Multilevel Neural-Type Lattices*

Nevine El-Leithy*, Robert W. Newcomb*, Tuni Aldave*, Victoria Rodellar*, \& Pedro Gomez*

- Microsystems Laboratory, Electrical Engineering Department University of Maryland, College Fark, MD 20742 USA
- Grupo de Trabajo en Sistemas (FAFCOR), Departemento de Electronica, Facultad de Informatica, Ctra. de Valencia, Km. 7,00, 28031 Madrid, Spain

Abstract

A multilevel neural-type logic lattice is introduced following the original description of Toda. Electronic circuits for this Toda lattice are developed and CAD results presented on the soliton type of pulses it handles. Circuits are also discussed for realizing a modification of the previously introduced neural-type logic lattices.

1. Introduction

Freviously multilevel neural-type logic lattices were introduced which work on the soliton principle [1]. In these information is carried on pulses that travel in the system with pulses of different heights traveling at different velocities and not interfering with each other. Electronic circuit realizations of the circuits of [1] require analog multipliers, which though possible for construction in integrated circuit form, are somewhat inconvenient. Consequently, we look here at another class of solitons [2], those from which the equations in [1] are actually transformed. These more fundamental equations have for thier nonlinearity an exponential, rather than a product, and as such should be more amenable to integrated circuit constructions since one can realize the exponentials via solid-state diodes.
II. The Easic System

The basic theory for our circuits is found in [2], an early paper (1967) by Toda where he first presents what has come to be known as the Toda lattice [3, Chap. 7$].$ In [2] Toda considers aniform chain of particles with an exponential interaciton energy between adjacent particles. Fut into state-variable form his equations (2.10) and (3. З) are, respectively,

```
\(m d r_{n} / d t=2 s_{n}-s_{n-1}-5_{n+1} \quad\) (1a)
    \(d s_{m} / d t=-a\left(1-e:: p\left(-b r_{m}\right)\right)\) (ib)
```

* Research supported in part by the usSpain Joint Commission under Grant CCE-B4-02002 and for the first two authors also under the US National Science Foundation under Grant ECS 85-06924.

Here a, b, m are positive constants. With normalized mass, $m=1$, and driven by intial conditions, these are shown to have the solutions \{equations (3.12) * (3.6) of [2])

```
rm=(-1/b).
    ln(1+(2K\mu)2[dn={2K(\mutt+(n/\lambda)}-(E/k)]/ab)
```

$$
\mathbf{s}_{n}=(2 K b / \mu) Z\{2 k(\mu t+(n / \lambda)\} \quad(2 a) \quad(2 b)
$$

where

$$
2 k h^{\prime}=\left[a b /\left[\left(\operatorname{sn}^{2}(2 K / \lambda)\right)-1-1+(E / K)\right]^{1 / 2} \quad(2 c)\right.
$$

and $5 n$, on and Z are Jacobian elliptic functions, which, along with k, are functions of the modulus k and tabulated in terms of $m=k: 2$ [4]. There are actually two solutions, a right traveling one and a left traveling one; we have arbitrarily chosen the left traveling one and obtain circuit realizations for it.

Of interest to us is the fact that the exponential term in (1b) is similar to the solid-state diode characterization [5, p. 142 J

$$
\begin{equation*}
i=-1-\left\{1-\exp \left(V / V_{T}\right)\right\} \tag{こ}
\end{equation*}
$$

where the saturation current, Io, and the thermal voltage, V_{T}, are constants dependent upon temperature. Thus, the Toda lattice of equations (1) should have a nice realization in terms of electronic circuits where the nonlinearity is obtained simply through the use of diodes. However, in realizing (1b) via an integration one runs into a difficulty in that the charge on the integrator simply accumulates due to the diode rectification action. Consequently, it is expeditious to introduce a new Hi a ference variable

$$
\begin{equation*}
Y_{n}=s_{n}-S_{n-2} \tag{4a}
\end{equation*}
$$

Equations (1) are then rewritten as

```
mdrm/dt = Y Y - Y ym+1
    dym/dt =
(4c)
\[
-a\left\{1-e x p\left(-b r_{n}\right)\right\}+a\left\{1-e x p\left(-b r_{n-x}\right)\right\}
\]
```

We do note that we could have chosen $\mathrm{s}_{\mathrm{n}+1}$ as the second term in defining Yn ; this has the effect of changing left going pulses into right going ones.

Toward an actual realization we first perform some normalizations. For this we multiply (4b) by α, (4c) by B, and let s=d/dt to get

$$
\begin{gather*}
\alpha r_{n}=-(\alpha / m \beta s)\left[\beta y_{n+1}-\beta y_{n}\right] \tag{5a}\\
\theta y_{n}=-(a \beta / s)\left[\left\{\exp \left(-(b / \alpha)\left(\alpha r_{n-1}\right)\right)-1\right\}\right. \\
-\left\{\sin \left(-(b / \alpha)\left(\alpha r_{m}\right)-1\right\}\right]
\end{gather*}
$$

It is, therefore, convenient to let

$$
\begin{align*}
& \mathrm{F}_{\mathrm{m}}=\alpha r_{n} \tag{5c}\\
& Y_{n}=\theta y_{m}
\end{align*}
$$

(5d)
Realizing the exponentials via the diodes of (J), Fig. (A) shows a carcuit realization of the nth lattice section of this Toda lattice where we see that

V_{T}	$=\alpha / \ddot{b}$	$(6 a)$
$C_{-} F$	$=m \beta / \alpha$	$(6 b)$
C_{r}	$=I / a \beta$	$(b c)$

Figure 1E) is identical to Fiq. 1A) except that two isolation amplifiers are introduced to breal: some loops that could change the characteristics of the circuit. How ever, we found very little difference in performance between the two types of sections, and, hence, used Fig. $1 A$) for the simulations presented below. We then can mate the following chorces

$$
\begin{aligned}
& a=b=m=1, \quad I=1 E-14, \quad V_{r}=0.025 \\
& F=1 E 6, \quad C_{r}=1 E-10, \quad C_{r}=4 E-8
\end{aligned}
$$

which give $\alpha=V_{T}, \theta=1 E-4$. Here we have chosen $V_{T}=(1 E-2) / 4$ for numerical convenience.

Using these values a cyclic three section systen was simulated using MICROCAF on an IEMFC, the circuit diagram being as shown in Fig. Za); Fig. 2b) contains a NETLIST of node numberings for the connections. For this cyclic comnectaon the mth and nth lattice sections are related by

$$
\begin{equation*}
n \equiv m \operatorname{Mod}(Z) \tag{8}
\end{equation*}
$$

while the problem of loading is avoided since each section sees another to its right and left. However, since MICFOCAF would not proceed with this circuit excited by other than zero initial conditions, it was necessary to insert an external source, this being inserted on the right to charge C_{r} to give a positive Ys. The pulse chosen is listed as $V(t)$ in the NETLIST (item 44). Two different peal. values were chosen to show the speedup of higher amplitude pulses. Among the effects of this external source is to put a bias on γ_{n} in which case a very short pulse was used so that the circuit responses are not unduly disturbed; but a theoretical analysis remains to be made on its mathematical effects. Indeed it
is not clear yet as to how the resulting pulses are related to the soliton solutions given above in terms of Jacobian elliptic functions.

Refering to Fig. 1 the operation of a section can be described as follows. Consider that at a given instant Y_{n} is positive. This tends to make Romi negative, via the presence of Y_{n} on the ($n-1$)st section Cr integrator, which in turn forward bieses the left hand nth section diode causing Y_{n} to decrease. R_{n-i} negative also forward biases the right hand diode of the (n-1)st section causing $Y_{\text {m-i }}$ to go positive in which case the pulse travels to the left. The larger Y_{n} is the faster the $(n-1) s t$ section C_{r} accumulates charge causing Y_{n} to decrease faster (via the left hand nth section diode), in which case the pulse travels faster. At this point we can also see the effect of the alternate choice for Vn_{n} [made by choosing s_{n+1} as the second term on the right of (4a) J; a circuit based on this choice in essence reverses the right and left sides of Fig. 1 , or with the labeling of Fig. 1 has pulses traveling to the right.

Typical results of the simulation are shown in Fig. 3, where the pulse shaping and propagating properties are shown. The signals $Y_{i}, Y_{2}, Y_{3}, i n p u t$ pulse $v(t), F_{1}$, F_{z}, F_{s}, and diode voltage vae are shown in the figure for two different peak values of the input pulse $(14$ \& 8 volts respectively). One sees that in time sequence Y_{3} first forms and then it transfers to Y_{2} and then to Y_{i}. Comparing the upper four portions of the figure with the lower four portions one sees that there is a higher velocity of propagation with the higher peated pulses. Unfortunately, MICFOCAF does not allow us to extend the response much further in time so in the future it is necessary to either simulate with a more substantial program or, better yet, to build the circuit and make real time measurements.

Once having established the feasibility of this Toda lattice realization it is next important to obtain simplified circuits. Toward that we note the very nice differential pair integrator presented in $[6$, Fig. 51 which it seems could be used to simplify the integrator portions of the circuit.
III. Froduct Realization

In [1] the soliton implementations were proposed through the lattice equations

$$
\begin{align*}
& d f_{m} / d t=b_{m}-b_{n+1} \tag{9a}\\
& d b_{m} / d t=\left(f_{m-1}-f_{n}\right)\left(b_{n}+1\right)
\end{align*}
$$

Since the last term necessitates insertion of a bias into the circuits, it may prove more useful to let

$$
\begin{equation*}
F_{n}=f_{n}, \quad E_{n}=b_{n}+1 \tag{95}
\end{equation*}
$$

to get the equations in the form

$$
\begin{align*}
& d F_{n} / d t=E_{n}-E_{m+1} \tag{10a}\\
& \partial E_{n} / d t=E_{n}\left(F_{m-1}-F_{n}\right)
\end{align*}
$$

It appears that the product of (10b) can be realized as part of the differential integrator mentioned above [6] where the current sources biasing the circuit can be made proportional to E_{m}, this following one of the standard ways of making multipliers [7, p.605]. Since the right hand sides of both (10a) and (10b) have difference signals to be integrated, they could then be conveniently realized by the differential integrator, though one would need to switch between appropriately level shifted structures to maintain the system bias levels.

IV. Discussion

Here we have presented a carcuit for the Toda lattice in a form suitable for integrated circuit realization. To do this we have used solid-state diodes to realize the nonlinearities needed in any soliton system. However, for each section we have used two diodes where actually one should suffice, and, thus, we see that there is room for improvement in the circuits realized. For any use as logic elements in a neural-type computer it is of course important to have circuits that can be constructed conveniently in integrated circuit form because of the very large numbers of lattice sections that would be required.

It should be noted that this "Toda lattice" is not a lattice of the kind known as a lattice in the circuit theory and/or digital filtering fields, the term lattice having more the meaning of lattice in the a crystal lattice. However, these Toda lattices have been realized in the literature via the ladder structures of circuit theory [8][9]. Eecause of their possibility of avoiding the use of op-amps to realize the connection constraints of the Toda lattice equations, ladder structures are attractive. However, the ones in the literature are really not practical for integrated circuits since they rely on the use of inductors and the nonlinearity of junction capacitors (which in itself is not of the directly desired logarithmic form). Further, something like 46 sections are needed to develop the soliton pulses [9, p.e82]. Eut by the use of gyrators for inductor
replacement and use of diodes for the exponential nonlinearities it may be possible to obtain nice ladder structures; it is certainly worth further investigation.

One of the bigger problems still to be faced in making these structures practical is how to conveniently form the soliton pulses and how to inject them into the circuits. The means used here of injecting a short sharp pulse is convenient but it remains to see how many travels through the cyclic structure are needed until it is formed into any kind of soliton as well as how to accomodate the dc bias that it inserts into the traveling pulses.

The use of differntial integrators appears to make practical the Toda lattice realized by products, as in (10) above. This aspect of the topic area also needs to be further developed and constructions carried out.

References

[1]. F. W. Newcomb, V. Rodellar, and F. Gomez, "A Nonlinear Lattice for MultivalLed Neural-Type Logic." Froceedings of the 1985 IEEE Workshop on Languages for Automation. Falma de Mallorca, Spain, June 28, 1985, PP. 44-46.
[21. M. Toda, "Vibration of a Chain with Nonlinear Interaction," Journal of the Fhysical Society of Japan, Vol. 22, No. 2, February, 1967, PP. 4S1-436.
[J]. G. Eilenberger, "Solitons," Sprin-ger-Verlag, Eerlin, 1981.
[4]. L. M. Milne-Thomson, "Jacobian Elliptic Function Tables," Dover Publications, New York, 1950.
[5]. D. A. Hodges \& F. G. Jacl:son, "Analysis and Design of Digital Integrated Circuits," McGraw-Hill Eook Co., New Yort: 1983.
[6]. H. Fhorramabadi \& F. Fi. Gray, "High-Frequency CMOS Continuous-Tiem Filters." IEEE Journal of Solid-State Circuits, Vol. pp. 9シ9-948.
[7]. J. Millman, "Microelectronics," McGraw-Hill Eook: Co. New York, 1979.
[日]. R. Hirota \& K. Suzuki," Theoretical and Experimental Studies of Lattice Solitons in Nonlinear Lumped Networts," Froceedings of the IEEE, Vol. ol. No. 10 , October 1973, PP. 1483-1491.
[9]. H. Nagashima * Y. Amagishi, "Enperiments on the Toda Lattice Using Nonlinear Tranismission Lines," Journal of the Fhysical Society of Japan, Vol. 45, No. 2, Algust 1978, PP. 680-688.

Figure 1
nth Section of Toda Lattice Circuit

Figure 3
Tyical Responses

1986 IEEE WORKSHOP ON LANGUAGES FOR AUTOMATION

NATIONAL UNIVERSITY OF SINGAPORE
KENT RIDGE, SINGAPORE
AUGUST 27-29, 1986

