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Abstract

Curvature and torsion are determined in terms of Euler
angles from coordinates measured locally on a curve in
three dimensional space and referred to a fixed robot
frame. These serve to give equations Eor robot curve
determination and are particularly organized for,
intelligent rebot decision making.

Introduction

The fleld of robotics is belng revolutionized by
the presence of microprocessors which are paving the
way to intelligent robots [l]. It is also clear that
intelligent robots will need to make decisions con—
cerning three-dimensional curves, for example for tra-
jectory following or object recognition, inspection,
and acquisition purposes [2, pe A]][Bl. Consequently
it will become important to have three-d imensional
curve determation equations on hand and especially so
in a form suitable for microprocessor use in intelli-
gent robots. GSince, as we show elsevhere (4}, Euler
angles are determinable from microprocessor controlled

_ robot vision systems, we here use Euler angles as

local coordinates established on a curve., Using these
coordinates the curvature, k(*), and torsion, 1(+), as
functions of arc length s are calculated. Since, by a
theoren of differential geometry [5, PP- 13-18], a
Ehree-dimensional curve is uniquely determined by its
curvature and torsion, the desired curve determination
equations are on hand.

The Euler Angles

Consider a flxed, (right-handed) rectangular
coordinate system, for example its origin O could be
in the base of the robot, We denote polnts measured
in this system by x or sometimes to distinguish it as
the base coordinate system by Xg, thus

x = Cx ] = %y - % (la)

{- 21 %y

In this system the covrdinate axes unit vectors are
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x=t1 7, ¥y=J0T] . z=]0 (ib)
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Next congider a curve in this three-dimensional tucli~
dean space and choose upon 1t a starting point from
which arc-length s is measured. For convenience we
assume that the curve has a single-valued, plecewise
analytic description in s. At any polat P on the
curve we set up a lecal rectangular coordinate system
with points measured in this system denoted by
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This loeal coordinate system is set up following dif-
ferential peometry techniques so that

t= 1 , h=T0T7, b=[0 (2b)
i 0
9 0 _ 1

designate unit vectors, respectively, in the dlrec-
tion of the tangent to the curve {mcasured with
respect to increasing s), in the direction of the
principal unit normal to the curve, and in the per-
pendicular dlrection necessary to set up a right-
handed system. By a translation of 0 to P we can
identify the two ‘coordinate origins and after that we
can line up the coordinate axes by three rotatlons of
Euler angles O}, Oy, O3 defined by

Ul = rotation around the x axis = pitch (3a)
Uz = rotation around the resulting y axis = roll (3b)
03 = protatlon around the tesulting z axls = yaw {3c)

The situation is shown in Fig. | where intermediate
coordinate systems, of coordinates X, %2 and x3 = E,
are glven., Letting

G, = cos 0 5

N i i i=1, 2,73 (4a)

= sin 01,
and using straightforward trigonometrical con-
siderations the coordinates in the various frames are
seen to be related by the transformations

5l= 1 0 o %, . .xz
Nl 19 % Si|| Y Y2 '
2| |98 G| % )
= C2 0 -52 x| LEN C3 53 0 %y
o 10 \ly ¥4 -5, ¢y 0]y,
S2 0 62 zl g 0 0 1 2y

(4b)

Denoting these coefflcient matrlces by Ty, T2, T3,
respectively, we clearly have (™ = transpose)

= TyT,Tx

Thus we can Find the coordinates of the unlt vectors
t, n, and b in the robots fixed frame (4c) as

v x0T TTaE (4c)

1222
0191-2216/83/0000-1222 $1.00

1983 IEER



X - ™ €,C, ,
C,S5 + 55,04
5153 ~ €18;6,
5 = [~ -C,84 -
‘ €,Cy = 5,5,5, 5,6, | (5)
$,Cy + €;5,5, cc,

Next we use the Frenet = Serret formulas [6, p.60]

+ + -
dt > dn - + db *
rria k{s)n , Frile =(k{s)t + 1(s)h), a5 " (s)n (6a)

which characterize the curve. Thus we can find cthe
curature and torsion from

~ - P -
+ dt + db
k(s) = n Ty ,  T1{8) = n Py (6b)

These calculations are straightforward. Writing d+/ds

-

= “ and using C; = - Siﬁz . Si = C1E; we get

Lt DJ (7a)

-

k(s) = SZO

5 (7b)
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There is also a constraint due to b and ; being per-
pendicular which, from'the first of (6a), is

i{s) = =C,C

-

- . C

* de - ) ] -
b el 02530l - C302 a0 01 = C253 02 (7c)

This is a constraint among the Euler angles to guaran-
tee they are representing a cutve. In other words
when travelling on a curve the Euler angles as we have
defined them are not independent, {7c)} for example
Elving O] in terms of 0y & O3 via

01(5) = Ol(so) +
S cos Oj(x) dOZ(x)

‘ . . dx (7d)
s, ¢os Uz(x) .sin OJ(x) dx

Since any two {analytic) curves having the same
curvature and torsion are ldentical except pessibly
for orientation in spate |6, p. 63]. our curve is uni
quely specified by equations (7). Consequently
tracking of the ©f by a robot and formation of k{s) &
t(s) via (7) in the robot's miecrocomputer allows the
robot to keep track of the curve for whatever purpose
it may need.

Discussion

By indexing a one dimensional cutve in three
dimensional space by arc length s measured from a
marked point s = sg = Q0 on the curve, the curve can be
parameterized via {ts three Euler angles determined
locally as a function of s. Once these angles are
known, say by a robot's vision and processing system,
the curve can be identified by calculating its cur-
vature, k{s), and torsion, 1(s), via (7a, b) taking
inte account the curve constraint, (7c), between Euler
angles. Varlous decisions can then be made by an
Intelligent robot's processing system, .for example to
pursue the curve as an arm's trajectory or to acquire

a part outlined by the curve. It should be observed
that scaled curves are readily handled within the
theory.

‘Since a curve fs uniquely determined by {ts cur-
vature and torsion and, as shown here, also by its
locally measured Euler angles, it would be of interest
to determine the Euler angles as explicit functions of
k and t. This is implicit in equations (7) but it
remains an interesting open problem to make {t expli-
cic.
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Figure 1. Euler Angles, 0 Translated to P,
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