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Abstract:
A system of semistate equations for the
generation of {a,nl-torus knots is set up in a fora
suitable for electronic circuit realization.

[. Introduction
Since almost every day a person ties a knot,
there appear to be sufficient applications for the
rather developed mathematical theory of knots [11].
For example, one can imagine the need for & robot
in a textile facteory to have its end effectors
following knot trajectories in tying off finished
products. Consequently, here we look at the design
of electronic oscillators whose outputs are torus
knot trajectories in three-dimensional space.
Toward this we recall that a torus can be
considered as the locus of a latitude circle
(sometimes called a meridian) as it is revolved
around a longitude (or, alternatively, its center
around an axial) circie [2, p.51{3, p.31. If a
trajectory on the torus returns to itself after
tracing along the longitude circle m times and
along the axial circle n times it is called an
{m,n)-torus knot £3, p.1851.

Previously Parris [4] has proposed the systea

of equations

there ' = d /dt)
' = -my + nxz (1a)
y' = mx + nyz {1k}
2 = {n/2)t - 22 - y2 + 22] {1c}

which has for sclutions the (m,n)-torus knots.
Although it is possible to implement these

equations in electronic hardware the resulting
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circuit is very difficult to make properly
operational for several reasans. Among these
reasons we note: 1} the necessity of using five
multipliers with 2} any errors in the multipliers
atfecting the dynamics while 3) the gain settings
determining the several n {and similarly m) need to
be precisely ganged. Consequently, we look for an
alternate to Egs. (!}, for which we take the clue

tor our treatment the idea behind Parris setting

up of the abaove equations.

Il. Torus Systen

Since the torus can be considered as the
topological product of two circles (5, p.15]1, we

start with two uncoupled sine-wave oscillators

X=1¢0 1 0 0 Hx (2a)
Y w2 0 0 ofly
I 0 0 0 )2
U] 1] 0 -wa? O)u

which generate the two circles
(X122 + Y2 = j,2 (2b)
(W2l + W2 = Ry2 (2e¢)

with radii R, and Rz fixed by initial conditiens.
The (X,Y)-plane circle is traversed at 2 radian
frequency W, while the {Z,W)-plane klr:le is
traversed at radian frequency us. Equations (2} da
describe a torus in the real four dimensignal
Euclidean space R* £6. p.161], and, hence, describe
(Wi, Wz)-torus knots. However, we are interested in
trajectories on a torus in real three dimensional

Euclidean space R3. To achieve this end we fora a




f2c):

quotient system £7, p.21} for which, foliowing

Parris [4}, #e introduce the algebraic constraints

W =
L

(2d)
{2e)

constant
/b

D -4 a-=
/D, ¥ = ¥/B, L =

!}

Fo sae that the quotient system yields a torus in
three dimensional space we substitute (2d} intg
(2c}, divide by Dland note that (2b) after division
also by Dzyields the constant terms divided by D
which can be substituted back into the manipulated
further rearrangement yields the result

z2 + {R - (23 + y2)3/2)2 =

r3 (3}

where

(2¢)
{2q)

H
¥l

= WX, y =Y,
AR, /[a2-Ra2)272,

zZ = {R|Uz£A:‘R=2]_',=}z_
r = RoRa/la2-Ra2}r/2

-3
"

Equation, (3} is the equation of a torus with a
meridian circle of radius r revolved around an
axial circle of radius R with the axis of
revolution being the z axis [B, p,220)., Equations
{2}, therefore, are a set of (semistate (7]}
equations far trajectories on a terus, these
trajectories forming (W,,Wz)- knots; we i1dentify m

= Ul. n = U:].

[f!. Circuit Besign Considerations

Figure | shows a signal-fiow graph suitable for
electronic realization of the semistate equations
{2), The radii, Ry % Ra, of the circlies of which
the torus is the direct product are set by the
initial conditions on the four integrators, as per
{2b,c},

these initial conditions to be zero Wwe can choose

Since it is most convenient to have two of

2(0) = 0, YO} = Ry, 210} = 0, H{D) = Rz (4}
Further, it is alsc very convenient to normalize u,
to 1| and choose the time scale via the integrator
capacitors (effectively denorealizing Wy); this
places a requiresent to make all integrator
capacitor ratios unity while also placing the

adjustment of a/n ratios upan variation of the one
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gain constant, wWz?, which itself can be fixed as
the ratio of resistors,

A major problem in the electronric circuit
construction of Fig. | is the presence of dividers.
These dividers can be realized by the use of
multipliers in feedback circuits [11, p.453] with
the significant pornts about realizing (2) rather
than (1) being that the multipliers do not appear
in the dynamics of the system with at most three
multipliers being needed for (2} rather than the
five needed for (§). If all of the dividers have
the same gain k this merely acts to scaies the
torus, However for oscilloscope display only twp of
the three variables, Xy¥s2, would be seen and for
that only twn dividers are necessary. Indeed tg
cbserve the knots it is probably best to monitor
the projections of the trajectories on the
{x,y)-plane and this is easily done by feeding the
x and y outputs to the horizontal and vertical
inputs of an oscilloscope (the oscilloscope traces
teing unscaled when 4 = 1), It should be observed
that if the output scalings to go from X,¥,Z to
®y¥.2 are omitted the torus becomes squashed and
has ellipsoidal meridians rather than circular onas
in whcich case the knots are essentially unchanged.

In realizing the divisions it is iaportant to
keep the denominators sufficiently removed from
zero. Fortunately this systea allows for this since
ain D = A > 0, as seen from (2¢c) expressed 1n
terms of D. Therefore, it appears that we can
choose 4 large enough so that the dividers will
properly operate. A convenient choice appears to be
4% = R,2 + Rz2, since the coefficient on 2 becomes
W2 {see also the appendix), but then one needs to
feed the dividers with a quantity, a, which varies
with the initial conditions chosen; this can of
course be a major nuisance in practical operation
of the circuit.

A significant problem in getting a circuit
realization to operate is the aeans of setting the
@/n ratio. If this is rational then true knots
oceur but if it is irrational then a portion of the
projection on the (x,y)-plane becomes filled up,
since the trajectories are then dense on the torus;
in essence for irrational a/n ratios the responses

must look somewhat chaotic. The practical problea



is that there appears tn.be as yet no apriori
method to set resistors for achieving rational a/n;
practically any randoaly picked resistor ratios
will be irrational. But note that by adjusting the
resistor setting Wz? the {:,yl-plane projections of
the trajectories will vary from filling regions to
being inets and this could be used to determine

when resistor ratios are rational!

IV, Discussion

In the above we have rephrased the equations
for torus knots to be in a form that can possibly
be implemented using modern day electronic
gircuits, in particular analoeg integrated circuits.
Key to this is the moving of the aultipliers out of
the dynamical part and into the algebraic part of
the semistate equations describing the systes. To
go along with this we have replaced the several
instances of occurance of the knot parameters m and
n by one occurance of each {and in reality by
choosing @ = 1 with just one accurance of n in the
form of n2}; in practice, though, this is a little
deceptive since @ and n are only defined to within
the common factor of a time scaling and this time
scaling depends upon the multipliers of s in the
muttipliers. These s multipliers are in practice
set by capacitors while m = W, and n = Wz are set
by resistors; it being such easier to contrat
capacitor ratios than resistor ratios the proposal
to use (2) rather than (1) as a basis for

constructing a torus knot oscillator is still
advantageous on this point. However, the serious

problem of actually setting the ratio of a/n to be
rational (rather than irrational) remains in any
conceivable implementation; this appears now to be
the real challange associated with iapleaenting
torus knot oscillators for which we await actual
experisental investigations.

it is worth noting that Birman and Williams
L1111 have shown that the Lorenz equations [12,
p.135] also realize knots and some of very
fascinating variety. However, although the Lorenz
equations are easier to realize [13] than those of
{1} of Parris, [14) still they possess similar
problems and our experience is that they are

already very difficult to make work practically.

Thus, it appears that it may be worth looking at
the Lorenz or similar types of equations in terms

of the ideas of this paper.

hppendix

Here we show the general nature of equations of
the type of (i} that resuit fram (2) within the
framework of this paper. Considering {2} we

differentiate x, vy, and z, to get

WelDx" - XD")/D2 (Ala}
(DY' - YDb')/D= {AlD)}
{Ryua2/fa2-Rx23* 72} (D1 - 1D") /D2 (Alc)

-~ =
woow

r
]

By (2d), {(2a} and (2f) we note

B o= W' o= -wa?l = -{Wala%-Ra21t/3}(zD} (A2a)

while from (2c) and {(2b6) we find

Da = (1/2)[ (a2 - Ra2) + wz2l2 + [2] ({A2b)
42 - R2? = {(4% - R2®) /R 3}[W.2k2 + Y] (A2c)

Using (A2a} in (Ala,b) as well as (A2a} and (A2b,c}

in {Ale) finally gives

%' o= Wy + {WalA2-Rz2]2 72 /R, }x2 (AJa}
y' = =Wyx + {Wz[A%-Rz211/2/R,}yz (A3b)
z° = {WaR,/204%-R2%1:72}[1 + ([4%F-Rz2)/R,?)} (22 -
X% - y2)]) {(A3c)
If we set

A% = R, + Ra? (Ad)

then, on replacing % by -%x and identifying a = W,
and n = Wa, the equations (A3} become identitied
with (1), those of Parris.
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Figure 1

Signal-Flow Graph for Torus Knot
Oscillator
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