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Curvature  and  torsion  are  determined in terms of Euler 
angles from coordinates  measured locally on a curve in 
three dimensional space  and  referred  to  a  fixed robot 
frame. These serve  to give equations for robot curve 
determination and  are  particularly  organized  for 
intelligent robot  decision  making. 

Introduction 

The  field  of  robotics  is  being  revolutionized  by 
the  presence  of microprocessors which are  paving  the 
way to intelligent robots [l]. It is also  clear  that 
intelligent robots will need to make  decisions  con- 
cerning  three-dimensional curves, for example for tra- 
jectory following o r  object recognition, inspection, 
and acquisition purposes [2, p. 431  [3]. Consequently 
it will become  important  to  have  three-dimensional 
curve determation equations on hand  and  especially so 
in a form suitable for microprocessor use in intelli- 
gent robots. Since, as we show elsewhere [ 41 , Euler 
angles are  determinable from microprocessor  controlled 
robot vision systems, we here use Euler angles as 
local coordinates established on a  curve.  Using  these 
coordinates the curvature, k(*), and torsion, ~ ( - 1 ,  as 
functions of arc length s are  calFulated. Since, by  a 
theorem of differential geometry 15, pp.  13-18], a 
three-dimensional curve is uniquely  determined  by  its 
curvature and torsion, the  desired curve determination 
equations are on hand. 

The  Euler  Angles 

Consider  a fixed, (right-handed) rectangular 
coordinate system, for example its origin 0 could  be 
in the base of the  robot. We denote points  measured 
in this system by  x  or  sometimes  to distinguish it as 
the  base  coordinate system by x0, thus 

In this system the coordinate axes unit  vectors  are 
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Next consider  a curve in this  three-dimensional  Eucli- 
dean space and  choose upon it  a starting point from 
which arc-length s is measured. For convenience we 
assume that  the curve has a  single-valued,  piecewise 
analytic description in s. At any point P on the 
curve we set up a local rectangular coordinate system 
with points  measured in this system denoted by 

This local coordinate system is set  up following dif- 
ferential geometry techniques so that 

designate  unit vectors, respectively, in the  direc- 
tion  of  the  tangent  to  the curve (measured with 
respect  to  increasing s ) ,  in the direction of the 
principal  unit normal to  the curve, and in the  per- 
pendicular direction necessary to  set  up  a  right- 
handed  system. By a translation of 0 to P we can 
identify  the  two coordinate origins and  after  that we 
can line up the coordinate axes  by  three rotations of 
Euler angles 01,  02, 03 defined  by 

0 = rotation around  the  x axis = pitch 
0 = rotation around  the resulting y  axis = roll (3b) 1 (3a) 
9 2 = rotation around  the  resulting z axis = yaw (3c) 

3 

The situation is shown in Fig. 1 where intermediate 
coordinate systems, of coordinates 51, 9 and x3 = t, 
are  given.  Letting 

C. = cos Oi , S. = sin Bi, i = 1, 2, 3 (4a) 

and  using  straightforward  trigonometrical  con- 
siderations the coordinates in the  various frames are 
seen to  be  related  by  the  transformations 

Denoting these coefficient matrices by TI,  T2, T3, 
respectively, we clearly have (" = transpose) - - -  - t = T3T2T15 , 5 = T T  T t 1 2 3- (4c) 

Thus we can find  the coordinates of  the  unit  vectors 
t, n, and b in the robots fixed frame (4c) as 
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1 '  
'1'3 + '1'2'3 

'1'3 - '1'2'3 

L i L 1  
Next  we I s e  the  Frenet - Serret formulas ;6, p.601 

which characterize the  curve. Thus we can  find  the 
curature  and  torsion  from 

+ dt k(s) = n * - + db 
ds ds , T(S) = n * - 

These  calculations  are  straightforward.  Writing d-ids 

= ' and  using C i ' = - si@; , ; S. = Ciai we  get 

k(s) = S 0 + 0 2 1  3 (7a) 

T(S) = -c c a 2 3 1 - '3'2 (7b) 

There  is  also a Constraint  due  to 6 and  being  per- 
pendicular which, from  the first of  (6a), is 

This is a Constraint  among  the  Euler  angles to guaran- 
tee  they  are  representing a curve.  In other words 
when travelling on a curve  the  Euler angles as we have 
defined  them  are  not independent, (7c) for example 
giving 2 1  in terms  of 02 & 03 via 

a part  outlined  by  the  curve. It should  be  observed 
that  scaled  curves  are  readily  handled  within  the 
theory. 

Since a curve is uniquely  determined by  its  cur- 
vature  and  torsion and, as shown here, also by its 
locally  measured  Euler angles, it  would  be  of  interest 
to determine  the  Euler  angles  as  explicit  functions of 
k and T. This is implicit in equations  (7)  but  it 
remains  an  interesting oper. problem  to  make  it  expli- 
cit. 
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x t Frame fixed in robot  

S 
r 1 cos 0 (x) d02(x) 3 .- 
I dx (7d) 

- _  
s cos 0 (x) sin 0 (x) dx 2 3 

Sir.ce any  two  (analytic) curves having  the same 
curvature  and  torsion  are identical except  possibly 
for orientation in space 16, p. 631, OUK curve is u n i  
quely  specified by equations (7). Consequently 
tracking  of  the 0i by a robot  and formation of  k(s) h 
T(s) via (7) in the  robot's  microcomputer  allows  the 
robot tc keep track of the curve for whatever purpose 
it  may r.eed. 

Discussion 

By  indexing a one dimensional curve in three 
dimensional space by  arc length s measured from a 
marked  point s = s o  = 0 on the curve, the curve can be 
parameterized via its  three  Euler angles determined 
locally  as a function of s .  Once  these angles are 
known, say  by a robot's vision and  processing system, 
the curve can be identified  by  calculating its cur- 
vature, k(s), and torsion, ~ ( s ) ,  via (7a, b) taking 
into account  the curve constraint, (7c), between  Euler 
angles. Various decisions can then be  made  by an 
intelligent robot's processing system, for  example  to 
pursue  the  curve  as an arm's  trajectory  or  to  acquire Figure 1. Euler Angles, 0 Translated  to P. 
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