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ELECTRONIC CIRCUITS FOR CHAOS
USING HYSIERESIS

CIRCUITOS ELECTRONICOS PARA GENERAR CAOS MEDIANTE
HISTERESIS

ROBERT W. NEWCOMB

TWO MEANS OF GENERATING
CHAOS BY USING HYSTERESIS

IN ELECTRONIC CIRCUITS

ARE DESCRIBED. ONE SYSTEM

USES BINARY HYSTERESIS

AND HAS THE ADVANTAGES

THAT TO DATE IT IS THE ONLY ONE FOR
WHICH THE SIGNALS CAN BE
PROVEN CHAOTIC AND THAT

IT IS ONLY OF DEGREE TWO.

THE OTHER SYSTEM IS

A THREE-DIMENSIONAL ONE

USING BENT HYSTERESIS AND
GENERATING SIGNALS VIA

THE INSERTION OF DYNAMICS

INTO A TWO-DIMENSIONAL

DESIGN IN THE LIENARD PLANE.
THE SYSTEM DESIGNS ARE PRECEEDED BY
A DISCUSSION OF THE CONCEPT OF
CHAOS IN THE CONTEXT OF
ELECTRONIC CIRCUITS.
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SE DESCRIBEN DOS FORMAS DE GENERAR
CAOS UTILIZANDO CIRCUITOS
ELECTRONICOS CON COMPORTAMIENTO
HISTERETICO. UNO DE LOS SISTEMAS
EMPLEA HISTERESIS BINARIA Y PRESENTA
LAS VENTAJAS DE QUE HASTA LA FECHA
ES EL UNICO PARA EL CUAL SE PUEDE
DEMOSTRAR QUE SUS SENALES HAN SIDO
DISENADAS PARA SER CAOTICAS, ASI
COMO DE SER UN SISTEMA DE SEGUNDO
GRADO UNICAMENTE. EL OTRO SISTEMA
PRESENTADO ES DE ORDEN
TRIDIMENSIONAL, Y SE BASA EN UNA
HISTERESIS DE DOBLADURA, VINIENDO
DADO SU FUNCIONAMIENTO POR LA
EVOLUCION DINAMICA DE UN SISTEMA
BIDIMENSIONAL EN EL PLANQO DE LIENARD.
LOS DISENOS PRESENTADOS VAN
PRECEDIDOS POR UNA DISCUSION ACERCA
DEL CONCEPTO DE CAOS EN EL CONTEXTO
DE LOS CIRCUITOS ELECTRONICOS.
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ecently the field of chaolic systemns has co-

me info prominence due to the strange

nature of its resuls. In particular one can

oblaln nolse llke signals from very detemmni-
nistic low order systems. As a consequence it be-
comes possible fo ascribe sttrange occumrances in
well designed syslems that were previously never
thought possible to have some of the observed
behaviors, such as the chaotlc motion of enginee-
rad bridges or randomness in deterministic models
of economic & weather systems. Perhaps more
importantly it now seems possible 1o mode! such
phenomena os eplleplic fits and hear anythmias
by chaotic systems. This being the case, it is of
Interest to get analog models of chaotic systems
so that nondestructive simulations of possibly very
dangerous eflects can be made. Thus we are led
fo the design of electronic clrcuits which exhibit
chaos, which we take as the toplic of this poper.
Although the field of chaotic systems has really
only developed during the last ten years there is
already an immense lterature, In contrast to the
general field of chaotic systems the literature on
design of eleclronlc clrcuits 1o give chaotic pheno-
mena s still rather limbed. Neverheless, in principle
it Is rather easy to create electronic clrcults which
have chaotic behavior; one simply obtains an elec-
tronic analog for the differentlal equations known
to vield chaos. Although this is a stralghiforward
matter it most often Is not practical because of the
difficutty of realizing the necessary nonlinearties In
electronic form. However, once one sees what the
principles of chaos generation are one can some-
fimes create the desired phenomena by using
nonlinearities that are relatively sasily obtained in
electronic circuits. Here we discuss two cases whe-
re this latter is the case by using hysteresis as the
nonlinearity. These systems have the advantage
thot the concepts behind their operation are relo-
fively easily understood and the electronic circuils
are simple to construct,

CHAOS

What does # mean for a system to be chaotie?
There is a precise mathematical meaning which
we will look at shonly, but first let us consider the
more [ntuitive nature of choolic signals, where in
this paper we consider continuous ime real valued
systems. In essence we consider any signal arising
from o defterministic system but that looks noise-
like, or to be behaving in a strange nonpredictable
way, fo be chaotic. Thus, the signal of figure 1a is of
the type that is considered chaoctic (here if cne
runs the signal for a long petiod of time the num-
ber of peaks and valleys between the maximum
peaks is unpredictable). If one has o poir of such
signals representing state varobles for such a
system, say x (1) and v (1), and one plofs x versus
y with time t as the unning parameter, then for a
chaotic system one expects a porion of the
x y plane to be filled in, os in figure 4b. Likewise il
one observes a chaotic signal on a spectrum
analyzer one sees a continuous spactum which
often is jumping around. These obsewations are
then helpful in recognizing chaotic signais, and
indeed are offten used in clkoiming that a system Is
chaolic when no other means, such as mathema-

tical proofs, are available. And this is most often the
case for continuous time systems since mathema-
fical proofs of the chaotlc nature of signals is ofien
beyond the reach of present knowledge. However,
due to experimenial eror or limited obsarvation
time or computer round off emor, elc., one can
never be sure that the system under test is really
chaotic In the mathemalical sense.

A mathematical definttion of chaos has been
put forth in the fascinating paper of Li & Yorke.
Although the work of Li & Yorke was phrased for
discrete time systems, their definition can be laken
over to confinuous time systems as follows. Let
there be an open region of Initial values which a
system signal x can assume and let X. and X be
two of these initlal values (that is, values of x at
t =0) and let x, = x,{.) and x = x(.) be the
rasulting signals defined ont 0. Then we can call
the system chaotic If there exist Inifiol X. & X such
that the difference

dif)y =x, (1) —x. (N (1a)

has the following two properties

liminf i d(tyl=0 (1b)
t =00

imsup ld()I >0 {1¢)
t=

Equations (1) say that a system under this def-
nition is chaotic H there exists two staring values
such thot as time goes on the two resulting signals
become arbitrarily close at some instanis of time
while also at other instants of time the signals are
separated. It should be noled that this need not
happen for any starting values; indeed for some
stating values there may be perodic solulions for
which d(}) is identically 0.

Li and Yorke gave a criterio which guaranteed
that a discrete time system would be chaotic, this
being the period three Implies chaos result, To
phrase this criteria more precisely we convert to a
discrete fime system by selecting distinguished vo-
lues of fime, which we index, giving a sequence of
fimes t., 1., t, t, efc.. Next we can consider the
value of x(.) at the present indexed fimet fobea
map M(.) of x(.) at the previous indexed time t, —..
Thus,

x(h)=M(x (@, -3 2

The discrefe systern mop M(.), considered to
be real valued, Is determined by the original conti-
nuous lime sysiem oand is said to be of period
three it there are points p., p, and p. such that

P.=M(p) > p.
P.=M(p)=M (p)=p
P:=M(p)=M(p)=M(p)=p (3

That is, the map M is perodic of perod three if
there is o starting point p, such that after three
tterations the value of the mapping is the same as
the starting point, i. e. p. = p.. The Li & Yorke period
three result is that a discrete time system with o



continuous map M(.) Is chaolic if M is of period
fhree. In actual fact the result is a bit nicer in that
the system is chaolic if p. is no larger than p in (3).

As for the concept of chaotic systems, this pe-
riod three result was really only given by Li & Yorke
for discrete time:

d(t) = ML (X)) — MH(X ) with ME() = M (Mt ().

Consequently, it Is necessary to spell out how
we should choose M(.) and the distinguished times
to allow us to convert from x(t) to M (X), which in
tum gives the relation of the chaotic discrefe time
map M fo a chaotic continuous time system un-
der consideration. To underdake this conversion
one wishes o cany over the chaotic motion of the
continuous fime systems 1o the melated discrele
time map. In our case we can do this by using the
iocal peaks of the continuous time systems, that is,
choosing the dislinguished times such that the
discrete time map is a map of one local conti-
nucus fime peak into the nexl. This procedure is
ilustrated by the binary hysteresis chaos genera-
tor discussed below.

In the following we give two kinds of hysteretic
systemns, one for which we make a design o gua-
rantee that a period three map M exists and anot-
her for which we obtain chaotic kind of signals, but
for which no proof yet exists o guarantee that they
ate actually chaotic. For the first situation we give
a design using binary hysteresis in an otherwise
simple linear second order system while in the
second we use bent hysteresis in a rather intiguing
thirg order system design.

BINARY HISTERESIS CHAOS GENERATOR

In this section we discuss the binary hysteresis
chaos generator presenfed in (2). The impordance
of this circuit is twofold in that to dale it is the only
one for which the frajectories have been proven to
be chaotic and, secondly, it is of only degree two
{thus, using only two dynamic elements, capacl-
tors here, whereas other conlinuous time circuits
require three or more).

A signoHlow graph Is given in figure 2a for our
system from which we proceed to develop the
idea behing the circull's operation as well as the
circult itsel. In figure 2a there are two integrators,
designated by the Laplace transform integration
symbol 1/s, and a binary hysteresis path designa-
ted by h(x). One obsenves from the signaHlow
graph that In the absence of the hysleresis the
system is a negafively damped second orden li-
near one in which case it would be very unstable.
The presence of the hysteresis changes the system
characteristics in such a way that the system be-
comes siable but In a very strange way. To unders-
tond this we introduce the mathematical charac-
terizations of the system components. Thus, by bi-
nary hysteresls we mean the hysteresis given in
figure 2b and described by

h () = 4 if x| < x upper branch {da)
- ¢ 0ifx < x,lower bronch {4b)

In reality binary hysterests is a kind of swilch
where swilching Is different depending upon the

FIGURE 1
Chaolic kinds of signals {irom?)

FIGURE 1a Versus time.

FIGURE 1b Phase plane plot.
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FIGURE 2
Binary hysleresis chaolic sysiem. FIGURE 2a Signah-flow graph.
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FIGURE 3
Binary hysteresis chaotic trajectories.

FIGURE 2b Binary.hysteresis.

immediate past history (the hislory being some-
thing which is not quite reflected in equations and
which hence requires lurther properies to comple-
tely characterize). Figure 2a represents the syslem
graphically while mathematically it leads to the
following differential equation description.

dx/dt =y + ah (x) (50)
dy/dt = —x — 2oy +a h (x) (5b)

Infroducing z = h(x) we can plot the trajecto-
ries of eqs.” in three dimensiona!l space as indica-
ted in figure 3. From figure 3 ond these equations
the philosophy of operation is seen 1o be as follows.
The system is of degree two and on each branch
of the hysteresis looks to be a linear syslem. Since
there are two branches of the hysteresis, it being
binary, we call these two linear systems 5. and 5,
respectively, with §. denoting operation on the up-
per hysteresis branch (where h = 1) and § on the
lower branch. The branch of hysterasis upon which
the full system S is operating depends upon the
value of the output of the first integrator, x. If x Is
above an upper threshold vaiue x| the system looks
like S, while if it s below the lower threshold value
xg it looks like S-. As seen by eqs.” both §. and §
are the same except for a shift in the origin of the
unstable fecus; when the trajectories of S. and §
are overlaid they comptise sets of infersecting out-
ward winding splrals. We now trace a trojectory
and create a map M thot will have o perod three
point. We choose a starting point p. of the lower
plane, z = h = 0 (which defines S.), on the line x=X_
and with ils y value nonnegative; the trajectory
spirals away from the origin and eventually hits the
hysteresis Jump line, x = X, at which time ihe



trojectory Jumps fo the upper hysteresls plane, z
= h =1 (which defines S.). At the time of jumping it
switches to a splral trajectory in the upper plane
and eventually runs Into the fower hysleresis jJump
line (since the spiral is unstable and must increase
In size); the orglin for trajectories of S, has been
shifted via the parometers a. and g, in eqs.” such
that when the trajectory hits the lower jump line,
x = x|, ond jumps fo the iower plone the third
fime it will again be at the polnt p, when It crosses
x=x_ with y nonnegalive. If we take M to be the
map of net values of y when crossing the line x=x,
for the same sign or y (we call this a same sude
refurn map), then M will be of petiod three. By
constucting It fo be continuous the thecrem of Li
& Yorke applies to show that M Is a chaolic map.
Thinking about the meaning of this M we convince
ourselves thot if this M is choolic as o discrete time
map then so is the continuous time system since
the local peak and valley values of the continuous
time systemn frojectories are relaled (monotoni-
cally), respectively, to the posilive and negative
values of M. The eal problem s then to choose the
system paraometlers a. ond a such that M has a
period three point and at the same time is conli-
nuous. For o=-02 and a. =-1 the value a =
-1.349966731 resulls fo yield these desired proper-
fies. For these values a map M is shown in figure 4
for which o pericd three point s y = p. =
0069253575+ (with M (p.) = p- = 0,24871608+, M
(P)=p =04916892+ and M (p)=p.=p.).llis
worth commenting that M is not quite the first
return map for the trajectory’s traversal of the line x
= x_ since we require aiso thal y retum lo the
same side of the axis; we can of course construct
a first retum map by counting every crossing of the
fine x = x¢, not Just when y retums to a value of the
same sign, but that map intemnixes minlma and
maxima of the continuous time system and, there-
fore, Is not so directly of interest. To summarize, the
system of (5) with the parametervalues given yields
a peiiod three same side retum map and with
that exhibits chaos in the behavior of the maxima
{and minima} values of the continuous fime signal
x ().

Equations (5) are ideal for realization in terms of
operational amplifiers, resistors, aond capacitors,
and, hence available for integrated circult cons-
tructions. A circuit has been built in lumped form
and results frormn it confimn the available theory upon
this binary hysleresis chaos generator.”

BENT HYSTERESIS CHAOS GENERATOR

Here wea take a second orden Van der Pol oscl-
liotor and introduce bent hysteresis as the nonll-
nearly. By introducing a third dynomic varable
intemal o the hysteresis generator one finds that
chaofic kinds of signals resuit.! The system is desig-
ned fo bring out the main properies of a circuit
discussed by Shinriki, et. al.’, which was observed
to give random types of signals.

Figure 5 shows the bent hysleresis around which
the system Is designed. To undersiand how the
system Is concelved we consider this bent hystere-
sis as the nonlinearity In the lienard plane of a
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FIGURE 4
Map M.

FIGURE 5
Measured bent hysteresis (from ).
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second order system. There tum out to be three
stable limit cycles, one around each of the smaller
end portions in figure 5 and one that surounds
the rectange-ltke middle porion of figure 5 (realiy,
the boundary portion of figure 1b). One way to
look at what occurs Is to consider the limit cycle
C. around the upper down-tuming branch B, of
the hysteresis. The radiss of C. depends upon the
slope of B, if we change the right tip of the branch
B., while keeping the left end fixed, the limil cycle
changes. By choosing the slope of B., appropria-
fely we can get the limit cycle C. to pass through
the right tip of B., Any futher change in the right fip
of B. that causes the limit cycle C. to expand olso
causes it to disappear. Consequently, if we choose
this Nmiting values of B then any oscifation in the
slope of B. will couse C. to go Inlo and out of
existence; when it disappears the limit cycle jumps
to other limit cycles. We in essence make this to
happen by Intfroducing another dynamic varable
info the system, this going into the hysleresis iiself
fo force effective changes in the hysteresis. We will
consequently have a three-dimensional state spa-
ce bul will look at it via the projection upon the
original two-dimensional Liemard plane. A result of
this projection is that trajectories seen In the Lie-
nard plane may cross even though there can be
no infersection in the full three dimensional siate
space.

We begin the mathematical treatment with the
signaHiow graph of figure éa where b (.) represents

the bent hysleresis. The differential equations des-
cribing the signal-low graph of figure éa are

dx/dt =y — b(x) (6a)
dy/dt = — x (6b)

In the x—y plane we have the trajeciory gover-
ned by the slope condition

dy= dy/di= —x
dx  dx/di y—b(x) &)

which allows the Liemard construction for the tro-
Jectories by plotting the curve b(x) in the x-y plane
(that is, one chooses a point p = (xe ys) through
which one wishes the trajectory 1o pass and crea-
tes the direction of the trajeciory via eq. (7) by
dropping a verical to intersect the curve b(x) at
the point (xp, yp), where y, = b(Xp). ond then o
horizontal through the Intersect point to cut the v
axis at y =y, ; the trajectory passes through the
chosen polnt p In the direction of a circle drawn
through p with center at the cut point (0, yy, ) on
the y axis.

The bent hysteresis is constructed electronically by
placing (piecewise linear) nonlinear positive and
negalive resistors in series.: However, as mentioned
above, to create the chaos we Introduce dynamics
into this series connection by placing a capacitor
in parallel with the negative resistor. If g+ and g—
represent the nonlinear resistors on a conduc-fan-

2] i
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R
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FIGURE &
Signal-flow Graphs.

FIGURE 6a Bent hysteresis chaos system.
FIGURE 6b Bent hysteresls.

ce basis (current as a function of vollage) and z
represents the capociior voltage we have the sig-
nalflow graph of figure é6b for which we can write

dz/dt=g, (x2)+g — (2) (8a)
We also let w represent the cument in g, thus,

w=g, (x—2) (8b)

Finally we replace the stafic binary hysteresis b(x)
in fig. 60 & eq. (6Q) by

b(x) = w (6c)

A clrcuit o do all of this Is given in figure 7 and is
discussed In*; figure 1 gives typical chaotic wave-
forms from this circuit.

DISCUSSION

Using two types of hysteresis, binary and benl,
we have presented two types of chaos generators.
However, only for the first generator are we able lo
establish without a doubt that the system really
generates choollc waveforms. From this we see
that one of the open problems of the field is 1o find
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Circult to reaiize bent hysteresis chaos system ({aken form Newcomb & Sathyan, IEEE trans. on Circuits and

Systems, Janyary 1983).

techniques for establishing whether a system really
generates chaos or not. In being able to establish
the existence of choos for the binory hysteresis
system we relied upon conversion fo a discrete
systern map M. It does appear that such a conver-
slon of a continuous time system to a discrele
map should be possible for any conlinuous time
chaos generator. Therelore, it would seem profila-
ble to get other ciiteria for such mops thal are
similor to the peried three implies chaos propery
used for the binary hysteresis case in order to be
able to verify chaos in other systems. As aiso lllus-
trated by the two choos generators exhibited he-
re, there are various kinds of chaolic signals. This
being the case it would appear to be worthwhile
fo obtaln design techniques for the various classes
such that chaotic signals with specified properties
could be designed on ordet.

Construction of electronic circuils to yield chaos
has been shown here to be a simple matter. Ho-
wever, conirol of the charocteristics is a horse of a
different color. Thus, one would like to obtain elec-

tronic clreult choos generators for which signol
properlies are easily controlled. Toward such o
goal it seems that more In the nature of computer
confrolled experimentation could be developed.
For example, In the blnary hysteresis case # is
wlatively easy to change the circuit parameters
and obsemve the results on an oscilloscope which
could sample the signals and read them as digiti-
zed data inte a PC for further analysis and conside-
rafion in constructing design chaits. To have the
data calculated from the differential equations ge-
nerally takes much more fime and suffers from the
fact that to make good models of the active elec-
fronic circuit components requires more extensive
capabililes than available in present day PCs. As
seen from the circuit diograms, the aclive electro-
nic components used in the constructed circuits
were operational amplifiers. It would also be profi-
table to obtain chaos generaling clreults involving
only a few transistors, resistors and capacitors. And
it would alse be profitable to obtain good mathe-
matical models for phenomena such as hear
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anylhmias such that electronic circults could be
designed to simulote the phenomena.

The definition of chaos for confinuous fime
systerns does not seern to have been well conside-
red In the mathemaltical or engineering Iterature
fo dale. Thus, the definition used here must be
considered to be a tentative one. In this regard it
Is of interest to know that there are other defintions
than the Li-Yorke one used here of chaos for discre-
fe time systerns. For example, chaotic signals ap-
pear to be probabilistic; therefore, some sort of
probabillly measure should exist. One can use the
existence of an absciutely continuous invariant mea-
sure for this purpose, defining chaos fo be the
presence of such a measure. Doing so Saito’ has
given results closely reloted to ours on the binary
hysteresls circuit, where he uses a degree three
clreult based upen the paroliel connection of two
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