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Abstract:

This paper gives a technique to realize the
connected sum of two knots given that semistate
equations for the realization of each of the two
knots are already on hand.

I. Introduction

Since knots are a part of everyday life it is
of interest to have equipment that can tie knots.
Toward this there is an extensive matheaatical
theory of knots, a basic work being [1]. What
could then be done is to make robot like
equipment whose end effectors essentially trace
trajectories that describe knots in the
mathematical sense. On investigation of this
possibility one learns that it is possible to
rake certain basic knots and then splice these
together to form sore cosplicated knots, for
example the granny knot can be considered as two
trefoil knots spliced together. Mathematically
the operation of splicing two knots, K, & Xz, can
be looked upon as foraming the connected sum knot,
K=K,#Ka, this being illustrated in Fig. !. In
terms of equipment we know that it is possible to
sake electronic circuits that realize some basic
knots, for example the torus knots [2], in which
case it would be possible to make electronic
circuits to realize more knots froam these basic
knots if we could get electronic circuits to
realize the connected sum. We show here that for
nanpathological knots this is always possible.

The basic idea, as developed aore fully in
section 11I, is to keep one knot fixed and move &
stretch the other knot to give a certain kind of
intersection which is made into a connected sua
via a step function or a binary hysteresis
intertace that chops out the unnecessary overlap,
Section 1] gives necessary background.
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1i. Some Knot Theory Background

For our purposes we take a knot K to be a
hooeosorphism of the unit circle into three
dimensional Euclidean space. In other words a
knot can be Jooked upon as a closed trajectory in
{x,ys2)=-space with no aultiple points. The
projections of a knot on any axis-plane will
generally have multiple points, however. Thus, we
assume that the kaot is in "general position,”
this meaning that each aultiple point in an
axis-plane projection comes from a true crossing
of exactly two portions of the 3-dimensional
trajectory. Figure 2 should help clarify the
situation. Limiting the treatement to
nonpathological knots we also assume that there
are only a finite number of multiple points in
any projection on to an axis-plane.

In some cases it is possibkble to realize a
knot as the output trajectory in time t of a
nonforced semistate describe system of semistate
s; in canonical form such a systea is described
by [3)

ds’ + gis) = 0 (1a)
Y= ¥ (1h}

where 8 & X are constant matrices, §(.) is a
nonlinear but tiae ianvariant operator and ‘=d/dt;
¢ and X are generally singular but X has rank
three. The three vector % is the output, this
being the coordinates of the knot trajectory in
tine

¥ty = x {ic)

¥
z

From (ib,c) we see that any scalings or linear
shifting of the knot cap be accomplished by
linear affine transformations on the semistate s,
a tact that is important to making the comnected
sum,
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The connected sum K=K,#Kz of two knots K; &
Kz is illustrated in Fig. 1. This is to be
interpreted more precisely [1, p.B21(4, p.251 in
the sense that there is a sphere 5 and an arc A
on 5 such that

1. S intersects K in exactly two points p: & pa.

2. A is an arc from ps to pa.

3. ({Int SINK)UA is a knot equivalent to K,.

4. ((Ext SINKIUA is a knot equivalent to Ka.
Here Int means the interior, Ext means the
exterior, N means intersection, U aeans union and
knot eguivalence means described by the same
Conway polynomial [1, p.783, In this regard we
note that a (nonpathological) knot is uniquely
specified by its Conway polynomial and that the
Conway polynomial for K=K,#Ka is the product of
the Conway polynomials for K. & Ka. Consequently,
it would be worthwhile having circuits that could
realize prime Conway polynomials since using the
techniques of this paper we could realize any
Conway polynomial, and with that any
{nonpathological} knot.

I1l. Realization of the Connected Sum

We consider two knots, Ky &% Ka, described by
(1) with semistates s: & sa, and outputs ¥, & Y2,
respectively., We assume that these two knots
possibly have already been stretched and twisted
to guarantee that there are twno strands, one on
each knot, which project out froe the rest of the
knots, the portion on K, being for larger x,
value and the portion an Kz being for smaller xz
values (as illustrated in Fig.1}. With this
assuaption on hand we will keep the origin for K,
fixed and move the origin for Kz, First we locate
the maxioum x, value, Xmawsy, 0n K; and the

a .

niniaug xz value, Xainz, On Kz. Then we linearly
nove the x2 origin so that there is a slight
overlap of x values on the two knots, that is
such that Xmawi=Xawrnztd for 4 a seall positive
number. There will he at least two points on K,
With X 1=tuaws-{4/2); we locate the one with the
smallest y, value, call it p,, and linearly shift
the y» and zz origins such that the two knots
intersect at p;. We then rotate Kz around the
kal=x=x;) axis such that the knots passing
through p: have another intersection and we call
the intersect point pa, By our assumption on the
two strands being joined we know there is a small
enough & such that there are no other

intersections of the two knots and we choose such
a seall enough A, At g, and pa we have achieved
¥1=%2. Next we pateh the two set ot semistate
equations together using unit step functions,

Let 1{.) dennte the unit step function, x, be
the icommon) value of x at p, & pa, and
subscripts 1 & 2 on system quantities refer to
knots Ki and Kz, respectively. Then we define for
K=K, #Kz the full systeam’'s semistate as

§ =]sili=(x-xp)} (2a)
5:1“(‘)(,.)
Hith this we have the first components of s heing

zero when the trajectory is on Kz and the second
components zero when on K,, Consequently

v= {1, :,]s (2b)
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and

s S 152" 1i-{x-xp)) = 5, B{x~xglx" (2c)
Sa'lin-xy) + s2Bix=xplx’

where § is the unit impulse distribution. Hsing

ad=1d& 0 N fals) =] 8,(5,) {2d}
0 42 Baisa)

we obtain for the connected sum
(3a)
a;’ﬂ[ﬂ—u—:.n o]n.,(s) + a[ s.x']m-x.,n=o

0 Tix=xg} Sax’
y =%, %]s (3b}

Equations (3) are the compiete semistate
equations for the connected sum where @(s) is the
term inside the braces (}. In order to form § it
is necessary to evaluate s,x° and sax' at the
connection points pz and py (both of x coordinate
xpl, respectively (note the reversal of
subscripts)., These quantities are known from the
original semistate systeas for K, and Ky and
through the impulse serve to reset the pertinent
portion of s from 0 to the proper initial value
at the connection points to continue smoothly on
the new connected sum knot. It is to be noted
that x' is evaluated just at x=x, and,
consequently, is really a constant; the value on
the jumped to portion of the knot is to be used
since it is this value that is needed to identify
the ‘connected sum with the original knot on the
jumped to portion of the knot (and similarly for
the s value used at x=x,), As with either of the
original knots, it is necessary to start the
semistate equations on the knot trajectory, but
this can be insured by choosing an initial
semistate to be on a trajectory of one of the two
subknots.

1V, Discussion

Here we have presented a theory for realizing
the connected sum of two knots assuming that each
of the two knots has been separately realized. As
yet there are many knots that we do not know how
to realize, but in the special case of torus
knets realizations do exist [23. And in this case
of torus knots a different theory for realization
of connected sums can be given [5]. By factoring
the Conway polynomial corresponding to a given
knot into irreducible palynomials it is possible
to reduce the construction of an arbitrary knot
af the kind treated here into the simplest knots.
These latter it seems could be realized using van
der Pol oscillators and the ideas developed in
[61. In any event at this point there are a
nunber of open problems in the field toward which
it is of first interest to obtain numericail
exaaples of the technique given here and then to
compare in the case of torus knots with the
theory of [51.
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rigure (1) Connected Sus of Twa Knots

(L8]

4 Knot and Its Projection
Figure (2) a) in General Position
b} Not in General Position
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