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ABSTRACT

If 2 network N has q_(po) > 0 then it is known that N is
passive at Py In this report we show that if N is a two-port or a
member of a general class of n-ports, there exists a finite passive
network NP such that N and N P have the same admittance matrix at
Po: A simple test for g_ > 0 is given, for most N, and it is shown

that the complex transformer isn't passive when Re P, * 0.
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I. INTRODUCTION

In a previous report, 1* Desoer and Kuh have treated the
passivity and activity of an n-port network N. Besides the normal
concepts of "passive' and "active" two other concepts are defined.
These are '"active at po“ and "passive at Pge " the last of which will
concern us here. In Ref. 1 (p. 13) it is shown that if N has an
admittance matrix a necessary and sufficient condition for N to be
passive at P, is that q_(po) > 0. Since N may be active and still be

passive at Po for some Po the following problem arises.

"If N is passive at Py does there exist a finite passive
network NP such that, at P N and NP are described by the same

admittance matrix?"

This is the problem we will consider. Its importance stems
from the fact that in certain situations it may be possible to replace an
active network by a purely passive one,

In Section II we will review the definitions of passivity and
q_ and extend the concepts to networks without a Y matrix. Also a
simple necessity test for passivity will be given. In Sections III and
IV we will give synthesis methods for a general class of n-ports and
all two=-ports, assuming a Y matrix exists. In Appendix 3 the non-

realizability of the complex transformer for ¢ > 0 will be shown.
II. Q AND A PASSIVITY TEST

Consider an n-port N which is assumed to possess an
admittance matrix Y (p) which is rational with real coefficients. N
is called passive if for any voltage excitation the energy input is
non-negative (evaluated at any time}. Now let N be excited at t = 0
by the voltage vector v(t}) = Re V Pt where V is a vector of complex

constants and p = ¢ + jw. N is said to be passive at P, if, for all

=
Refers to the bibliography.



(II. Q_AND A PASSIVITY TEST)

such v{t) with p = P, and appropriate initial conditions chosen to give
no transients, the energy input is non-negative for all t > 0, (Ref. 1,
p. 5).

Let a superscript tilde, — , denote matrix transposition, a
superscript asterisk, ¥, denote complex conjugation and YH(p) denote

the Hermitian part of Y. Then define, for ¢ >0,

V*Y )V - (o /] p[) [ VYR V]  ifw#O

Q(V,p)=<{ _ (L 1)
V*YH(p) \'4 ifw=0

here [ ] denotes the absolute value of a complex number. Fhysi-

cally, if ¢ £ 0, oL 2ot

into N for a given v(t} at a given instant. Instead of Q , Desoer and
Kuh work with, (Ref. 1, p. 13),

Q_ represents the lower limit on energy

q_(p) = min Q_(V, p) (IL. 2)
vl

where for V = [Vis...,V_ ] we have || VHZ = 3| Vilz. q_ then
represents the smallest energy into N at a given instant for all
normalized non-zero V. Clearly Q (V, pD) must necessarily
be non-negative for every V if N is to be passive at P, Conversely
if q_(po)?_ 0, and as a consequence Q_ > 0for every V, Ref. 1
{p. 13) shows that N is passive at P,

From the physical meaning of Q it should be clear that Q_
is independent of the description of the device. If N has an impedance
matrix _ is defined in a manner dual to Eq. (II.1). For devices

with no Z or Y matrix the required quantity is

1/2)[V*1+T*V] - (e /| p|) | VI| if w#0

& (V,1,p) = (1L 3)
- (1/2)[¥*1 + TV ] if w=0

We will assume that a given network has q_(po)zo. Then at

P, Y is a matrix of complex numbers and can be written as

Y= YRS + YRSS + jYIS + jYISS (IL. 4)



(I. Q AND A PASSIVITY TEST)

where the subscripts R and I refer to real and imaginary parts and
S and SS refer to symmetric and skew-symmetric matrices. The
relation q_(po) puts a constraint on the terms of Eq. (Il 4) which
we will now determine, We first observe that Q_is independent
of YRSS; a fact that is not surprising since YRSS can easily be

rst JYISS’ is
necessarily positive semi-definite. If o,=0o0r w =0this is the

realized by gyrators. Clearly the Hermitian part, Y

only constraint. Otherwise we observe that

(02 + 02 [V V)2 > o Z[TFY4v*][VEV] (LL 5)

Now choose
V= VO
where Vo is a purely real vector. Then

V*Y. Vv =V Y.V

o H o o RS o

~ - _,., (I 6)
VIV, =V Y v +iV YV

Substituting Eq. (IL 6) into Eq. (II. 5) and combining terms gives

2. 2 2.~ 2
%o [vo'YRSVo] z o [VOYISVOJ

Consequently
v, [mo Y

Rst "o Y5l Vo2 0 (IL. 7)

where the inequality holds for either choice of sign and it ig to be

remembered that w > 0. We have then proven the following.
Theorem 1: If N is passive at Py with o2 o, w, > 0, then the
real symmetric matrices

“o YRS T, YIS

W, ¥ps o Vi

are both necessarily positive semi-definite. If N is strictly passive,

i.e., Q_(V, po) > 0 for all non-zero V, they are both positive definite.



(III. SYNTHESIS OF N

P
WHEN Y oo = 0)

The synthesis method given in Section III will prove the following.
Theorem 2: If, at P, with c,20, w, > 0, N has

a) YISS = 0 and

b) mOY Y positive semi-definite (for both signs)

RS ¥ %0 1S
then there exists a finite passive network NP such that N and NP

have the same admittance matrix at P,

As a consequence of Theorems 1 and 2 we see that, if YISS= 0,
we only need to test Q_ with real V. More important, we see that
the positive semi-definiteness of W, YRS to, YIS is a2 necessary and
sufficient condition for N to be passive at P, {since NP necessarily
has g_ > 0). This is summarized in the simple test of Theorem 3,
(Ref. 2, p. 307).

Theorem 3: If YISS = 0, N is passive at P, with T, > 0, w, > 0
if and only if every principal minor of

moY -l-o'oY

RS {for both signs)

18

is non-negative.

WHEN Y =0

III. SYNTHESIS OF N ISS

P

In the synthesis we will generally use the notation of Ref, 3
(p. 8l1) for transformer networks. Since Ref, 3 isn't readily avail-
able, this is repeated in Fig, 1 for reference, Here, if the trans-
former network is loaded at its series terminals by a network of

admittance matrix Y

52 We find for the admittance Y, looking into

the shunt terminals
P d
Yl = TYZT (IL1. 1)

We will have two regions to consider corresponding to the
division of Q_ in Eq. (Il.1}. For w, > 0 we have two cases depen-
ding upon the differences in rank of the two matrices of Theorem 1,

Further several possible synthesis methods are available when

x

n sets of windings

A




n sets of windipgs
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(IlI. SYNTHESIS OF N

P
WHEN Y o = 0)

(a4
[
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.

3
<
N
{series)

t
mn

FIG. l. --Transformer notation, T = [tij] = real.
w, > 0. The main step of the synthesis is the simultaneous diagonali-
zation of YRS and YIS by the use of Appendix 1, These diagonalized

matrices are then realized by obtaining recognizable combinations of

Py

Region It w, = 0

Here Y is purely real, Y = YRS + YRSS’ with YRS positive

semi-definite. Let

0 1
E = [ :l (IIL 2)
-1 0

and let ln denote the unit matrix of order n, Then we can write

{(Ref. 3, p. 117},

e d
YRS = T1 11_1 Tl T = rank YRS
(111. 3)
YRSS=T2[E t.--+ E] TZ r2=ra.nkYRSS
VR
rZ/Z

®
tml 21
1
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M1 7
i
|
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(III. SYNTHESIS OF N

P
WHEN YISS = 0)

Here + denotes the direct sum and T1 and T, are real matrices of
order r,xn and r, x n, respectively. Y(Po) is then realized by
Fig. 2 where a gyrator of the given polarity has an admittance matrix

equal to E of Eq. (IIL 2).

¥{p,)

v
0

H
™
()n-n-()
[ ]
—
s s a0

(o ] o]

A

FIG. 2. --Realization of Y(Po) whenw_ = 0.
Region II: wy > 0

It T, = 0 we know that YRS is positive semi-definite. The

decomposition of Eq. (IIl. 3) can then be used to realize YRS and
YRSS' YIS can be also diagonalized to

YIS="i*'[1rJ; (-1)] T (111. 4)

This is realized by connecting r capacitances and s inductances
through a transformer network.

If T, > 0 then Theorem 1 shows that moYRS + U'OYIS and
W, YRS - o-oYIS are both positive semi-definite, By Theorem A.1
{ Appendix 1) they can be simultaneously diagonalized. Let them
have ranks r, and r_, respectively. We then have two cases de-

pending upon r, <r_ or r,>r_. The results for these two situations

+



(III. SYNTHESIS OF N
WHEN Y oo = 0)

P
are almost identical with Fig. 8 exhibiting one realization for the first

case.

Case A: r <r

In this case we write, by Theorem A.1l,
YRS + (u‘olmo) YIS = T[1r++ On-r+] T
(IIL.5)

Ype-(0 /o )Y =T[A_ 41 __ 40 ikG
RS o o' 1S r, T_-T, n-r+-—r_+rD

Here r_ is the rank of the matrix /\r = diag. [)\.1, cees )\r ], which
has the first To A;>0. Adding and si'ibtracting these, and letting

T, be the first r + r_ - r_rows of TANZ gives

4

Ypg= T+“1r +/\1_ ) + 11_-_1,0] T,
oot (II1L. 6)
Yoo=(o lo )T 11 -\ yi¢1 )T
IS o o "+ T, T, r_-T, +
The final decomposition of Y is then
Y(p)=Y + T {[(1 A Y+ 1 ]
o RSS + r, T, r_-r,
tite /o V[, -\ )E 1 T, (1L 7)
+ + - 7o

The separate terms in this decomposition can nowl be synthesized.
rss = Tp[E +:--+ E] T, which is
realized in Fig. 2. For the synthesis of the remaining terms of
Eq. (IIi. 7) define

As in Eq. (III. 3) we can write Y

(1+Xi)+j(w°/tr°)(1- A;) fori=l,..., T,
¥;(Py) = (111, 8)

l-j(wolo— o for imr +l,...,xr +r_-r_ (if _-r >0)

Synthesis of yi(po) foric= T, +1,..., T, +r_-r s

We can write, by rationalizing llyi(po),



(. SYNTHESIS OF N,

WHEN YISS = 0)
W 0':-}-033 1 U'CZ" +m§' 1
. =]l «j—= . . = - —_— I11.
y1(Po) Jcro o’o cro + Jmo o‘o p‘:J ( 9)

This is easily extended to all p by defining

cr:+m 1

Yi(P) = —T;—— © P (I1I. 10)

These y; are then realized by an inductance as shown in Fig. 3.

Yi(Po) —_— —-—z'——z

FIG. 3. --Realization of Yi(po) foris= r++l, e T HT_ T .

Synthesis of yi(po) fori=1,..., T

Several alternative methods are available. Since these
lend insight into the meaning of passivity at p_, they will all be
described. The first two methods give L-C circuits while the last
one gives R-C or R~L circuits.

Method 1: We can write
Q)

("}
A . ' (]
yilp) = (LA} + jlo /o HL-Ny) = (1+J-0.2°) s (1- s—-o)
2 2
p Ao~ +w)
SUNGLO TP M (LI 11)
0-0 u-0 pD

This is extended to all p by defining



(III. SYNTHESIS OF N

P
WHEN YISS = 0)
2 2
" p )Li(o-o +wo) 1 : -
yApP)=z —+ =cC.p+ ;— II1.
i LR T, P i !ip
This has
2 1 2 2
W = g = li(u'o +mo) (IIL. 13)

11

yi(p) is realized by the shunt resonant circuit of Fig. 4 where the

C_ -
—_— 1/o
Yitpo) o & 4
l Mo, +w))

o

FIG. 4. --Realization of yi(po), i=1,..., r,.
inductances are absent for i > r, (for which Xi = 0}. It should be
observed that yi(po) acts like a resistance at )\i = 1 even though
lossless elements are used. Since parallel resonant circuits work,
it is natural to look for series resonant circuits. This is covered
by Method 2.

Method 2: We can write

_ (14h )P+ /o )E(L-n )
Vi{Po} ={L+A )+j(w fo. W1-n;) = (TFR) = 3o, T5 NI % )

1

fl

T - jw

o A i(o- °+jm°)

v L0k )+ fo )2 0-N )]

o]

+
o L0+ A P+ /o 1411 )°]

1
S A %
o L h e fo 0PN P Tp, o [+ h )P afo )oah )]

(I11. 14)



(III. SYNTHESIS OF N

_ P
WHEN YISS = 0)
This is extended to all p by defining
1
yi(p) = ————— (11L. 15)
E + Pli
where
2 2 2
. N, .. o [0+X,) e fo ) {1-x,)"]
i~ 2 2 A i~ .2 L
0'0[(1+)\i) -+(w°/0'0) (1- )\i) ] oot e,
(1I1.16)
If hi=0then.!i-_-0a.ndifhi¥0then
2 1 u': + wj‘
of =1z = =1 (.17
iTi i

These y; a@re then realized by the series resonant circuits of Fig. 5.

L.
i
vilp.) —s
i‘Fo
T~

C,
1

[ E———
FIG. 5. --Realization of ¥;(Po)s
v i=1,..., T !, and c; given'by Eq. (IIL 16).

Here the inductances are again absent if i > T

T

Method 3: We can obtain R-C and R-L networks by considering various

regions of Ay
Case 1: )\.ifl

We can write

1 . 1 .
yi(PO) =a‘."'°"[o'o(1+ N i)+‘] wo(l_ki” ="a."'; [ZUO Ri'l' o 0(1-hi)+‘]w0(lﬂki)]

(l‘ki)

= Zli + Py (1L, 18)

(o

- 10 -



(III. SYNTHESIS OF N

P
WHEN Y o = 0)

or

P (IL1. 19)

¥iP) = 2 A+ -
These y; are then realized by the circuits of Fig. 6 where the resistance

o
l-?\i
vi{p,) —> 1/2?\i T~ 7y
o

FIG. 6. --Realization of yi(po) for )\i <1

is absent if ?\i = 0 and the capacitance is absent if hi = 1.
Case 2: )\.i >1
We can write

Yi(Pg) = 2 + (A, - 1) - jlo /@ MA = 1)

(hi - l)(u";2 + moz)
=2+ (ILL 20)
o
or
(g - Do 2+l
vile) = 2 4 — s (1L 21)
s}

These y; are then realized by the circuits of Fig. 7. Note that if we
were to let ?Li = 1, this circuit would reduce to that of Fig. 6.

Using any one of the above three methods we can synthesize
Y(po). For example, the network which results from Method 2 is
exhijbited in Fig. 8. The advantage of Method 2 is seen through Fig. 8,
since the inductances can be absorbed in the transformer windings to

yield coupled coils. Further it should be noted that the networks of

- 11 -



(IIi. SYNTHESIS OF N

P
WHEN YISS = 0)
o
o
(o)

v;(p) —> 1/2 35—

(ki-l)(u’o+w0)
o

FI1G. 7. --Realization of yi(po) for ki > 1,

*

Y{(p
H

o >izr +1,...,r
n ’;. D’ l+
1
H
+
+
H "

> iz r++1, Peea T HT =T

FI1G. 8. --Method 2 realization of N w, > 0, r, <r.

Pl

o



(IlI. SYNTHESIS OF N
WHEN Y, = 0)

P
Methods 1 and 2 are lossless while that of Method 3 isn't, Also the
reader should note that only the hypothesis of Theorem 2 has been

used in obtaining the passive network.

Case B: r+ >T_

We now write by Theorem A. 1

Ypg - (o'olwo) Yig=T [lr- ¥ on_r-] T
/ ~[/\ : (II1. 22)
Yoot (o /o )Y =T 1 0 T
RS o o IS r_ T -F, Mer_-Tr 4T
Performing the same operations as in Case A, we obtain
Y= Yo otT {[(/\r-+ L, ML, T e )l /\r_-1r-)+1r__ro]} T_
(III. 23)

Here the synthesis can be performed in the same manner as for Case
A, Let

(ki+1)+j(mo/tr o)(hi-l) i=l,...,r_
yi(p )= ” (LI 24)
1+j =2 i=r 41,,..,7r +r -1
2 - -+ "o

o

Clearly yi(po), for i > r , is realized by a capacitance of value 1/0'0.

Fori=1,...,r , Method 2 gives
o
1

yip ) s — 21— . 25)
pl; + 'BET
i
with
2 4
1= 1 o =o'o[( )«.i+1) +(m°/0' o)ui-l) ]

ool treg /o S0 0T T h (e ) (LLL. 26)

Here (mi)2 =1/(2 ici) = ll(ki( o‘j-l»woz)) which is the reciprocal of
Eq. (III.13). Fori= T+ ..., , y'(po) is realized by an inductance
2, 2 -
of value cro/(cro tw ).
Consequently, the Method 2 realization for Case B has the same

form as Fig. 8. However, the final inductances and capacitances are

- 13 -



(IV. SYNTHESIS OF N
WHENYﬁsio,nza

P
interchanged, subscript +'s are replaced by -'s and vice versa, and

different expressions are used for the first T, element values,

Iv. SYNTHESIS OF Np WHEN YISS #0, n=2
We will give two methods of synthesis for 2 x 2 matrices, The
first of these is quite simple but doesn't extend ton > 2. The second
method is much more complicated but should extend to larger matrices.
We begin by writing Eq. (Il 4) as
b b 0 b

11 B % & 11 12 21
Y(p,) = + +] +j (IV. 1)
Bi2 B ~8y; O b, b, ~byy O

The real symmetric term is positive definite since gllgzz-(glz)zz
(bZI)Z >0 [as q_> 0 by assumption]. Thus we can find a real,
non-singular transformation to put Y(po) in the more usable form.

Y= "'f'-lYT"1 =1, + j[b1 -i-bz] + (g + jb) E (IV. 2)
where E is as defined in Eq. (UL 2). A network N for Y then results
from terminating a transformer network T by a network No for Yo’
Physically, it is then clear that No has q_ > 0, however, this can also
be seen by noting that Q_ for No results from Q_ for N by replacing V

by TV.

Method 1: Here a gyrator of unit gyration resistance is extracted

from terminal pair one, as shown in Fig. 9. The new network, Nc’

has
1 g+jb

Y = 1T§T'I (IV. 3)
g+ib (14jb, L +jb, h+g” b7

which has (YISS)C = 0. We can realize Y_ by the method of Section

111, since No and N, have the same q_> 0 (this can be proven by

using Eq. (IL 3)}). It should be noted that, besides giving a synthesis,

- Tl



(IV. SYNTHESIS OF N,

WHEN YISS # 0, n=2)
[ 1 ]

o- ! o

C ™
O O

N

(e o— c
(=2

NO _,

FIG. 9. -~-Gyrator extraction.

this method can be used to obtain the constraints on the parameters
in order that a given network be passive at Po,- This is illustrated by

the following examples.

Example 1: Under what conditions is the network described by the
following Y matrix passive at P, with W >07%
Y(po) = 12 + jbE
Using the connection of Fig. 9, we get
1 jb
Yc =
jb 1-b2

Then, using Theorem 3, we form

—
+
E]l &
o
o

(Yrsle + (0,/0 )Y g) =

1-b

o™
x

e

o
[

which must be positive semi-definite. Thus

1-b% > 0 (equality can only hold if o _ = 0)

(1-b%) - (v Juw)? b2 > 0

g



(IV. SYNTHESIS OF Ny
WHEN YISS £0, n=2)
The condition for passivity is then

mD
|b] < —

I p,l
Example 2: Consider a network N described at Po with LI >0 by

Y=Yy = [l-ib2]+jbE

[1 ij
Y =

C

jb 0

Clearly N can't be passive at p, even though the Hermitian part is

Here

positive semi-definite.

Method 2: Here we will synthesize Y directly by extracting a term
Ym = (p2+ o8 l[pCu)-l- Du)] Such a term is realizable by a lossless
network using a gyrator and is studied in detail in Ref. 3 (pp. 56-113)
(a2 less detailed but more readily available study is Ref, 4 (p. 27)).
For this it is convenient to use another canonical form in conjuction
with Eq. (IV.2). In Appendix 2, it is shown that 1 + (o Iu ol Py > o,
for i = 1& 2, and thus both of (Y S) + (o lw )(Y S) are pos1t1ve
definite. We can then diagonalize (Y )o + (u' Jw )(YIS) to 12 while
at the same time diagonalizing (YRS) (tr Im )(YIS) to [h + ) ]
with )"2 2z kl > 0. We can then write

1+A 0 1= 0

1 1
¥ T =% +ilw /o ) +(g+jb)E { T
- NOG T g'ti o

0 1+ 0 1-)
2 B (V. 4)

For the case bl > b2 we can explicitly find

OO




{IV. SYNTHESIS OF N

WHEN Y oo 4 0, n=2)"
+ o 1/2 _
(1+ -w—-bl) 0
[o]
T = (1/NZ) "
- 1/2
B 0 (l'l-a-;— bz) N
- - -1/2 - - -1/2
v ) O - 2 )
b' = 2b [( 1+ 5 bl)(1+ : bz)J D Zgl:(1+ 2 b, ) (1+ _ bz):l
(Iv. 5)

0-0 0‘0
A, = [1- - bz]/ [1+a——-b2]
o o)

It b1 < b2 we can permute the rows and columns of Yo and then relabel
to obtain the above situation.
As in the case where YISS = 0, we can write .p, /0, ege (I 15} (I .i6) (TL.17)

yl(PO) (1"'1-1) + J'(wo/ﬂ'o)(l-ll)

Y1 Pg
= 2 Z (IV. 6)
p.+w
o 1
where
2
40 [1+b7]
2 2 2 1
o o LNV (0 fo NV (-X )T /N = 2t

Y <
. 0 |
o
(IV. 7)
2 2 2

W' = [u-o +w ]/)\1
Since Ay > )Ll we can split Yy conveniently by writing

Xz = )\1 + )LO (IV. 8)

which gives

- 17 =



(IV. SYNTHESIS OF N

WHEN Yo # 0, n=2)
wO
y,(pg) = [N} + o /o =X )] + M o{l-i = )
8]
ho[cj + m:]
= y(P}+ —% (IV. 9)
o 0
Thus we can write for Yc of Eq. (IV.4)
2 2
¥1Pq Xo[‘ro T @, . 3o O
Y (py)= 55— 1% [0+ 1]+ (g'+JB)E (IV. 10)
P0 +m1 %o Po

This is the matrix we will use for synthesis, which proceeds by
cancelling the imaginary skew-symmetric term.
For this consider the positive real in the extended sense, EFR,

matrix

vp) = (pz+ml2 )'l[pc(”wm] (IV.11)

Written out in full, this is

{e [o‘z+m2+w12]-jw[az+mz-wf ]}C(1)+{ [crz-m2+m12]-j2crue} ptt)

i L &

vWp)= ; -
[¢7-w +w1] + [2o0w] (IV.12)

We wish to form such a matrix to cancel the jb'E term of Yc. Thus

we wish for the (1,2) term of D(”
[o':-wg'ﬁuf ]2+[2 o Dwo]z
d_ = b? (IV. 13)
12 -4 0 W
oo
From this D(u we then wish to form a minimal C(l) such that
(2) - (1)
Y Up,) = Y (p) - Y (py) (IV. 14)
can be realized. Now, by definition,
1. ; %
DY = juy [K-K]=4d,E (IV. 15)

where K is a non-negative Hermitian (residue) matrix. Further

cok+K (IV.16)
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(IV. SYNTHESIS OF N

P
WHEN YISS #0, n=2)
Thus let
k11 l<1+3kz
K= (IV.17)
k=i
On forming K - K we see that we wish to choose
d
12
kz = = -'za)'l—' (IV- 18)

For a minimal C(l) let k.1 = 0 and det. K = 0. Then we require
2 2 .
kukzz = (dlz) /4(01 . Thus we will choose

ld;,1

(IV.19)
p el
kya = & Zml

Here k is a parameter which will be chosen later in such a manner
as to insure the synthesis. This then fixes

kld,| -jd

12
K = (1/20,) (IV. 20)
i,  (/K|dp,]
The minimal C(l) is then given by
c = (lap,| to) [k /)] (1v. 21)

We now choose k such that Yy -€,;=0 (yl is given in Eq, (IV.6)).
Then

sbort 1/2
Ylwl 1 h+612-1 1 o‘c> b lJ-c: b
k= TS = 1/2( . 1)(”5‘; z) (1v. 22)
12 o
(1+—T)
(73]
0
We have
2
@Ay, -cy, =y, [1- (/K] (IV. 23)
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(Iv. SYNTHESIS OF Ny
WHEN Yoo ¢ 0, 0= 2)

j
k can be seen to satisfy k2 > T in the following manner, and as a

consequence a > 0, We have

b o'o o o
28]
W
o]
Z'z‘/z] 2 '
Ll o e,
3.;2 “':Z"b[”;?]il (IV. 24)
4 — ©
33
s}

where use has been made of Eq. {A,. 4) of the second appendix in

getting the first inequality.
We have finally obtained

ap A [o z+m“?'] [o z-wz-ﬂnz] pit)
Y¥Xp ) = °0 L2 .0 ©° i{[oil]+ R
Py z 2 AR z
Pyt L [co-moﬂnl] +[2|rou°]

(1v.25)

Each term of Y(z’(po) can easily be realized; the last by a gyrator and
the other two by an inductance and capacitance and an inductance,

respectively. Since Y(u is itself realizable we have realized the

given Y.

Several points are worth noting. Method 1 uses one gyrator
while Method 2 may require two. The proof that Method 2 works
iven by Method 1, since the inequality of Eq. (IV.24)

is essentially g

rests upon Eq. (IV.3). This appears to cause trouble for generalizing
to n x n matrices. The choice of K for Eq. (IV.20) appears to be

somewhat arbitrary; perhaps a better choice exists.

- 20 -
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CONCLUSIONS

In Sections III and IV we have given methods for synthesizing
a finite passive network NP such that a given N with q_(po) > 0 has
the same admittance matrix as NP‘ For the n-port we have shown
how to synthesize NP if YISS = 0 and, in fact, three different ways
of doing this were given. In the case that YISS = 0, an extremely
easy test for q_ > 0 was also given which avoids the absolute values
needed in Eq. (II.1). Since a one-port always has Yigg = 0, the
only unsolved case is Yo # 0 for n > 2. A solution to this problem
appears to be given by extending the second method of Section IV,
however, the proof seems to be complicated.

Clearly, a dual synthesie holds for those N which have impe-
dance matrices. For the two-ports which have no Z or Y the methods
of a companion paper can be used to obtain a Z or Y while pPreserving
q_, (Ref, 5).
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APPENDIX 1: SIMULTANEOUS DIAGONALIZATION
OF TWO SEMI-DEFINITE MATRICES

Theorem A.l: I A and B are real, symmetric, positive semi-definite
matrices of rank r, and Ty respectively, with Ty >, then there

exists a real, non-smgular matrix T such that

A=T[1_ +0 ] T
r n-T

a a
[amd . .
= T[/\r e ¥ Opor -z +r 1T
a b o a b o
where
A, =diag [hpe-ohy ]
a a
with?\i>0fori=1,. s Tq (Lf:r), =0 forr + 1000, T,.

Proof: We first find a real, non-singular T such that

A=F [, 40 1T,
a a.

B=T0B0To

If anv of the last n - T dlagonal elements of B are zero, the entire
row and column of B are zerc, since B is qenn-dcfm:te For the
lastm - r diagonal elementh of B, whi .c‘r are non-ze-n we can reduce
the rema.m:mg non-diagonal elements in these rows and columns to
sero. We must do this by adding the diagonal element to the off-

diagonal element. This won't destroy the form of 1_ 0. and we

can then write a a
A=T, Tl[]'r * On-r ] T1 To
a a
B=’I‘DT1[BT F1, ., O v ur 4r 1T, T,
a b "o a ko

since Ty > T, by assumption. Here T >0is defined as the rank of
BraJ We can now diagonalize Bl’a by an orthogonal traanorma.tmn T?. .

B — | I : o
Let T, = TZ, + ]'n-ra and then let T = T, T1 T, to give
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(APPENDIX 1)

A=T[1_ } o0
r
a

nr 1T
a

. e T[/\ra * lrb-ro * On-ra-rb-r 1T
as required. Q. E. D,
By observing that neither the sign of 1, nor that of
/\r + ]'r _p enter into the proof, we see thataa.ny two semi-definite
mattices can be simultaneously diagonalized. Further, if A and B

are allowed to be complex but Hermitian, similar results are obtained.

i B



APPENDIX 2: CONDITIONS ON THE PARAMETERS
WHEN ¥ o # 0, n=2

Consider Y_ of Eq. (IV.3). We require (Ypgl t (o o/wo)(YIS

to be positive semi-definite, by Theorem 1 (clearly, m6.> 0 since

)C

we are assuming Y oo # 0). Thus
1% (o /w )by (g+bb))t(e /@ )(b-gb,)
(g+bb)) (o /w_)(b-gb)) (1-b24bZeg?)e(o fw )b, tblb,+b7b -g%b))
(A,. 1)
must be positive semi-definite. Since b # 0, we clearly require
14 (e /o) by >0 (A,.2)
1+ (o o/wo) b, >0 (A,.3)

where the second of this is found by noting that we could have extracted
the gyrator from terminal pair two instead of one to obtaina Y .
Equation (AZ' 1) must be positive semi-definite for every value

of g and especially g = 0. Using this value of g we find for the determi-

nant
2 o _.2 o o
2 - %0 o 0 0 2
-b [(1 Pa2by) +(ertg) ]+ (17 ---bl)(li-m—bz)(ubl JEX
[s] o (= o
or
- %0 o 2 7o
(1+&:b1)(1t§b2)3 b (14 =5 (A,. 4)

which is the condition needed for Eq. (IV.24). Using the two signs in

separate equations which are thén added we can obtain the interesting

result
2 2
o 2 7o
Lo mrbibp2b (14—
u)o_a (.l)o

o
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APPENDIX 3: THE NON-REALIZABILITY OF THE COMPLEX
TRANSFORMER FOR Re p> 0

A device described by

A4 NV

CH (A 1)

~ ok
with N, an n x m complex constant matrix, is called a complex trans-~
former. Using the notation of Fig. 1 with T replaced by N* we see
that if such a device is loaded at the series terminals by an n-port of
admittance matrix Y,, the input admittance is Y, = ﬁ*YZN. Further,
we have Vy,'L, + Vv, Il

properties of a transformer network, and,in fact,can be realized at a

= 0. Such a device thus has some of the useful

single real frequency P, = jw s (Ref. 6, p. 611).

Because of the nice transforming property, the problem arises
as to whether such a device can be realized at a complex frequency
P, with cr°> 0. To see that it can't, we first note that it is sufficient
to consider N to be 1 x 1, since, through the use of elementary complex
transformations, any N can be realized by an interconnection of two-

winding transformers. Such a device is described by

A B 1/n 0
DY b a3

In order to work with an admittance matrix we connect a gyrator of
unit gyration resistance in cascade with port one of the complex

transformer, see Fig., 9. The resultant transmission matrix is

[A B 0 I7M{1/n 0O 0 n¥*
1[0 2 i~
C DJ, 1 0 0 n* 1/n 0

Converting this to an admittance matrix yields, after letting (1/n) =

0 1/n 0 a+jb
Y, =[ ] = [ J (A, 4)
-1/n* 0 0

-a+jb

a+jb
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Since Y has a zero Hermitian part, it has q_< 0 for w # 0 and
q =0ifw=0 These values for q_ are identical to those for the
complex transformer itself since the cascade gyrator doesn't alter
q_. Consequently, the complex transformer isn't passive if Wy £0
and isn't real for real pif w = 0; it can't be realized by a finite passive
network. This is also ex'pec;ted by an inspection of Q_ where
V,¥,v, = ¥, Ry, NV, 4 VN Y, NV

It should be noted also that if L 0, q_ = 0 and the method
of Section III can be used to realize Eq. (A3. 3) and with it any complex

N. Application of such a device can be found in Refs. 6 and 7.
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