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Abstract:

In this paper the
space equations are set up for an MDS
versal circuit.

nonlinear state-
uni -

I. Introduction
A universal circuit is a second order

circuit which by & change of parameters
allows it to generate stable % unstable
nodes, stable % unstable foci, and saddle

points. Such a circuit with a linear analy-
5is was introduced using vacuum tubes in
f1, p.194] and redone using MOS5 transistors
in [23. Since the actual operation of such
a circuit must be nonlinear., here we ini=
titate a study aof the nonlinear behavior by
setting up the nonlinear state-space equa-
tions which describe the universal circuit.

Since nodes, foci, and saddle points
are the most frequently met critical points
of second order linear and nonlinear dif-
ferential equations, a wuniversal circuit
can be used as a basic building block +or
the design of systems from their differen-
tial equations. Essentially one only need
have it on hand, along with connecting
nanlinearities, to construct almost arbi-
trary systems in electronic form.

11, The Universal Circuit

Figure |1 shows the universal circult
te be considered. In Fig. 1 ry and r= are
the cirruit elements to be changed to
adiust the behavior of the circuit, that is
by a proper choice of these two elements
with suitable choices for the other circuit
elements any type of node, focus, or saddle
point may be obtained. Toward this a graph-
ical representation of design wvalues is
available [1, p.1?4&). BSince there are two

independent capacitors, the system is sec—
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ond order and, as is customary, one may
chonse the capacitor veoltaages as the state
variahles. However, it is more convemient
to use the currents, iy and i=2y 1IN the two
design parameter resistors: so we choose
them as the two state variables. In discov-
ering this convenience lies the creative-
ness of Chaitan 1], Proper biasing of the
circuit is also required and we assume that
this orciws, an is set up 1n 23, such that
the circuit when at rest 1s biazed in  the
curreni source (saturation) region of tran-
sistor operation.

We assume that the NS devices are
described by the functional laws

ig = 0 {la}

1 = F{VamsVam!) (ibh)

where i4 38 the gate current, ia the drain
current, vae the gate to source voltage,
and vae the drain to source voltage: f(.,.)
igs a twp variabie function giving the tran-
sistor curves. Since there are two transis-
tors we use subscripts 1 and 2 on £, and
some other parameters, to refer to the

respective (lefl and right) transisters.

I111. The State Eguations
A. Review of lLinear Case

As hachkruound for the nonlinear case we
raview here the known results for the lin-
sar casfe. For this we assume that the sig-
nal component of the drain current 15 aiven
by

iag © Qm"Vam (1ec}
In essence. {(lc) replaces (1b) 1n the lin-
ear cace, For the seignal components the

state equations are Lthen [J]

] 1
iy = . 5
(R o+rsa-a) C,Ll=

(—«C:i,+E(C.+C=)G-C,]i7} {Z2a)

1 1
g = =
rz CiCo

*{C2i-L[Cy+C=]i=d
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where the super dot denotes time differen-
tiation and

=1 - (RLIQM;)'(R‘_QQ".:) (2c)
g=20 {(2d)

Here g is included to allow ageneralization,
as Qgiven below, to the almost identical
nonlinear eguations. These state eguations
are easily rewritten in matrix form as
di/dt=Ai From which the characteristic
polynomial is found using Pis)i=det{siz—A)
with 1z the ZxX2 identity matrix. Thus,

Pl{s) = 52 4+ a;8 + aag (3a})
with
1 o Cyi+C=
as = —-f + 1 {3b)
C, Ry =2+ary) Cars
1
as © (3c)

reC.Cz{R 2+mra)

Since « will mormally be chosen negative
and since ry and rz enter independently in
these two coefficients, circuit elements
may be adjusted to obtain the two roots of
Fi{s) anywhere in the finite complex plane.
As these roots are the natural frequencies
of the linearized circuit, we see that the
linearized universal circuwit achieves its
purpose of realiting any two (finite) natu-
ral frequencies in the compler plane.

B. Nonlinear Treatment

A straightforward circuit analysis of
Fig. 1 shows that the state variable eqgua-
tions, (2a) & (Zb) above, obtained in the
linear case carry over identically to the
nonlinesr case with the only change being a
modification to the definitions of a« and g8
and consideration of 1: and is as total
currents (rather than just signal). Indeed
we find

aflig,yiz) =1 - a,-a> (4a)
Ria *Faw (iveyva)

oy = (ab)
1 4+ R‘_g "ng'(V3 ,V:)

RLn'fgn(Va,Vz)
e = {4c)
1 + Rz *fa,lva,vs)

RLa'fQV(Va,Va)
Blis,ig) = tad)
1 + R._:"F:v(v:'v:)

In these Fo & <, represent partial
derivatives with respect to the first and
second variables of fi(x,y) and v, and vo
are the gate to source voltaaes of the left
and the right transistors. respectivelyv,

while vx is the drain to source voltage of
the right transistor. These wvoltages are
then to be expressed in terms of the state
variables i, and iz, which can be done as
follows. We have by KVL & KCL on Fig. |

¥i = Fil, + rziz + Va (Sa)
Vo & =R sfalviava) + Vp + Vg {Sb)
wx = =Ry =[1. + 'F:(Vn‘v:g)] + Vp + Vn {Sc)

Equation (5a) is to be substituted into
(Sb) and then (S5b) solved for vz. Assuming
such a solution exists, which will almost
always be the case for MDS device func-
tions, we can find a function g=(.,.) to
write

Ve = Q=liqiyiz) (&a)

The resulting vz is then substitued into
(5c} which in turn is solved for vs for
which we wrile

ve = gxilis,iz) {6b)

Having these solutions in hand, the equa-
tions (4) Ffor o and g are exprersed com-
pletely in terms of the two current state
variables.

As a reasonable example, 1f we assume
that the transistors are identical and
always in the square law (saturation)
region with

Fin) = F(x,yv) = Klu=Vx1=1 (x=Vy) (7)
where k & V¢ are real constants and 1(-) is

the unit step function, then analytic
studies can proceed. In this case we obtain

e =1 = (R F'{v;3))elRe=F' (va) (Ba)

g =0 (Ab)
where

Fiuy=dF (0) Z7dns2K (1-Ve) 1 {(x=Vy) (Bc)

and v, and v are expressed directly in
terms of i, and iz via (Sa,b) without the
need to solve -feedback equations (the
impulse resulting from differentiation of
the unit step function disappears since it
gets multiplied by zern due to x=Vy).

By linearizing about the bias point
the previous results, summariczed in A
above, are obtained since a Taylor series
espansion qQives

Oms = F ' (¥y), Qma = F'{Vz) ()

where V, and V= are the zero signal (bias)
values of the gate to source vpltages v,
and vz. Substitution of (%) in (Bc) vyields
(2c) as desired.

1V, Biscussion
Here the nonlinear state wvariable
equations have been presented for an MOS
umversal circuit., These are seen to be
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identical to those +or the linearization
about the bias peint, except that the par=

ameters a and B become nonlinear functions
of the state variables and total rather
than just signal components are used. In
fact the parameter f is absent in the
linearized case and only present in the
nonlinear situation when the second tran-
sistor’'s drain current depends upon the
drain +to source voltage causing feedback
that alters the desrription; this is basi-
cally only in the ohmic region of transis-
tor operation but also allows ronsideration
of nonzero slope of the constant current
curves. Althpough the parasitic capacitors
of the transistors are ignored, the results
are otherwise very qgeneral, and, hence,
will hold for self generated signals at low
enough frequencies where the transistor
parasitic rapacitances are negligible.

in SUMmary, the nonlinear state-
variahle equations at low frequencies for
this univergal circuit are aiven by egs.
{2a,b}, with a and 8 evaluated using (4)
and (&) .

Since analytic expressions +or MOS
transistors exist 3, p.511, it remains to
evaluate the state variable eguations pre-
sented here in terms of them. Because of
the square-law nature of MDS tramsistors in
their saturation regions it does appear
that Volterra analysis of this universal
circuit may yield some interesting results

toward its design. Likewise it remains to
run CAD curves in the nonlinear case,
though some results that show the feasibil-
ity of the circuit have been obtained in
the linear rase [41.

in order to obtain the desired self-
generated responses it is necessary to set
initial conditions. A study also needs to
be made to determine circuit modifications
needed to conveniently make these settinags
in possibie applications.

The assistance of M. Shen in making a
MICROCAP check of the linear case and the
interest and discussions on the theory of
W. Reiss are gratefully acknowl edged.
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