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Computer networking capacity
in robotic neural systems

Carol Niznik and Robert Newcomb* explore the analogy between the capacity
of computer networks and robotic neural systems

This paper illustrates the mathematical and
philosophical link between capacity measures
developed in the mathematical theory of capacity,
computer netwarking and robotic neural systems. The
work of classical authors is founded upon concepts
associated with physical circuit capacitors and Fourier
series singularity points, and is developed through
mathematical works originating with Gauss and
Wiener. Three such mathematical measures of capacity
are used here as a theoretical base: Newtonian
capacity, Hausdorff measure capacity and analytic
capacity. The linking of circuit and computer net-
working capacity measures, which equates to the
capacity of robotic neural systems, is discussed by this
means in two contexts, one in terms of the frequency of
action potentials, and the other in terms of the
frequency of bursts of action potentials in neural
circuits. An all-or-none path model is also illustrated to
indicate the position of coding in the robotic neural
system.

Keywords: computer networks, capacity, robotics,
neural networks, VLSI

Before the advent of computer system design and
channel information flow, the term capacity was used
in the circuitry and electromagnetic literature to
indicate the ratio between charge on a conductor and
the value of the potential of the conductor. This
definition gives a capacity, often called capacitance,
which is independent of the charge or voltage. Hence
the capacity can be found to be equal to the charge
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when the potential is normalized to one. This notion of
capacity long ago led directly to a mathematical theory
of capacity. Among the mathematicians working on
this problem was Gauss, who in 1840 was probably
the first to discuss the problem of assigning potential to
arbitrary sets. Much later, Wiener, following ideas he
associated with Kellogg in 1924%3, appears to have
been the first to use the capacity of an arbitrary
bounded region R in n-dimensions, doing this by
having a potential of one on R and zero at infinity (using
—1nr at infinity for n= 2).

Wiener recognized that the capacity gave a precise
measure of the importance of a region to the solution
of problems such as that of Dirichlet which he was
attempting to solve>. This has been taken over into the
area of Fourier series®, where the Fourier series is
defined with respect to a given measure. It was then
found that the sets of zero capacity, with respect to the
measure, were the sets where convergent Fourier
series could diverge (as for the Gibbs Phenomena)®,
Besides this importance, sets of zero capacity became
fascinating in their own right, since they may be
different from sets of Lebesque measure zero, as was
exhibited by the example of de La Vallee Poussin®,
where 2 positive measure is given on the Cantor set to
give it nonzero capacity, although the Cantor set has
zero length (that is, zero Lebesque measure), Indeed,
this has led to general studies of Cantor sets and their
capacities’. As a summary work, Choquet® gives a
relatively complete treatment of the potential theory
aspects of capacity from a mathematical point of view,
while a good and more modern treatment using
Schwartz distributions is given by Deny®,

Because of the difficulty of characterizing sets of
capacity zero, mathematicians were led to treat them:
as unions or intersectionus of sets on which the capacity
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min-max and limit expressions'® which allow the
mathematical theory of capacity to be directly tied to
the theory of capacity used in computer networking as
discussed below. Early mathematical works in this area
are associated with Fekete's 1923 transfinite
diameter'’, which was recognized by 1931 to be the
capacitance constant of a set by Polya and Szego'2.

The connection between these mathematical
concepts and the analogous application of potential
theoryinherentin robotic electrical com ponentstothe
analogy of computer networking terminology for
capacity is now outlined. In computer networking,
Kleinrock' ' defines capacity as

® the measure of average flow the computer system
channel must exceed to prevent congestion,

® the maximum rate at which a computer system can
perform work.

Therefore, the average rate of demand must be less
than the capacity to prevent system congestion.
Computer system components that can also be
analysed for capacity include the processor
storage'* '® and the terminal storage.

THEORETICAL ANALOGY

In the computer network, capacity is usually defined in
relation to the expression for delay, as in Kieinrock'3:

1 n
T==D T M
Yi=1
where
Y= Lk mx is a message path originat-

ing at node j and terminat-

jo k: C; for my
ing at node k

M = service rate

A = interarrival rate

T,' = 1/(_0.;(:,' - A.)

C; = capacity for network topology linksi =1, ... ,n

N/ i = pi <1 (p; = ith utilization factor) (2)

Yk = external input message rate with origin j and
estination k

This expression then represented in terms of capacity
C; is stated as

N 1
G- (;)‘“ (ﬁ) ¢

Equation (3) for link capacity in a computer network is
then related to the three theoretical measures
described above as characteristic of robotic neural
component capacity theory in the following manner.

The Newtonian capacity satisfaction of
C(K; U K3) + C(Ky U Ky) < C(Ky) + CUK,) (4)
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relates the inner Newtonian Capacity and the general
nonadditivity property'’

CAP(ULX,) < ZcapX, (5)

This theory can be observed when the individual
computer network capacity equation (3) is substituted
into equation (1). Also, the bilinear form of the
Newtonian capacity is illustrated from Kelvin's
Principle as given by Bleidtner®:

0 el =g
CAP,w=

—_— 1
L alug, uy If o,* ' ¢ (6)

for all open subsets w C 0, where

a(-,") = bilinear form for network circuit section
considered

U, = pure a-potential

¢.*' = real set that is a closed convex subset of a

real Hilbert Space

empty set

+ e M H =
CAP,w = {7)
alu,, u), IfH, > ¢

H. = a real Hilbert space over open subsets w C 1,
and so

cap,w = cap,w (8)
Again, equation (3) is of this bilinear form, because:

1
G =-a—+ P, where a; = ;T; {9)
i

and p; < 1 for stability in an infinite storage queueing
system; i.e. as p; increases from 0 to 1 the system load
increases, and therefore stability decreases.

Hausdorff measure dimension’

This analogy is stated owing to the property of the
Hausdorff measure being characterized by an increas-
ing function h(t) which decreases on shrinkin sets, ¢
representing the diameter of the set® %9 |, a
computer network, the function h(t) may be taken as
the scaled waiting-time density function f,{y) where
Yy = 1/t represents the service minus interarrival time.
For the Lindley integral equation solution of the
M/M/1 system®, f(y) = A(1 - ple=* =5l where
HC = service rate = (messages/bits) (bit/s) and \=
interarrival rate, p = utilization factor, these all being
for a single channel.

For output channels and finite storage approxima-
tions we take, for the ith channel,

fly); .
5 (;’(t’ i B T

y=1/t

hi(t) =
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a formula which further illustrates this analogy. The
exponent in the h(t) function yields the Hausdorff
dimension* and this exponent most often agrees with
the potential theory capacity?®. By our choice of hit)
for the computer network, we see that computer net-
working capacity also agrees with the Hausdorff
dimension. For inactive output channeis and finite
storage approximations, other formulae could be
developed which also illustrate this anology.

Analytic capacity'®’

Analytic capacity is defined'’ in a plane region R by
maxg,c by where G is a family of holomorphic func-
tions g{z) in D, where D is the unbounded component
of the complement of R. (Here | g(z) | <1 and g2) =
{by/2) + (ba/z%) +. .. around infinity.) Therefore, the
research by Polya and Szego®' is consistent with this
definition, because the capacity for a plane is shown to
be P(M), where M is an arbitrary plane bounded closed
point setand P(M) = d{M) = k(M), where k = capacity
and d = transfinite diameter. Since P=Iim P, and
p = d was proven by Fekete in Reference 17,

P, = minmax"/[pp.1|PP2}. - -|PPal {10)
p; peM
where p; = fixed points in M varied for the
maximum
n = number of points considered

|ppi| = distance between p and p;

Since the result of equation (10) can be applied to a
two-dimensional surface in three-dimensional space
for the robotic neural components, this can define
capacity for the surfaces of neural components
realized by three-dimensional VLSL. Also, by taking the
derivative of T; with respect to C;, and equating the
result to zero, after a LaGrangian expression has been
formed, a mix-max** 22 expression similar to that in
equation (10) of Fekete in formal capacity theory can
be found. The computer networking definition and
derivation of the analogy in equation (10) requires
considering m groups of delays for n capacities,
grouped in groups Gui....GmwhereCo=Co1 + Coa t+
, ..., Com here Co is the total capacity of group
iti=1...m).

= Z :
T =, A‘[[Pﬁcm‘_ N

where v is as in equation (1)

],k=1,...,m {11)

24 = [Coi | Coi representing a delay of Gy
Then, for the m groupings, the objective min-max
expression becomes
min max [Ty(z:), . . ., Tm{Zm)] = min {min min, ...,
Cgi G,' Xiyee s Xm 27 22

min{maxITy(z4, - . ., Tmlzm)3}) (12)
Zm G
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where 0 < x, <1 is given by x; =

K
iZ Coi

=0

m
and ¥ Coi=101—xCo
i=k+4+1

m
and for fixed x; with £ x;=1. The minimization of
=1
Ty,..., Tmisthe standard capacity assignment problem
and,

Ac=YT(E AL Be= Z Ap (13)
ieGy 1eGy
is also a convex function, Expanding the Ay, B, and

defining Co, the solution for the LaGrange multiplier a,
a convex function of capacity weighting becomes

Aq _ A; _
x1Co1 — B1  %2Co2 — B2 -
- Am—1 = Am —_
Xm=1Co, m=1— Bm -1 XmCom — Bm
A; 1
x=|—+8B;)| —
o Co,'
1 i moA;
-=(1- £ B{E ) (14)

a I=1 im1 Coi
ROBOTIC NEURAL SYSTEM MEASURES AND
CAPACITY

Impulse coding concepts

Information in the robotic neural system is contained
in the action-potential-like pulses being processed.
Therefore, we first define some terms associated with
these concepts for which it will be useful to refer to
Figure 1.

impulse

We call the information-carrying pulses of a robotic
neural system impulses. These are action potential
types of puises that can be idealized to mathematical
impulses for our purposes.

Time slot

A time slot is the time interval during which impulses
are observed. Usually this is taken to be long enough
that impulse frequency, impulse bursts and impulse
burst frequencies can be monitored and measured.

Impulse burst

This is the sequence of pulses that comprises the pulse
train, where the pulses occur as a group when the
system is active. Time-siot 2 of Figure 1 indicates an
impulse burst
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Figure 1. Coding of all-or-none response path in
robotic neural system hardware and software

impulse fraquency

This is the inverse of the impulse frequency interval,
the interval being the time between pulses in an
impulse burst. This time is indicated in time slot 1 of
Figure 1. It is assumed that the frequency is constant
during a burst and that there is an upper impulse
frequency, f,, at which pulses can occur.

Impulse burst frequency

This is the inverse of the time between initiation of
adjacent impulse bursts, as shown in time slot 3 of
Figure 1, Thus, this is the rate at which impulse bursts
travel along specific neural links (such as dendrites and
axons).

Table 1 lists other specific computer networking and
neural network analogies which are of interest in
relating the robotic neural system to computer
networking.

Capacity

\
In the robotic neural system, there are two notions of
capacity, one, C; measures the capacity to handle
individual impulses and the other, Cg. measures the
capacity to handle impulse bursts. Different neural
components will require different evaluations,
However, C, is expressed as the maximum frequency
of impuises that the component can process. Similarly,
Cg is the maximum impulse burst frequency that the
component can process. Inherent in these capacity
measures for most comlponents is the basic idea of
weights and amplitude®? attached to the impulses
indicating their effectiveness and routing coding
information. In general, the amplitude of input
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impuises will determine, subject to weighting, which of
the neurons in a signal path will fire (that is, give an
impulse output due to the impulses present at input
dendrite buttons).

Consider a robotic neural pathway made of neural
lines and junctions, where at the junctions the outputs
are weighted sums of the inputs: In terms of fre-
quencies, if; is the frequency on line jand weightw;; is
the weight of f; yielding the ith junction output, then we
describe an n; input junction by

-~
V= ?Wii /] (15a)
where the firing frequency of the kth neuron is
f =FV)
and
Fvy=|Y  ifR>0 (15b)
0 ifF,<0 (15¢)

That is, we assume that the output frequency is linearly
related to the input frequencies (one of which may be
the output when feedback occurs). Since there are
excitatory and inhibitory inputs, we further break the
weights into positive and negative portions?4,

n+ M - H
wy = | Wi if w; = 0 (excitatory) (16)

—wi if wp<0 (inhibitory)

By appropriate numbering, we will take the first m; of
these to be non-negative, Since not all real numbers
are allowed as weights, the values of | wy | are restricted
to lie in some weight set W. The envelope of these
amplitudes will be defined mathematically by the
quantization measure?s which determines the interval
between action potentials by sampling the interarrivat
and service rates of action potentials at path neurons,

We can now define the capacity of the neural
pathway as the smallest maximum frequency that can
be transmitted through the pathway. That is,

C=min mfax F(v) (17)
J i

In other words, we maximize each f; by choice of the f;
and then look for the smallestf; in the pathway. As per
the above, we can use the impulse frequencies or the
impulse burst frequencies; hence we again have at
least two types of capacity for the neural pathway. In
fact, there are many more than two types of neural
pathway capacities, since for a given usage it may be
that one component is limited by its upper impuise
frequency and another component by the upper
impuise burst frequency. Since the f; in the definition
become maximized, they can be replaced by the
component capacities and the max term dropped, in
which case the total path capacity C is expressed in
terms of the component capacities Ci (where G;is C,or
CB‘J. Thus

computer communications




Table 1. Computer networking and neural networking analogies

Computer networking components

Robotic neural networking analogies

Computer nodes
(buffer storage + front end
{routing processor))

Input communications channels

Soma (cell body}
{buffer function + routing function)

Dendrite trees

Output communications channels Axons
Communications processor ports Buttons
Terminology Parameter definitions Analogies

Setvice time probability

Density function
parameters

Interarrival rate probability

density function parameters

Marginal overflow probability

density function

ay + a; = complexity of
buffer storage at t*h
time slot (interval)

Mean waiting time

Service/time message

Threshold time/potential

Messages served/time
interval t

Potentials achieving threshold/time
interval t

Interarrival time/message

Messages arriving/time
interval t

Interarrival time/potential

Potentials achieving the threshold/time
slot t

Marginal message overilow/time
interval t

oy = number of messages leaving
buffer

a; = number of messages entering
bufifer

Belay in buffer of each computer node

Marginal potential overflow/time
interval t

o = decrease in soma storage
{potentials)

ap = increase in soma storage
(potentials)

Delay in buffer function of each soma

Terminology

Computer networking definitions

Neural networking definitions

Packet switching network
(PSN)

Packet

Message

Cataway

Internetwork

Congestion

The set of communicating computers
(nodes) connected with physical
circuits, which carry bit strings using
the stare and forward concept

A sequence of bits (string) exchanged
between nodes of a particular packet
switched network

A bit string comprised of packets
exchanged between a PSN and an
external device (a computer or
another PSN)

A node at the entrance to a PSN
capable of sending/receiving from
another PSN

An abstract PSN structure resulting
from the juxtaposition of several PSNs

Stoppage of message flow because of
system utilization exceeding 100%,
total lockup of messages and there-
fore instability. A congested state is

the point where flow exceeds capacity

of the links and storage

The neural network comprising a
functional area of the nervous system

The quanta of information or burst of
action potentials occurring over a
discrete period of time from individual
neurons. These pulses indicate by their
encoding, (combination of amplitudes
and pulse time intervals) their routing
destination

A collection of bursts of impulses, The
series of quanta of information from all
Reurons in one CNS functional area, i.e.
the cerebellum, which are input to the
dendrite tree branch buttons of a neuron
in another functional area

Neurons at areas of the body referred
10 as ‘pressure points’ where there are
many synaptic arrivals (action potentials)
at the dendrite trees from gateway
neurons of other functional nervous
systemn areas

Neural networks along path structures
between human nervous system
functional areas

The constant firing of neuron circuit
action potentials resulting in no interval
between bursts?’
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n;

C = min ’Zw,-; G (18)
i -

Ifthew; are freetobe chosen, as in a robot design, then
they could be chosen, via say the LaGrange multiplier
method mentioned above, to maximize further C, of
course subject to the constraint w; eW. And while in
many cases the f; and w; may be deterministic, in some
cases they are probabilistic, in which case in the
definition of capacity C we would place an expected
value before the parentheses.

The next section applies these ideas to the layered
neural pathway of Figure 1, in which no feedback is
present.

Neural path example

Referring to Figure1, and the cubic software structures
representing sections of the central nervous system as
described in Niznik and Newcomb?®, a neural path is
set out where the capacity measurement is significant;
it is described for strong and weak stimulus resting
discharge and for all-or-none response paths. This
robotic neural path is related to the computer
networking capacity link assignment via LaGrange
multiplier optimization following the neural optimiza-
tion theory plan from Klopf*. The parameter being
maximized is py, a measufe of trapsmission and
synaptic frequencies defined as (E[) is expected value

of)

ni
ol = EL D, wy 0G0 = Ela®) = B01  (19)
i—1

m;

where a;(t) = ’Z Wjj+(t)Cj(t) = amount of excitation ati

nj

) = Z w; () C;(t) = amount of inhibi-
j=mti tion ati

where j = the range of excitation
w; = synaptic transmittance for the jth input
Ci(t) has been defined for equation {18)
[m; + 1 <j < nj] =range of numbered inhibi-
tory synapses.

Therefore,
max{p()) = max {Elailt) — g (20
w w
giving
max{u;{i)) = max{Ela{()]} — min{E1Bi{(t)]} (21)
w w

We look for the worst possible case, the minimum of
this expression, in order to use optimally the neural
pathway. Therefore, in terms of the capacity of the
robotic neural system, we look at the worst possible

an

routing. On this pathway, the difference between the
excitation and inhibition pulses is minimized by
minimizing the maximum of the excitation and
maximizing the minimum of the inhibition. The result
gives the best frequency transmission obtainable in
the worst possible situation.

CONCLUSIONS

The direct analogies between computer networking
capacity and robotic neural capacity have been
presented in terms of three historical circuit capacity
definitions: Newtonian capacity, Hausdorff measure
and analytic capacity. Specific computer networking
terminology and analogies to robotic neural networks
were also discussed. Finally, the measurement of the
capacity of a robotic neural system path hardware and
software example was illustrated.
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