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Abstract:
The s=mistate equations of multichannel FARCOR (FARtisal
CORrelation) prediction error and synthesis lattice sections are

found. Then the Lewis' backward-forward decomposition is obtained
for thece lattices from which the relationship between the Lewis’
bachkward—forward semistate variables and the FARCOR lattice
backward—-forward variables is found.

I. Introduction

Fecently semistate (sometimes called singular, descriptor,
or differential-algebraic) descriptions have been seen to be of
interest for the theory of control systems f13. This interest
arises practically since semistate descriptions occur naturally

without the need for reductions to eliminate variables, as in the -

cese of eztimstion of two-peoint boundary value processes [3, p.
8101, while also they generalize the state-variable descriptions.
Consequently, efficient methods for decomposing and solving semi-
state equations, such as the forward-backward technique of [3]
and [4), zre also of importance to control system studies. Like-
wise the theory of FARCOR lattices, which have proven so valuable
in the area of speech synthesis [S], have considerable epplica-
tion in the estimation of control systems [6] where a number of
processes fit into the lattice form. Interestingly, these lat~-
tices also have their signals considered as forward and backward
signalsg. However, the use of the words forward and backward in
the two instancee has arisen quite differently and independently,
as discuscion with Frofessor Lewis has borne out. Thus, one work-—
ing between the two fields is led to wonder if there is not a tie
betweer tre forward-backward concepts as they are present in both
lattice systems and the decomposition of semistate descriptions.
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Here we jnvestigate the tie between these two uses of the words
forward and backward to show that the Lewis analysis can be
almost directly used on FARCOR lat?ices. _

Towsrd this we note that in [23 Frofessor Lewis has con-
ceived the decompostion of semistate described systems into back-
ward and forward subsystems to allow one to work forward and
backward in time to solve the semistate equations. On the othsr
hand forward and backward waves are of particular interest to
systems having descriptions formulated on a scattering basis
where forwsrd and backward signals flow through the system. This
scattering kind of description is of considerable importance in
the digital filtering area for the lattice filter class [7, p-
41431. To investigate the guestion raised above we here cobtain the
Lewis decomposition for multichannel digital filter lattices [s1l
by considering the semistate equations of multichannel 1lattice
sections. By use of a simple trarmsformation on the semistate the
Lew's decomposition into backward and forward subsystems is

obtained.

11. Review of the Lewis Decomposition

Here we quickly review semistate eguations and their
backward-forward decompostion. Thus, we recall the general
canonical form for semistate equations of linear time—-invariant
systems, this being [9,p. 6&6]
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where the vector quantities u, %, and v are the input, semistate
and ouvtput. respectively, and 4, @&, 858, and ¥ are constant
matrices of appropriate sizce and here assumed to be real; = is &
system opereator which we tale to be unit time advance. We will
assume that =d+® is nonsingular, that is that & & & Form a
requl ar pencil (which means that the svstem has unique
soclutions). Then by performing certain linear transformations on
these semistate equations {10, p. 35), as illustrated in the next
section and discussed further in the discussion section IV, we
can bring @& and @ to a perticular form which brings into focus
the Lewis decomposition. Thus, there are nonsingular metrices F
and @ such that
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where 1 and G denote the identity and zero matrices,
respectively, of appropriate sizes, 4+ denotes the matrix direct
sum, @ is a nonsingular matrix and A & 6 are nilpotent

matrices (meaning some power of them is zereo) which can be
written as the direct sum of matrices of the form
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where the zeros are scalar zeros. In eqs. (Za-c) any of the rows
and columns may be absent if the corresponding portion of the
decomposition is not present. For example, if € has rank zero
then only @ ics present and it is the direct sum of zereos. .

The transformation in (2a-c) places a transformation on the
csemistate and the input and output metrices 0 % X. Thus
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where the rows of =’ are partitioned as those of " with the

superscripts f, b, &and fb, denoting forward, backward, and
forward-or-backward. Here <x¥2’ has the choice of being allocated
between the forward and backward subsystems; if it is all
ascsigned to the forward subsyvstem then a "maximal forward®
decomposition results whereas assignment to the backward
subsystem gives a "marimal backward" decomposition [3, p. 1691,
In the case that the forward-or-backward subsystem is absent the
system 1€ both maximal forward and maximal backward; such will be
the ca&se for the PARCOR lattices. The semistate equations are now
eqs. (1) but with primes on all terms e:xcept the input and output
which are unchanged by the transformations performed. In this
form of the semistate equations broken into forward and backward
subsystems one can sclive them by iterating the Fforward subequa-—
tions Fforward in time and the backward subequations backward in
time &s discussed by Lewis [3]. Similarly, for two point boundary
velue problems where a closed form solution exists [4, p. 1267,

III. Lattice Semictate Equations

Here we obtain the scemistate equations decomposed into
forward and backwsrd subsystems for hoth the synthesis lattice
and the analysis (prediction error}) lattice. In both cases we
will use the lattice terminel variables as the original semistate
variables and then. transform these into new (primed) semistate
variables thet give the Lewis forward-backward decomposition.

Consider first the n-channel synthesis lattice section with
the <signal-flow graph of Fig. 1| where 1/z is unit delay and I
decignates the nxn identity matrix denoting n unit
transmittarces. The equations describing Fig. 1 can be written by
inspection and are

foatt) = $(t) + A(1/z2)b.,(t) (Za)
b(t) = —“Af_,(t) + (1/z)bosit) (Zb)



where f(.) & b(.) are the forward and backward (n-vector) signals
on the left (input) side and f_.(.) & b_,(.) are the same for the
right {output) side of the n-channel lattice. Consequently, we
take the input u(.) and the output y{(.) (n-vectors) as
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Here t can be either continuous or descrete time and the input
output choice yields a transfer function that is of the transfer
scattering matrix form.

We wuse the 4orward and backward lattice variables as the
cemistate variables and agroup these in forward and backward
paire for comparison with the Lewis partition of eguation
(2f). Thus we choose the lattice semistate x (.} 4n-vector as
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from which we write the following as a set of semistate equations
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Here 0, a5 I, is an nxn matrix.

Next we transform these canonical semistate equations into
the actual Lewis' forward-bachtward form by performing the follow-
ing elementary column operations on the matrices multiplying % in
eqs. (Sa):

1. add -A times the fourth column to the first then

2. add the first column to the second then

3. interchange columns two and four
and follow these up by the following elementary row operations on
eq. (Sa!}

4. add the fourth row to the second then

S. add A times the fourth row to the first then

é. interchange the third and fourth rows.

These operations give the following equivalent set of canonical
semistate equations, now in the Lewis forward-backward form
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As seen by comparing with eq. (Za,b), egs. (6) give a

decomposition of the semistate equations into & forward part,
compriesed of xi:° & x=z' and a backward part comprised of xx=" ¥
Xa', and the decomposition is into a maximal forward maximal
backward system.

We conclude that a forward~backward Lewis decompostion for
the n=-channel lattice has the forward subsystem semistate, un¥’,
and the backward subcsystem semistate, x®°, of dimension Zn and
thzt these comprise linear combinations of the forward and
backward lattice variables; & possible combination is given in
(4c). For completeness we exhibit the matrices F and @, which are
products of elementary matrices according to the rules above eq.
(&) .
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Next we consider the analysis (or what is also called the
prediction error: filter of Fig. 2. Here eqs. (3a,b) are rewrit-
ten as

F(t) = £_3(t) —A{l/z2)b_4 (t) {Ba)
bi{t) = —Af_,(t) + (1/z)b-i(t) (Bb)
and we have !
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We chocse the same semistate as in eq. (4) and find by inspection
of (8)
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To put these canaonical semistate equations into the

forward-bachkward Lewis’ form we add the first column to the
second, subtract the second column from the first, subtract A
times the fourth column from the second, interchange the second
and fourth columns, &dd the fourth row to the second, add A times
the fourth row to the first, and finally exchange the third and .
fourth rows. These operations are performed via
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1t should be noted that the only difference between the =2 in
the synthesis versus analysis Cases is that the (4,1) and (4,2)
entries are interchanged.
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These operations give the forward-backward decomposed canonical
esemistate equations as
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IV. Discussion

Here we have obtained forward-backward decompostions for the
gynthesis and the prediction error {analysis) multichannel
lattice semistate descriptions. By suitable transformations these
are brought into the forms of eq. (éa,b) and (11a,b) from which
it is seen that the decompositions are canonical ones that are
both maximal-forward and maximal-backward. The equations in the
two casees, synthesis and analysis filters, are just about the:
same though there are slight differences in the input and output
matrices and the trancsformed semistate jtsel$¥. This is to be
expected since in going from the synthesis to the analysis filter
there is only a change in half of the input and putput variables.
Wwhat is interesting is that the forward and backward variables of
lattice theory are somewhat different from those of the Lewis’
decomposition but closely related through the transformations B
given above. indeed one of the lattice forward variables,
specifically § in the synthesis lattice and f-i in the analysis
lattice, is a Lewis backward variable. And from what we have seen
here we believe that cimilar results may hold for more general
systems when described via scattering variables.

As the lattice sections are of most interest when cascaded
ta form more complete systems, it is of future interest to
develop the forward—backward decomposition for cascaded systems.
Such should Follow readily the results given here when combined
with the results of [111.

The guestion of uniqueness of the decomposition is of inter—
est. Ey considering new P's and Q's, as per (2), applied to (6&)
% (11a), we see that in order to rvetain the identity matrices
required by () in (&) and (11), the new P and @ must be direct

SUME 4 F = [F'ls';'F'zﬂjv g = [Qas-;-azzlq with F';;=C';:-‘ and F'32=Q=2_"



Thus, the forward and backward semistate subspaces are unique,
that is invariant to further transformation. On the other hand,
the semistate components within these two subspaces can be freely
transformed among themselves (since the only constraint on these
Fss and Fz=z is that they be nonsingular).

The results of this paper can be applied in various ways.
For one, we see that, on transforming to its backward—-forward
decomposition given above, a lattice can be analyzed by applying
the methods given by Lewis [3); for example the very convenient
double sweep method can be used for obtaining the signals in a
lattice system,

As a second application of significance for system design,
we note that if a system has a semistate description that can be
transformed to the forms of (&) or (11), then it can be con-
cstructed as a lattice. Since we know that the lattice is trans-
formable to these forms, we obtain necessary and sufficient con-
ditions that & 2n-input 2n-output system be constructable by a
lattice, these being that the system is manimal—-forward and maxi-
mal -backward with the existence of a P and & to bring 8 & X into
the forms exhibited in (&) and (11). Although this reads as an
existence theorem, the actual search for a suitable F and @ is
not very difficult in practice due to the nice forms of the B & X
of (&) and (11) where all the parameters occur in the A or A
matrices. . .

When a given 2n-input 2n-oputput system is maximal-forward
and maximal-backward, then the @& % @ matrices can always be
transformed to the direct sum forms of (béa) and (11a). By further
transformation of direct sum P & @, as described two paragraphs
up, various forms for 8 and ¥ can be obtained. All of the systems
so0 obtaimed are equivalent; of course for svstem design it is
profitable to look for the forms most convenient for hardware or
software realizations. As just discussed, if the system is equi-—
valent to a lattice then (&), in the case of a synthesis lattice,
or (11}, in the case of an analysis lattice, can be obtained. But
even if (&) or (11) can not be obtained, by bringing B and X as
close as possible to those of (&) or (11), an equivalent system
that somewhat resembles a lattice can be designed. For this one
can take a lattice and insert branches to "correct” the lattice
to yield the desired B and X matrices. In this sense the material
of this paper shows that the lattice can be used as a basic
building block for 2n-input 2n-output maximal- forward maximal -
backward systems.

Finally we give a means to attain the decomposition of eaqs.
(Za-c). Since =@+® is nonsingular, choose one of the real values
of z, call it c, for which z@+& has full rank. Using only real
matrices Py % B@,, i=1,...,6, in the following, we first transform
by @.=1 and F.=(c@+@)~* to get

Py(z@+@)0, = Pl (c@+R)+(z~c) QIR = I+(z—c) (c@+@)—2 (12a)
Next transform by Q@=z=F2"* where Fa is chosen to bring (c@+& —?
into a direct sum of a nonsingular matrix J, and a nilpotent

matrin Jun [10, p. 201-306]. Then

PaFs (20+@)1 0,02 = [2d,+(I-cdy)3lzdnt(l-cdn)] (1Zb)



This we multiply by Fx=J,"%*4{l-cdun)—t, with these inverses
existing, and Gs=1. The matrix Ja~2(l-cJ,) is further brought to
a nilpotent, Kwn, and nonsingular, kK,, direct sum by a matrix Fa
with Ra=Fa—2* and the matrix (I-cdwn)~*Jw is similarly brought to a
direct sum L;ilwm, with Ly nonsinaular and L nilpotent, by Fs and
B==P=s—%t. At the end L, is brought to the identity by Fg=L,™2,
Qe=1. Thus

P(z@+R)Q = {[Fat(FaFs) IFaFzF:2 (z2@+8) {0, 02020t (BsRe} 1) = (120)
(zI+kn) 3{zI+k) 2 (zI+La"2) 2 (zln+]) = (12d)
(2I+EW) $(cI+Ek 3 (La~2) 1) S (2Llnt+]) (1ze)

The last i=s in the form of eqs. (2a,b), with @.:=[K;4L,"2*] and F
¥ 0 the matrices in braces. Equation (2c) follows i+ we choose
the Jordan Fform for the nilpotent parts Kn=@~ and La=@~n, ac is
always possible ([10, p. J01] where we have zero eigenvalues for
the nilpotent matrices). It should be noted that we can extend
the form of eqs. (2a-c) to handle nonregular systems, that 1is
systems for which z@+@® is singular [10, pp. 35-481, essentially
by inserting a direct sum of zero matrices, but in the lattice
cases handled here nonregular systems are not really of interest.
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