Reliability of Pasic Robot Automated Manufacturing Networls
H. Alavan*, C. A. Minnik*, and R. N. Mewcomb*

*Nicrosystems Laborator/ #Center for Brain Research
Electrical Engineering Department University of Rochester
University of Marvland Box 605 Medical Center
College Park, MD 20742 USA Rochester, NY 14624 USA

Abstract:

Reliability of robot networks is discussed and techniques diven for its evaluation. Expressions are developed for the reliability of the most basic robot networks useful in automated nanufacturing. These expressions are evaluated in the case of a fixed number. 6, of networked robots and used to obtain MTBF's for the practical comparison of the networks discussed. The results show a general preference toward the lattice structure.

- I. Introduction

Due to the presence of microprocessors, robots are rapidly becoming the work-horses of automated manufacturing. Since manufacturing processes can involve many steps. and since individual robots are generally programmed to carry out but a few of these steps, it is clear that for complete automation a number of robots will be involved. To facilitate the final production it is also clear that these robots will need to communicate, and, herce, with their communication systems will form a robot network.

Toward an analysis of such systems we can represent a given robot network by several different praphs to incorporate different concepts of interest. Here we will use the overview graph in which each distinguished robot in the network is represented by a node and the communication links between nodal entities by a branch. In terms of this overview graph there are several configurations of prinary interest, as is the case with ejectrical [1] and computer [2] networks.

Among the most basic of these graphs are the following [3]: a) star (for general purposes with master computer centrol), b) ring (for cyclic production lines), c) protected ring (for highly reliable cyclic production), d) linear (for open production lines), e) protected linear (the standard for highly reliable first-in-first-out production: f: double linear (for a complete space back-up system) g) leap-frog (for ease of reconfiguring for multiple tasks), h) feed-forward ifor open production lines with parallel constructions: i) lattice (for efficient and versitile multiple purpose production), j) star with ring (for good control in cyclic production).

The reliability of these robot networks will determine their overall cost effectiveness and in turn will, we believe, be a key factor in the specification of automated canufacturing plants. Following the notions developed in (4) we take the reliability of a robot network to be the probability that the network will perform a determined task within specified tolerance limits. This reliability has change with the task and, since a diven robot network have deserted.

tasks, there may be several reliabilities for the network, however, for this paper, both for simplicity and for ease of comparison; we assume a given robot network has a single reliability. Since the network is made up of communication links, represented by branches in the network graph, and robots, represented by nodes in the network graph, we calculate the network reliability assuming the reliability. I for a primar, communication link, there back-up links (called here curve links and for which we generally assume (Cyl), and N for the robot nodes (except N, is used for the master robot controller in the cases of star and star-ring networks).

In Table 1 we give the reliabilities for L ≠ C

* N ≠ N, while in Table 2 we reduce these under the assumptions that all robots have the same reliability and all links have the same reliability. For comparison purposes these are evaluated in Table 3 which also contains the Mean Times Between Failure (MTBF) for the various configurations. We use the combinatorial path enumeration technique (51 to evaluate the reliabilities of the mentioned robot networks.

II. Component Reliability

An understanding of how components, nodes, and links fail is essential to improving and evaluating the reliability of a network. Indeed it is through the reliability of the parts entering into a robot's construction that the reliability or a robot is determined, see for example [5, p.94] where reliability data on a Unimation robot is given. A component, a node, or a link can fail in either a datastrophic, or an intermittent mode. Electrical part failures are usually due to open or short circuits with the failure coming from a basic physical change that results in an identifiable failure node. Early failures are often linked to design and manufacturing flaws or to a flaw in reliability testing itself.

Examples of early failures are wire boncs, poor connections, or bad protective coatings, as well as incorrect positioning of components. For electronic components the most destructive stresses are excessive voltage and temperature ranges, either steady-state or changing at rapid rates. Strong vibrations also contribute to stress related failures especially in industrial robots.

Failures of a component can usually be described for reliability purposes through the component's failure rate, the failure rate in this case being the inverse of the NTBF and denoted by a, with the MBTF found by making a large number of tests to failure of the component. For a collection of components, such as a robot, the NTBF can be calculated as the average time to failure, the

probability used in the averaging being the reliability Ritt. Thus

When the reliability is exponential, as for an individual component, then NIPF = 1/2. Other reliability related concepts of interest are the hazard rate, which is defined as the rate of change of the number of components that have failed at a particular, line divided by the number of components surviving (II), and the useful life derigh, which is characterized by stress related failures.

To calculate farlure probability for an entire robot network from probability farlure rates a stress analysis model can be built. Each component is evalued and work sneets made up containing all feature that determine the failure for each node and link in the network. The reliabilities for each node and each link are combined to determine the reliability for the total robot network in the manner we carry out in the next section.

111. Network Reliability

Here we outline the methods used to obtain the Tables but for space reasons carrying out the calculations only for the lattica network, the calculations for others being similar. But hat a fair comparison may be made we assume that all networks under discussion use six rocots, that is, we assume there are six nodes in each graph.

Consider a math, to be now called an event E,, from input to output; the reliability for production along this path will be the product of reliabilities of the nodes and links comprising this math. If there are n possible paths, E, E, then the reliability R, for the overall system will be given by

 $F_{*}=P^{\prime}E_{1}+E_{2}+\ldots E_{n}^{\prime}$ (2) where P is reliability probability and + denotes union of the events.

We next evaluate the system reliability for the six node lattice network for which we will give two interpretations. In both cases we assume that the primary production process has inputs at rode 1 and cutouts at node 5. In the first case, though, we assume that links can only be traversed in the forward direction and that nodes 2 and 6 form alternate inputs and outputs in case the primary production line fails: in essence this interpretation is that of a backup production line in parallel with the primary one except that compling emists between the two to allow for increased efficiency of use of equipment. In the second case incuts are limited to being at node 1 and outputs are always at node 5 with the other nodes being considered as beind primarily available with backwards traversal of links being possible.

Under the first interpretation the six node lattice of Fig. 2 has the following four events

E,	Ξ	$N_1 L_1 \mathcal{H}_{S} \mathbb{E}_{S} N_{S}$			13a1
Εz	=	RICINALAND			1357
Ξ3	×	HataNaLaN.			11.761

 $E_{A} = N_{B}C_{B}N_{B}C_{B}N_{B} \tag{3d}$

The system reliability expression is then

 $B_{+} = P\{E_{1} + E_{2} + E_{3} + E_{4}\}$

= F(E1) + P(E2)+ P(E3) + P(E4)

+P(E,E2)+P(E,E2)+P(E,E4)+P(E2E3)+P(E2E4)+F(E3E4)

 $E_{\rm e}=4N^3L^2-2N^4L^4-2N^4L^4-2N^6L^4+4N^6L^6-N^6L^6-(4c)$ For the MTSF this latter can be evaluated as a function of time using the failure rates $\lambda_{\rm e}$ and $\lambda_{\rm e}$ for the nodes and links, respectively.

 $E_{+}(t) = 4exp[+(3\lambda_N+2\lambda_L)t] -2exp[-(4\lambda_N+4\lambda_L)t]$

 $-2 \exp(1 + (5 \lambda_N + 4 \lambda_L) t) - 2 \exp(1 + (5 \lambda_N + 4 \lambda_L) t) + 4 \exp(1 + (5 \lambda_N + 5 \lambda_L) t) - \exp(1 + (5 \lambda_N + 6 \lambda_L) t) + (5 \lambda_N + 5 \lambda_L) t) - \exp(1 + (5 \lambda_N + 6 \lambda_L) t) + (5 \lambda_N + 6 \lambda_L) t) - (2 / (4 \lambda_N + 4 \lambda_L))$ HTDF = $[4 / (3 \lambda_N + 2 \lambda_L)] - [2 / (4 \lambda_N + 4 \lambda_L)]$

 $-12/(5\lambda_N+4\lambda_L)] + [2/(5\lambda_N+4\lambda_L)]$ + $(6\lambda_N+6\lambda_L)] - (1/(5\lambda_N+8\lambda_L)]$

For the Unimate 2000 robot which has a MTBF = 503 hours (6, p.84) we have $\lambda_N = 1970 \times 10^{-9} / hours$ which after 2c hours gives N = 0.95 while from [8, p.32] we use L = 0.99 which when considered as $\exp(-\lambda_{L,L})$ evaluated at 25 hrs. yields $\lambda_L = 355 \times 10^{-9} / hrs.$ and a MTPF of 2591 hrs. Using these in the above formula for the lattice MTBF we get 277 hours.

In the second interpretation of the lattice the procedure is the same for evaluating reliability and HTBF except that the events are different. In this case the previous E. 5 E2 hold but E4 5 E4 are not present. In place of E3 5 E4 we have a number of other paths, as follows

 $E_{A} = N_{1}L_{1}N_{3}C_{2}N_{2}L_{2}N_{3}C_{4}N_{3}$ $E_{A} = N_{1}L_{1}N_{3}C_{3}N_{4}L_{4}N_{4}C_{4}N_{3}$ $E_{B} = N_{1}C_{1}N_{4}L_{4}N_{5}C_{3}N_{5}L_{5}N_{5}$ $E_{A} = N_{1}C_{1}N_{4}L_{5}N_{5}C_{5}N_{5}L_{5}N_{5}$ $E_{A} = N_{1}C_{1}N_{5}C_{5}N_{5}L_{5}N_{5}$ (6d)

There is also $E_7 = N_1C_1N_4L_2N_2C_2N_3C_5N_6L_6N_4C_6N_5$ which, however, we ignore since it has a return to N4 and, hence, path E2 could have been used already. Calculations as before yield a MTBF = 194 hrs (the decrease being due to inputs restricted to robot one; if we allow node two as an input the MIRF appears to increase to about 270 hrs./. We also compare these results with using sim robots in two disjoint linear production lines, one being a back-up for the other. For a linear production line of three equal noces and two equal links we have a = $3\lambda_N + 2\lambda_L$ which for the numbers used above gives MIRF, = 73 hrs.. By adding an identical back-up line we find, from $R(t) = 2exp(-\lambda t) - exp(-2\lambda t)$ since $R_n = P(E_1) + P(E_2) - P(E_1E_2) = 2N^3L^2-N^6L^4$. that MTBF = (3/2)MTBF, = 110 hrs.. From these calculations we can see that good improvement in system performance can result by going over to the lattice production line structure.

The Tables give the results for the various configurations of Fig. 1 where for the distinguished robots 1 we have used a failure rate equal to that of the links even though we believe it will be very hard to achieve in practice. We also note that the results do not inprove in theory if return paths (that is paths which touch a given node more than once) are considered. However, there appear to be situations where there may be a possibility for improvement. Therefore, a theory to hardle such situations is under development.

References

(11. 6. C. Temes and J. La Patra, "Circuit Synthesis and Design," McGraw-Hill Book Co., NY, 1977;

[2]. T. N. Fyke, Jr., and R. P. Blanc, "Computer Networking Technology - A State of the Art Review," <u>IEEE Computer</u>, Vol. 6, Avoust 1973, pp. 12 - 19. [3]. R. Papannareddy, C. A. Niznik, H. Alayan, and R. W. Newcomb, "Processor Requirements for Reliable Automated Manufacturing Robot Networks,"

Froceedings of the 23rd International Symposium on Mini and Microcomputers and Their Applications, San Antonio, December 13, 1983.

[4]. R. C. Yaughn, "Quality Control, Iowa State University Fress, Ames. Iowa, 1974.

451 M. L. Snooman, "Frobabilistic Keliability: An Engineering Approach.: McGraw-Hill Book Co., BY, 1958.

Lol. J. F. Engelberger: Robots in Practice, Management and Applications of Industrial Robots, American Management Associations, Seranac Lake, NY, 1781.

Figure 1. Basic Graphs of Robot Networks

a) Ster

No line

No

[7]. E. A. Dovle. Jr., "How Parts Fail," IEEE Spectrum. Vol. 18. No. 10. October 1981, p. 36.
[8]. F. S. Schneider and D. Minoli, "An Algorithm for Computing Average Loss Probability in a Circuit-Switched Communication Network," IEEE Iransactions on Communications, Vol. COM-28, No. 1, January 1789, pp. 27 - 32.

	Pohor Natural	72	TABLE-1							
_	Robot Network (n=6)		Basic Robot Networ		ř					
u)	Protected ring	$R_S = N^O L^O + N^O C^O + 2N^O L$	³ C ³ -2N ⁶ L ³ C ⁶ -2N ⁶ L ⁶ C ³	+Noroco						
ь)	Protected linear	Rs= N ⁵ C ⁵ +N ⁶ L ⁵ +N ⁶ L ²	$c^{3}-N^{6}L^{2}c^{5}+N^{6}L^{3}c^{2}-N^{6}$	$L^{3}C^{5}-N^{6}L^{5}C^{2}-N^{6}L^{5}C^{3}$	+N ⁶ L ⁵ C ⁵					
c)	Lemp-frog	Rs= $N^{6}L^{5}+2N^{4}LC^{2}+3N^{5}L^{3}C-3N^{5}L^{3}C^{2}-2N^{6}L^{3}C^{3}+2N^{6}L^{3}C^{4}-2N^{6}L^{4}C^{2}-2N^{6}L^{4}C^{4}$ +3 $N^{6}L^{5}C+3N^{6}L^{5}C^{2}+2N^{6}L^{5}C^{3}$								
d)	Feed-forward	Rs= $N^2C+N^3LC-N^3LC^2+N^4L^2C-2N^4L^2C^2+N^4L^2C^3+N^5L^3C-3N^5L^3C^2+3N^5L^3C^3-N^5L^3C^4+N^6L^4C-3N^6L^4C^2+6N^6L^4C^3-4N^6L^4C^4+N^6L^5-6N^6L^5C^2-10N^6L^5C^3$								
	27	+6N ⁶ L ⁵ C ⁴ -N ⁶ L ⁵ C ⁵								
e)	Lattice- 2				$^{3}L^{3}C^{3}+2N^{6}L^{3}C^{4}-2N^{6}L^{4}C^{6}$					
f)	Star-ring	$ R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N_{1}N^{4}L^{4} - N_{1}N^{5}L^{5} - 2N_{1}N^{5}L^{2}C^{5} + N_{1}N^{5}L^{3}C^{5} + N_{1}^{2}N^{3}L^{4} + N_{1}^{3}N^{4}L^{6}$								
		$+N_1^4N^5L^8+N^5C^5$.								
	9				÷1					
		D	TABLE-II	(4)	-74					
	Robot Network	Reliability o	f Basic Robot Netwo	rks (L=C≠N≠N.)						
1)	Star		N ₁ N ⁴ L ⁴ -N ₁ N ⁵ L ⁵ +N ₁ ² N ³ L							
b)	Ring	Rs= N ⁶ L ⁶	1 1 1							
2)	Protected ring	Rs= 4N ⁶ L ⁶ -4N ⁶ L ⁹ +N ⁶	L 12							
1)	Linear	Rs= N ⁶ L ⁵		* 2	(43)					
,)	Protected Linear	Rs= $N^5L^5 + 3N^6L^5 - 2N^6$	7-2N ⁶ L ⁸ +N ⁶ L ¹⁰							
E)	Double linear	$Rs = 2N^3L^2 - N^6L^4$.		2.9						
		$Rs = 2N^4L^3 + 3N^5L^4 - 3N^3L^5 - 7N^6L^6 + 5N^6L^7 + N^6L^5$								
g)	Leap-frog									
1	Leap-frog Feedforward	Rs= N ² L+N ³ L ² -N ³ L ³ +	$n^{4}L^{3}+n^{4}L^{5}-2n^{4}L^{4}+n^{5}L$		2N ⁶ L ⁵ -9N ⁶ L ⁶					
. [$Rs = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + 16N^{6}L^{7} - 14N^{6}L^{8} + 16N^{6}L^{7} - 14N^{6}L^{8} + 16N^{6}L^{7} + 16N^{6}L^{8} + 16N^{6}L^$	$n^{4}L^{3}+n^{4}L^{5}-2n^{4}L^{4}+n^{5}L$ $n^{6}L^{9}-p^{6}L^{10}$	4 - 3 5 5 15 + 3 15 16 - 15 17 + 3	2n ⁶ L ⁵ -9r ⁶ L ⁶					
h)		$Rs = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8} + 6\\ Rs = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$	$n^{4}L^{3}+n^{4}L^{5}-2n^{4}L^{4}+n^{5}L$ $n^{6}L^{9}-p^{6}L^{10}$ $5L^{4}-2n^{6}L^{4}+4n^{6}L^{6}-n^{6}L$	4-311 ⁵ 1 ⁵ +311 ⁵ 16-11 ⁵ 1.7+1	2N ⁶ L ⁵ -9R ⁶ L ⁶					
h) i)	Feedforward	$Rs = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8} + 6\\ Rs = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$	$n^{4}L^{3}+n^{4}L^{5}-2n^{4}L^{4}+n^{5}L$ $n^{6}L^{9}-p^{6}L^{10}$	4-311 ⁵ 1 ⁵ +311 ⁵ 16-11 ⁵ 1.7+1	2N ⁶ L ⁵ -9r; ⁶ L ⁶					
h) j)	Feedforward .	$R_{S} = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8} + 6$ $R_{S} = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$ $R_{S} = 2N^{3}L^{2} - N^{4}L^{4} + 4N^{5}$	$n^{4}L^{3}+n^{4}L^{5}-2n^{4}L^{4}+n^{5}L$ $n^{6}L^{9}-p^{6}L^{10}$ $5L^{4}-2n^{6}L^{4}+4n^{6}L^{6}-n^{6}L$	4 - 31; 5 L ⁵ + 3N ⁵ L ⁶ - N ⁵ L ⁷ + 33 6 + 4N ⁶ L ⁷ - 2N ⁶ L ⁸						
1)	Feedforward Lattice- 1 Lattice- 2	$R_{S} = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8} + 6$ $R_{S} = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$ $R_{S} = 2N^{3}L^{2} - N^{4}L^{4} + 4N^{5}$	$n^{4}L^{3}+n^{4}L^{3}-2n^{4}L^{4}+n^{5}L$ $n^{6}L^{9}-p^{6}L^{10}$ $n^{5}L^{4}-2n^{6}L^{4}+4n^{6}L^{6}-n^{6}L$ $n^{5}L^{4}-2n^{6}L^{4}+4n^{5}L^{6}-2n^{6}L$ $n^{5}L^{5}+4n^{5}L^{6}-2n^{6}L$ $n^{5}L^{5}-2n^{5}L^{5}-2n^{5}L$	4 - 31; 5 L ⁵ + 3N ⁵ L ⁶ - N ⁵ L ⁷ + 33 6 + 4N ⁶ L ⁷ - 2N ⁶ L ⁸	W E					
1)	Lattice- 1 Lattice- 2 Star-ring bot Network	$R_{S} = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8}6 $ $R_{S} = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$ $R_{S} = 2N^{3}L^{2} - N^{4}L^{4} + 4N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{$	N ⁴ L ³ +N ⁴ L ³ -2N ⁴ L ⁴ +N ⁵ L N ⁶ L ⁹ -N ⁶ L ¹⁰ 5L ⁴ -2N ⁶ L ⁴ +4N ⁶ L ⁶ -N ⁶ L L ⁴ -8N ⁵ L ⁵ +4N ⁵ L ⁶ -2N ⁶ L E ₁ N ⁴ L ⁴ -N ₁ N ⁵ L ⁵ -2N ₁ N ⁵ TABLE-III Reliability (26hrs)	4-3N ⁵ L ⁵ +3N ⁵ L ⁶ -N ⁵ L ⁷ +3 3 6+4N ⁶ L ⁷ -2N ⁶ L ⁸ L ⁷ +N ₁ N ⁵ L ⁸ +N ₁ N ³ L ⁴ +N ₁	W E					
L) () ()	Lattice- 1 Lattice- 2 Star-ring bot Network (n=6)	$R_{S} = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8}6$ $R_{S} = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$ $R_{S} = 2N^{3}L^{2} - N^{4}L^{4} + 4N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}L^{4} - N^{4}L^{4} - N^{4}L^{4} + N^{5}L^{4} - N^{4}L^{4} + N^{5}L^{4} - N^{4}L^{4} - N^{4}L^{4} + N^{5}L^{4} - N^{4}L^{4} - N^{4$	$\begin{array}{c} {}^{N}{}^{4}L^{3} + {}^{N}{}^{4}L^{3} - 2{}^{N}{}^{4}L^{4} + {}^{N}{}^{5}L \\ {}^{N}{}^{0}L^{9} - {}^{N}{}^{0}L^{10} \\ {}^{5}L^{4} - 2{}^{N}{}^{6}L^{4} + 4{}^{N}{}^{6}L^{6} - {}^{N}{}^{6}L \\ {}^{L}{}^{4} - 8{}^{N}{}^{5}L^{5} + 4{}^{N}{}^{5}L^{6} - 2{}^{N}{}^{6}L \\ {}^{3}L^{3}L^{4} - {}^{N}{}^{1}L^{5} - 2{}^{N}{}^{1}L^{5} \\ {}^{3}L^{3}L^{4}L^{4} - {}^{N}{}^{1}L^{5}L^{5} - 2{}^{N}{}^{1}L^{5} \\ {}^{4}L^{4}L^{4} - {}^{N}{}^{1}L^{5}L^{5} - 2{}^{N}{}^{1}L^{5} \\ {}^{4}L^{4}L^{5}L^{5} - 2{}^{N}L^{5}L^{5} + 2{}^{N}L^{5}L^{5} \\ {}^{4}L^{5}L^{5}L^{5} - 2{}^{N}L^{5}L^{5} + 2{}^{N}L^{5}L^{5} \\ {}^{4}L^{5}L^{5}L^{5}L^{5}L^{5}L^{5}L^{5}L^{5$	4-3R ⁵ L ⁵ +3N ⁵ L ⁶ -R ⁵ L ⁷ +3 3 6+4N ⁶ L ⁷ -2N ⁶ L ⁸ L ⁷ +N ₁ N ⁵ L ⁸ +N ₁ N ³ L ⁴ +N ₁	Vulnerability (Survivability)					
I) Ro	Lattice- 1 Lattice- 2 Star-ring bot Network (n=6) Star	$\begin{array}{c} \text{Rs= N}^2 \text{L+N}^3 \text{L}^2 - \text{N}^3 \text{L}^3 + \\ + 16 \text{N}^6 \text{L}^7 - 14 \text{N}^6 \text{L}^4 6 \\ \text{Rs= } 4 \text{N}^3 \text{L}^2 - 2 \text{N}^4 \text{L}^4 - 2 \text{N} \\ \text{Rs= } 2 \text{N}^3 \text{L}^2 - \text{R}^4 \text{L}^4 + 4 \text{N}^5 \\ \text{Rs= N}_1 \text{N}^2 \text{L}^2 - \text{N}_1 \text{N}^3 \text{L}^3 - \frac{1}{2} \text{N}^4 \text{L}^4 + \frac{1}{2} \text{N}^4 \text{N}^4 + \frac{1}{2} \text{N}^4 \text{L}^4 + \frac{1}{2} \text{N}^4 \text{N}^4 + \frac{1}{2} \text{N}^4 \text{L}^4 + \frac{1}{2} \text{N}^4 L$	N ⁴ L ³ +N ⁴ L ³ -2N ⁴ L ⁴ +N ⁵ L N ⁶ L ⁹ -N ⁶ L ¹⁰ 5L ⁴ -2N ⁶ L ⁴ +4N ⁶ L ⁶ -N ⁶ L L ⁴ -8N ⁵ L ⁵ +4N ⁵ L ⁶ -2N ⁶ L E ₁ N ⁴ L ⁴ -N ₁ N ⁵ L ⁵ -2N ₁ N ⁵ TABLE-III Reliability (26hrs)	4-3N ⁵ L ⁵ +3N ⁵ L ⁶ -N ⁵ L ⁷ +3 3 6+4N ⁶ L ⁷ -2N ⁶ L ⁸ L ⁷ +N ₁ N ⁵ L ⁸ +N ₁ N ³ L ⁴ +N ₁ MTBF (hrs)	Vulnerability (Survivability) good					
(i) (i) (i) (i) (i) (i) (i) (ii) (ii) (Lattice- 1 Lattice- 2 Star-ring bot Network (n=6) Star	$R_{S} = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8}6 $ $R_{S} = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$ $R_{S} = 2N^{3}L^{2} - N^{4}L^{4} + 4N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N^{4}L^{4} + N^{5}L^{4} + N^{5}L^{$	$\begin{array}{c} {}^{N}{}^{4}L^{3} + {}^{N}{}^{4}L^{3} - 2{}^{N}{}^{4}L^{4} + {}^{N}{}^{5}L \\ {}^{N}{}^{6}L^{9} - {}^{N}{}^{6}L^{10} \\ {}^{5}L^{4} - 2{}^{N}{}^{6}L^{4} + 4{}^{N}{}^{5}L^{6} - {}^{N}{}^{6}L \\ {}^{L}{}^{4} - 8{}^{N}{}^{5}L^{5} + 4{}^{N}{}^{5}L^{6} - 2{}^{N}{}^{6}L \\ {}^{3}L^{3}L^{4} - {}^{N}{}^{1}{}^{N}{}^{5}L^{5} - 2{}^{N}{}^{1}{}^{N}{}^{5} \\ & \qquad \qquad$	4-3; 5L5+3N5L6-; 5L7+; 3 6+4N6L7-2N6L8 L7+N1N5L8+N1N3L4+N1 MTBF (hrs) 157 70.7	Vulnerability (Survivability) good fair					
Ro Ro	Lattice- l Lattice- 2 Star-ring bot Network (n=6) Star Ring Protected ring	$R_{S} = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8}6 $ $R_{S} = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$ $R_{S} = 2N^{3}L^{2} - N^{4}L^{4} + 4N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N^{4}L^{4} + N^{5}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N^{4}L^{4} + N^{5}L^{4} + $	N ⁴ L ³ +N ⁴ L ³ -2N ⁴ L ⁴ +N ⁵ L N ⁶ L ⁹ -N ⁶ L ¹⁰ 5L ⁴ -2N ⁶ L ⁴ +4N ⁶ L ⁶ -N ⁶ L L ⁴ -8N ⁵ L ⁵ +4N ⁵ L ⁶ -2N ⁶ L E ₁ N ⁴ L ⁴ -N ₁ N ⁵ L ⁵ -2N ₁ N ⁵ TABLE-III Reliability (26hrs)	4-3R ⁵ L ⁵ +3N ⁵ L ⁶ -R ⁵ L ⁷ + 3 6+4N ⁶ L ⁷ -2N ⁶ L ⁸ L ⁷ +N ₁ N ⁵ L ⁸ +N ₁ N ³ L ⁴ +N ₁ MTBF (hrs) 157 70.7 91.9	Vulnerability (Survivability) good fair good					
Ro Ro (1)	Lattice- l Lattice- 2 Star-ring bot Network (n=6) Star Ring Protected ring Linear	$R_{S} = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8}6 $ $R_{S} = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$ $R_{S} = 2N^{3}L^{2} - N^{4}L^{4} + 4N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{$	N ⁴ L ³ +N ⁴ L ³ -2N ⁴ L ⁴ +N ⁵ L N ⁶ L ⁹ -N ⁶ L ¹⁰ 5L ⁴ -2N ⁶ L ⁴ +4N ⁶ L ⁶ -N ⁶ L L ⁴ -8N ⁵ L ⁵ +4N ⁵ L ⁶ -2N ⁶ L E ₁ N ⁴ L ⁴ -N ₁ N ⁵ L ⁵ -2N ₁ N ⁵ TABLE-III Reliability (26hrs) L≠C≠N≠N ₁	4-31; 5L5+3N5L6-1; 5L7+1 3 6+4N6L7-2N6L8 L7+N1N5L8+N1N3L4+N1 MTBF (hrs) 157 70.7 91.9 72.7	Vulnerability (Survivability) good fair					
Ro Ro (1)	Lattice- l Lattice- 2 Star-ring bot Network (n=6) Star Ring Protected ring	$R_{S} = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8}6 $ $R_{S} = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$ $R_{S} = 2N^{3}L^{2} - N^{4}L^{4} + 4N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - N^{4}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N^{4}L^{4} + N^{5}L^{4} + N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N^{4}L^{4} + N^{5}L^{4} + $	$\begin{array}{c} {}^{N}{}^{4}L^{3} + {}^{N}{}^{4}L^{3} - 2{}^{N}{}^{4}L^{4} + {}^{N}{}^{5}L \\ {}^{N}{}^{6}L^{9} - {}^{N}{}^{6}L^{10} \\ {}^{5}L^{4} - 2{}^{N}{}^{6}L^{4} + 4{}^{N}{}^{5}L^{6} - {}^{N}{}^{6}L \\ {}^{L}{}^{4} - 8{}^{N}{}^{5}L^{5} + 4{}^{N}{}^{5}L^{6} - 2{}^{N}{}^{6}L \\ {}^{3}L^{3}L^{4} - {}^{N}{}^{1}{}^{N}{}^{5}L^{5} - 2{}^{N}{}^{1}{}^{N}{}^{5} \\ & \qquad \qquad$	4-3R ⁵ L ⁵ +3N ⁵ L ⁶ -R ⁵ L ⁷ + 3 6+4N ⁶ L ⁷ -2N ⁶ L ⁸ L ⁷ +N ₁ N ⁵ L ⁸ +N ₁ N ³ L ⁴ +N ₁ MTBF (hrs) 157 70.7 91.9	Vulnerability (Survivability) good fair good					
Ro Ro Ro (a) (b) (d) (f)	Lattice- l Lattice- 2 Star-ring bot Network (n=6) Star Ring Protected ring Linear Protected linear Double linear	Rs= N ² L+N ³ L ² -N ³ L ³ + +16N ⁶ L ⁷ -14N ⁶ L ⁸ 6 Rs= 4N ³ L ² -2N ⁴ L ⁴ -2N Rs= 2N ³ L ² -N ⁴ L ⁴ +4N ⁵ Rs= N ₁ N ² L ² -N ₁ N ³ L ³ - Reliability (26hrs) 0.7868 0.6919 0.7335 0.6982 0.7681 0.97471	$N^{4}L^{3}+N^{4}L^{3}-2N^{4}L^{4}+N^{5}L$ $N^{6}L^{9}+N^{6}L^{10}$ $5L^{4}-2N^{6}L^{4}+4N^{6}L^{6}-N^{6}L$ $L^{4}-8N^{5}L^{5}+4N^{5}L^{6}-2N^{6}L$ $E_{1}N^{4}L^{4}-N_{1}N^{5}L^{5}-2N_{1}N^{5}$ TABLE-III Reliability (26hrs) $L\neq C\neq N\neq N_{1}$ 0.72317	4-3R ⁵ L ⁵ +3N ⁵ L ⁶ -R ⁵ L ⁷ +3 3 6+4N ⁶ L ⁷ -2N ⁶ L ⁸ L ⁷ +N ₁ N ⁵ L ⁸ +N ₁ N ³ L ⁴ +N ₁ MTBF (hrs) 157 70.7 91.9 72.7 94.8 110	Vulnerability (Survivability) good fair good fair good very high					
Ro Ro 1) 2) 2) E) E)	Lattice- l Lattice- 2 Star-ring bot Network (n=6) Star Ring Protected ring Linear Protected linear	Rs= N ² L+N ³ L ² -N ³ L ³ + +16N ⁶ L ⁷ -14N ⁶ L ⁸ 6 Rs= 4N ³ L ² -2N ⁴ L ⁴ -2N Rs= 2N ³ L ² -N ⁴ L ⁴ +4N ⁵ Rs= N ₁ N ² L ² -N ₁ N ³ L ³ - Reliability (26hrs) L=CFNFN ₁ 0.7868 0.6919 0.7335 0.6982 0.7681	N ⁴ L ³ +N ⁴ L ³ -2N ⁴ L ⁴ +N ⁵ L N ⁶ L ⁹ -N ⁶ L ¹⁰ 5L ⁴ -2N ⁶ L ⁴ +4N ⁶ L ⁶ -N ⁶ L L ⁴ -8N ⁵ L ⁵ +4N ⁵ L ⁶ -2N ⁶ L E ₁ N ⁴ L ⁴ -N ₁ N ⁵ L ⁵ -2N ₁ N ⁵ TABLE-III Reliability (26hrs) L≠C≠N≠N ₁	4-3R ⁵ L ⁵ +3N ⁵ L ⁶ -R ⁵ L ⁷ + 3 6+4N ⁶ L ⁷ -2N ⁶ L ⁸ L ⁷ +N ₁ N ⁵ L ⁸ +N ₁ N ³ L ⁴ +N ₁ MTBF (hrs) 157 70.7 91.9 72.7 94.8 110 151.9	Vulnerability (Survivability) good fair good fair good very high high					
a) b) c) d) f) g)	Lattice- l Lattice- 2 Star-ring bet Network (n=6) Star Ring Protected ring Linear Protected linear Double linear Leap-frog Feed-forward	Rs= N ² L+N ³ L ² -N ³ L ³ + +16N ⁶ L ⁷ -14N ⁶ L ⁸ 6 Rs= 4N ³ L ² -2N ⁴ L ⁴ -2N Rs= 2N ³ L ² -N ⁴ L ⁴ +4N ⁵ Rs= N ₁ N ² L ² -N ₁ N ³ L ³ - Reliability (26hrs) L=CN+N+N ₁ 0.7868 0.6919 0.7335 0.6982 0.7681 0.97471 0.883188 0.9025	$N^{4}L^{3}+N^{4}L^{3}-2N^{4}L^{4}+N^{5}L$ $N^{6}L^{9}-N^{6}L^{10}$ $S^{5}L^{4}-2N^{6}L^{4}+4N^{5}L^{6}-N^{6}L$ $L^{4}-8N^{5}L^{5}+4N^{5}L^{6}-2N^{6}L$ $S^{5}L^{4}-N^{5}L^{5}-2N^{5}L$ TABLE-III Reliability (26hrs) $L^{4}C^{4}N^{4}N^{4}$ 0.72317 0.7489 0.8637897	4-3R ⁵ L ⁵ +3N ⁵ L ⁶ -R ⁵ L ⁷ + 3 6+4N ⁶ L ⁷ -2N ⁶ L ⁸ L ⁷ +N ₁ N ⁵ L ⁸ +N ₁ N ² L ⁴ +N ₁ MTBF (hrs) 157 70.7 91.9 72.7 94.8 110 151.9 241.1	Vulnerability (Survivability) good fair good fair good very high high very high					
Rooma) Rooma) Rooma) Rooma) Rooma) Rooma)	Lattice- 1 Lattice- 2 Star-ring bot Network (n=6) Star Ring Protected ring Linear Protected linear Double linear Leap-frog	$R_{S} = N^{2}L + N^{3}L^{2} - N^{3}L^{3} + \\ + 16N^{6}L^{7} - 14N^{6}L^{8}6$ $R_{S} = 4N^{3}L^{2} - 2N^{4}L^{4} - 2N$ $R_{S} = 2N^{3}L^{2} - N^{4}L^{4} + 4N^{5}$ $R_{S} = N_{1}N^{2}L^{2} - N_{1}N^{3}L^{3} - \\ \frac{R_{S}}{L} = \frac{1}{2}N^{4}N^{5} + \frac{1}{2}N^{5}N^{5}$ 0.7868 0.6919 0.7335 0.6982 0.7681 0.97471 0.883188	$N^{4}L^{3}+N^{4}L^{3}-2N^{4}L^{4}+N^{5}L$ $N^{6}L^{9}-N^{6}L^{10}$ $S^{5}L^{4}-2N^{6}L^{4}+4N^{5}L^{6}-N^{6}L$ $L^{4}-8N^{5}L^{5}+4N^{5}L^{6}-2N^{6}L$ $S^{5}L^{4}-N^{5}L^{5}-2N^{5}L$ TABLE-III Reliability (26hrs) $L^{4}C^{4}N^{4}N^{4}$ 0.72317 0.7489 0.8637897	4-3R ⁵ L ⁵ +3N ⁵ L ⁶ -R ⁵ L ⁷ + 3 6+4N ⁶ L ⁷ -2N ⁶ L ⁸ L ⁷ +N ₁ N ⁵ L ⁸ +N ₁ N ³ L ⁴ +N ₁ MTBF (hrs) 157 70.7 91.9 72.7 94.8 110 151.9	Vulnerability (Survivability) good fair good fair good very high high					

CONFERENCE PROCEEDINGS

IEEE SOUTHEASTCON '84

LOUISVILLE, KENTUCKY APRIL 8-11, 1984

84CH1984-4