of PROLDG. In section IV, we
eresent our algorithm +4or producing a
FROLDG program from the equations. Foth of
these programs implement a binary Petri-net
model of a syctem. A fina) discussion is
included that gives the relation between
the execution of the binary Fetri-net model
and the execution of FROLOG.

11. The Equations Describing the Binary
Fetri-net .
Binary Fetri-nets have been
represented in terms of integer algebra
{43, The +ull set of equations describing

binary Petri-nets allows for the
determination of the firing vector in terms
of the marking +Function and the input.
During system execution, there are logical
relationships among the finite set of
initial states, the +inal states, the
marking function, the external inputs, and
the timing sequence. In binary Fetri-nets,
actions are modelled by trancitions, and
eccurrences are modelled by the firing of a

o o et e ——— = ——



transition at time %, where % is an element
of the time sequence 0,1,2,...,N. It is
important to analyze the sequence of

actions in the system, because it exactly
describes the execution behavior of
Petri-nets., I1¥ we use the set of possible

sequences of actions of the cystam, then we
can implement the system by executing these

sequences. Consaquently, we use the
transition as a basls for our +first
algorithm using PROLOG,

In a binary Petri-net, thera is a
strong logical relation between system

states and actions associated with a firing
time sequence (5). Therefore, we use the
logical language PROLOG to describe these
logical relations) ‘and we implement the
systam as a logical program in a computer.
The system state equations represent simple
logical relations between the system firing
function, marking function, input function,
and initial ttates. In contrast to
Petri-nets wi thout timing sequence
restrictions, binary Petri-nets execute
with clocked timing sequences. Thase timing
sequences trigger the system implementation
and maintain the systam state consistency.
8ince most robot systems are real time
systems, binary Petri—-nete should suitably
model tham for real time performance,
especially in the case of flexible robot
production lines [1]. )

The clocked processors of an assambly
line of robots can be modelled using binary
Petri-nets. The actions of the robot 1line
might depend upon the absence or presence
of just one jtem (or token like signal),
The processor can be thought of as an array
of gates. The output of any cne gate will
be transmitted to all the gates connected
to it. For timed binary Petri-nets, the
number of ¢tokens in a place is a binary
number and each place connected to a +¢irsed
transition receives a token.

For binary Petri-nets with p places
and t transitions, Mi(x: is the t-vector
containing the firings at time %, An entry
of 1 denotes a firing at time %, while an
untry of O denotee no firing at tise ).
The external inputs (into the places) are
contained in the p-vector I{(3), with
entries restricted to 1 or 0. .Matrix
CuC=-C= 43 the incidence matrix and MoiD)
is the initial net marking mat: ‘. The
entries C.us" of C* are 1 or O depending on
whether transition {4 is incident or not
incident upon place J. Likewise, the
entries Cuu" of C~ are | or O depsnding
upon whether place J s incident or not
incident wupon transition f. With these
preliminaries, we can give ths binary
FPetri-net transition functions.

.t

Miadddig (2)+] (o) {la)
F(ae1)mC=Dri(a) {1b)
) o (3+1) (2} +CTF (2e1) tic)

In equations 1, “&*, {g the dot
equality which means that we carry out the

.

operations on the right using normal
integer arithmetic. Then, 4in the final
result, we replace every positive numbsr on
the right by 1 and every other numbar by O.
This forces the Petri-net into a statas
restricted to binary numbers. The “O*
operation ie defined as

acb-tl.'Vh.)a(a.‘Vba)A...A(a,'Vh.)A
ta.Ab.Va;Ah;V...Va.Ab.]

whare a is a row p-vector of zeros or ones,
b is a column p-vector of zeros or ones,
i=0,1,se.p, and V, A, and are logical
boolean AND, DR, and complement operations,
respectively.

I111. Using the Graph as a Basis for the
PROLOG Program
In this section, an implementation of
binary Petri-nets 1e derived from the

Fetri-net graph, rather than from the
logical aquations. The program takes
advantage of the characteristics of the

transition in a Petri-nat. A transition
will +fire only when each and every one of
the input places has a token availablae.
The PROLOG program similarly checks for
tokens 4in avery input place of evary
transition, Dnce a transition is enabled,
the program transfars the tokens from the
input places to the output places. An
advantage of PROLOG is that it continually
searches for new transitions to fire. The
appropriate application of this quality to
Petri-nets is +for deadlock. Once deadlock
ocecurs, ho more transitions can fire. This
algorithm allows the user to ba able to
produce a binary Patri-net model without
having to go through the trouble of
producing numbers for the equations, The
program allows Ffor an arbitrary number of
places, transitions, and connections
between the two.

The program acts as a systam
simulation tonl, allowing the user to
change the program input if the behavior of
the nat is not satisfactory. This
eliminates any costly hardwars
implementation before the behavior of the
net is. actually known.

PROGRAM STRUCTURE
Step 1, Initialization
a. initialize counters to zero
b, ask wuser to input the total
number of trangitions and
places in the net

- assert the number of
transitions and places into the
database.

d. ask the -user to input the
places that enable tha
transitions.

®@. ask the user to input the
places that the transitions

anabl e,
. assert Gtep 1d and le inte the
database.



9. repeat Step 1d, ie, and 1¢ for
each transition in the net.

Btep 2. External input to ths net
a, ask the wuser If any input is
needed for tha net,
{note that this is the only way
to get out of deadlock) b,
assert tha new marking into the
databsse and proceed to Step 3.

Step 3I. Determining which transitions
are enabled

a, remove all items +From the
database that are from a
previous firing sequence.

b, clear all counters to zero.

c. assert into the database that
all transitions are ready to be
checked for whether or not they
are enabled.

de check for each transition
whether the ®nabling places
have tokens in them.

®., for each transition, kesp an
account of the number of
enabling places that have
tokens,

¥f. for each transition, check ¥or
the total number of places that
had tokens as found by Etep 3e.

g. if the total number pf enabled
places for the transition
matches the total number of
input places, then go to Step

‘-

h. repeat Step 3g for all the
tranuitions in the net.

i, mtart at Btep 2 again. {(this is
an infinite loop)

Btep 4, Firing the transitions

a. change the account of enabled
places found in Step 3e to zero
snabled places.

b. for each input place to the
transition, remove the token
that enabled the tranwmition.

¢. for each output place connected
to the transition, sdd a token
to it.

d. return to Step 3h.

IV. Using the Equations as a Basis for the
PROLDG Program

Ta verify that PROLOG behaves in a
matter appropriate for binary Patri-nets,
we can produce & PROLDG program with the
equations as a basis, rather than the graph
itself, '

FPROGRAM S8TRUCTURE
Btep 1, Initialize the Petri-net
a. assert the external input
vector into the database
b. sassert the initial marking inte

the database
C. assert the incidence matrix

inte the database

Step 2. Solve for marking function
4., call Step 4 and solva for M
b, search databese for current
input
€. add the two, and take the dot
equality
d. go to Gtep 3

Etep 3. Solve for firing function

a. search database for
C—trow-by-row)

b. use the bow equality with the
Marking matrix found in Gtep 2.

€. repeat a. and b. for every row
of C-

d., go to Step 4

Gtep 4. Solve for the intermediate

marking function

a. calculate the transpose of the
incidence matrix

b. multiply this with the firing
vector found in Step 3

€. add this with the currant
marking found in Step 2

d. take the dot equality of this

®. begin again with Step 1

V. Discussian

In real applications, such as flexible
robot production lines, conflict actions
can happen. We can classify these conflict
actions into two classes. There are (1)
logic decision conflicts and (2)
information requirement conflicts. For the
first class of conflicte, we can use the
state equationa of the binary Petri-net to
sat up correct logical relations. Eince the
system states are always consistent when
using the binary Petri-net model, a
conflict decision error can not be allowed
during the system erxecution. For the second
class of conflicts, we can borrow
techniques from computer information theory
and distributed database theory to solve
them. Although system states change during
program execution, we can still use the
algorithms that thece theories provide to
prevent conflict actions in the computer
database. Also, we can treat the central
control computer and any computers in the
robot itself as a distributed system; thus,
we can still use distributed database

techniques to prevent information
requirsment contradictions, such a8
deadlorck.

To test the two programs, we used
Example 1, of Reference £43. The

implementation of the equations provided a
check for the implementation directly +rom
the graphy; however, the implementation of
the graph was wmore versatile. First, no
knowledge of the mathematics was needed to
implement the first algorithm. Moreover,
the graph implementation was abfe to handie
net deadlock more effectively. External
input could be provided for any robot at
any time; consequently, no input vecter had
to be derived to get out of deadlock.

o =



We have presented two algorithms which
implement binary Petri-nets using FROLOG,
The qualities of PROLDG allow for binary
FPetri-nets teo be modelled in a detrministice
mannetr. PROLOG continually gearches for
solutions, allowing all firings of the nat
to take place befare deadlock is reached.
This method of examining binary Petri-nets
can be extended to the less deterministic

classical Petri-net,

Raferences

£13. 2. Cai, A. Farpham, 2, Ghalwash, P,
Gomez, - V. Rodellar, and R. Newcomb ,
“Petri-nets for Robot Lattices,"”
Proceedings of the 1987 I1EEE
International Conference on Robotics
and Automation, vol. 2, March 1987,
PP. 199-204.

£21. K. Hwang, J. Ghosh, and R.
Chowkwanyun, “Computer Architecturss

for Artificial Intelligence
Procesaing,” EE omputer Maga '
Vol. 20, No. 1, January 1987, BPR.
19-27.

£33. Y. Chu and n. Abrams, “Programming
Languages and Direct Enecution

Computers,* EEE m r a N

Vel. l:. No. 7' Julv 1991. PP. 22-32.
€41. H. Alayan and R. Newcomb, *Binary

Fetri-net Relationships,” to appaar in

the lEEE Transactions on Circuits and
Syutem N 19970

£3). J. L. Peterson, “Fetri Net Theery and
the Modeling of Systems,"
Prentice-Hall, Englewood, NJ, 19B1.



309

IEE ON LANGUAGES
FOR AU To M AT ION THE TECHNICAL UNIVERSITY OF VIENNA

VIENNA, AUSTRIA AUGUST 26-27, 1987

H
% X
P,
(3

GHEDEVELIOOMMUNIGATIGN i

‘leo . o
" : Vg g
Tl it 2 Ed
L ,; =i ] A e
S DONSO 3y ras i e ;
* ¥ R
DUG \ ¥ 4
1 A Ry } 34 -
UG iy c t
By - H fs
» s oo 0 ] i.f?i i bites
- OMD r : b I
0 0 o e & Y- 1) X kY
0-£ 0 N g D 88 0 0 0 At
L . s 0 DCla : s
3
y E
i, B g
[ ]
i~ 0 D
D)




