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LAPLACE TRANSFORMS - DISTRIBUTIONAL THEORY

ABSTRACT

As Romans the gods of old Greece once revised,
So here we report in form generalized,
Transforms to whose name S. Laplace does apply,

Abstract at the time when L. Schwartz did espy.

The theory proceeds, distributions its steart,
Come then the ideas Fourier at its heart.
By simple extension all properties come,

A multiplication included among.
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LIST OF SYMBOLS

Definition or Explanation
Independent variable (time).

Testing function.

Space of testing functions.

Index of a sequence, as in [mn}.

Order of derivatives taken with respect to t.
Arbitrary distributions of the varisble t.
Contained in, as in qe D,

Scelar product of a distribution T(t)

and a testing function o(t).

Space of distributions; topological dual of D .

Function of t, or locally integrable function
continuous or not.

Unit step function.

Impulse occurring at + = O,

Space of distributions with support bounded
on the left,

First and second derivatives with respect to t
Pseudo function (or Hadamard's finite part),
Real or complex convolution.

Space of good functions,

Space of tempered (slowly increasing)
distributions; topological dual of & ,

Good function; infinitely differentisble
function of rapid decrease,

Real power of a varieble, as in tm.

Not contained in,

Direct Fourier transform into the w domein,

Inverse transform into the t domain,

Set A is contained in B,
Most important use: fairly good (slowly

inereasing) function,

-yi-

First
Azgears

O O O O WV A0 o

[4)

lo
16
32
32

32

33
33
33
33
33
41
bs



Space of fairly good functions.

Space of repidly decreasing distributions,
Discussed in note-IV-20; finite sums of
derivativegof Lq functions.

Complex frequency variable; p = o+jmw.
Convergence strip of T (set of g for which
e-GtT(t) is tempered),

Greatest lower bound of I'(T).

Least upper bound of I'(T).

Interior of I(T).

Intersection of sets A and B,

Bilateral Laplace transform into the p domain,
Complex conjugete of p; p¥ = o-jwm,

Square integrable functions,

g th - integreble function,

Inverse Laplace transform into the t domain,
Any funetion of p; & Leplace transform,
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I. INTRODUCTION

For many years now some of the key notions which have been considered
in system analysis and design are those of the Laplace transform and the
associsted frequency domain techniques. Also for many years it has been
realized that a considerable number of operations performed by engineers
with the Laplace transform were done on an intuitive basis. For exsmple,
one freely interchanged orders of limits and integration, worked with
singularity functions and impulse responses, etc, It seems very strange
to us that even though the manipulations used by engineers can be very
simply justified, as well as conditions of validity given, thils nowhere
occurs in the engineering literature or even in complete form in the
English language.

A decede sgo a very simple, but still the most conceivably general,
theory of Laplace transforms was presented by Laurent Schwertz, [SC3].
Schwartz's concise paper, based upon his theory of distributions, is,
however, quite abstract end has never really been properly put to use.
It is, therefore, the purpose of this report to present Schwartz's
meterial in a form useful to graduate engineers and scientists.

To be sure there are several alternate theories available, but
these all have disadventages and aren't rigorous, general, simple, and
as intuitively clear as that of Schwartz., Listed among these, one should
mention the ideas of Korevaar, [KO4], and KSnig & Rehberg, [KO2] and
[RE1], as well as the operational calculus of Mikusifiski, [MI2]. Un-
fortunately, even the most recent texts in English essentially ignore
the advantages to be gained by the use of the very simple theory of
distributions.

The structure of the report is as follows. In Section II we
review in some detell the theory of distributions. Although some of
this material is available in English, most often the treatment is
limited to giving e proper definition of the impulse, Thus we include
the important results, such as the impulse response characterization
listed in persgrsph 7, as well as sufficient motivation, meinly through
examples, to meke the general ideas seem useful for other purposes.
For those unfamilier with Schwartz's ideas we have inserted many notes
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which work out details or remify points which seem to us hard to grasp
at a first meeting of the subject.

The short Section IIT gives the most importent ideas concerning
the Fourier transform of "good" functions. From two properties of
these functions the entire distributional theory follows by a simple
extension, This extension is carried out in Section IV to the most
general case of htempered" distributions, By then multiplying with real
exponentials, Section V generslizes these ldeas to obtain the Laplace
transform of distributions which are tempered in a region. The detailed
properties of this most generasl bilateral Laplace transform are then
studied, also in Section V, As in Section II, these last three sections
contain many notes giving proof's and discussions of points which, al-
though of interest, tend to obscure the fundamental concepts.

Results concerning the Laplace transform are extensive, and ex-
haustive treatise exist giving complete results for the classical theory,
[po1], [Do2], [DO3], [WIl]. Here we can not pretend to be complete,
but do ettempt to present the ideas we feel of most importance in their
greatest generality. As a consequence meny properties normally treated
separately will be seen to result as special cases in this distributional
theory.

Beceuse of the many symbols and absiract spaces present in the
theory, notation becomes a problem. In general we follow that of
Schwartz, where possible, and suggest that the reader consult
the list of symbols or the appendix on spaces when in doubt.

SEL-63-021 -



II. DISTRIBUTIONS

Summary: This section consists of the definition of distributions and
their most important properties. It serves as an introduction to
thie important theory for those unfamiliar with it. For those
already versed in the theory of distributions it serves to define
our notation and to compile the results needed in the later
chapters.

The concept of a distribution will be regarded here as an
attempt to generalize that of a function. For this, in paragraph
2 we define the space D or testing functions. These functions
are infinitely differentisble and of compact support. Distribu-
tions are then defined as linear functionals in this space, con-
tinmuous in & convenient way. The space D' of distributions is
the dual of 9P, and the scalar product of a distribution T and a
testing function ¢ is denoted by < T, 9@ >.

In paragraph 3 we show how the usual notion of function and
the concept of distribution are related in such & wey as to genera-
lize the notion of function. We then define the derivative of a
distribution, with the consequence that every distribution is
infinitely differentiable. Paragraph 5 consists of the notion of
convergence of distributions. The importence of this concept
stems from its relation to physical reality. Thus any distribu-
tion can be approximated by & sequence of testing functions and
a sequence of distributions can always be differentiated term by
term.

It is impossible to define the product of amy two distribu-
tions. In paragraph 6 we define the product of a distribution,
T, end an infinitely differentiable function &. A similar situa-
tion holds for convolution. The convolution, S¥T, of two distri-
butions S and T, obtained from < S(t), y(t) > where y(t) = < T(7),
@(t+r) > is important for the Fourier and Laplace transforms.
Paragraph 7 summarizes the most important consequences of distri-
bution theory, while in the last paragraph e physical interpreta-
tion is given.

1. Introduction
In many branches of applied science it is desireble to deal with

forces of large megnitude actuated for a short time only. A convenient
methematical expression for such forces is the well known impulse
function (Dirac -delta function), 8(t), commonly defined by

o
Jr s(t)at = 1, s8(t) =0 if t £ O (1I-12)

The above definition is perfect in the sense that the physical
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properties are conveniently described; mathematically, however, it is
highly unsatisfectory. Here we will make a brief attempt to point out
the difficulties,

If one insists on viewing ® as an ordinary function, the above
definition is meaningless, and the fact that many correct results are
cbtained with it is due to the reamsson that only some properties of &
are significant. These are aessumed independently of the definition of
d and no consistent mathematical derivetion of these properties can be
made from (II-la). Among the most important properties are the
"sifting property"

d/wm 5(t)p(t)dt = ¢(0) (II-1b)

for any function @ continuous at the origin, and the corresponding
property (obtained by formal integration by parts, taking (=) = 0),

[ oM enran - (1% o) (1T-1c)

In the usuel mathematical sense, the sifting property can be obteined
by the use of the Stieltjes integral, which in fact shows that & can't
be a function by the customary meaning.l For the derivatives appearing
in (II-1c) no similar representation exists.

Here the difficulties are solved by generslizing the notion of
function. The traditional concept of & mathematical function is
widened, and a theory is made such that improper functions, such as
impulsive derivatives, acquire a meaning.,

The task of the theory of distributions is quite clear:2 to
generalize the notion of function, arriving at the notion of distribu-
tions, in & manner to include such useful (and pathological) entities
as the impulse function; then it 1s necessary to establish the rules of
a calculus for distributions so that the usuel results of Fourier
enalysis and Laplace transform theory remasin valid, These calculation
rules turn out to be extremely simple, and, since they coincide with
the methods used by engineers, they serve in themselves as ample
Jjustification for a study of distributions. Of such interest are the
facts that every distribution can be infinitely differentiated with
differentiation and series summation being freely interchanged. Further,

SEL-63-021 -k



every normal function is & distribution and functional and distribu-
tionel operations coincide when the former can be carried out. Thus,
elthough the original goal was to give & rigorous theory for improper
functions, much more is actually achieved.

As a necessary prerequisite to the Laplace transform materiel, a
simple summary of the basic ideas and results along these lines will be
given in this chapter.

2. Definition of Distributions
Let R denote the real line whose varisble is (time) t and let o

be a complex valued function whose domein of definiticon is R. By the
support of ¢ is meant the closure3 of the set of © contained in R for
which p(t) # 0.

The theory is based upon the set D of functions ¢ which are
infinitely (continuously) differentisble and of compact support. Such
functions will often be referred to as testing functions, since they

serve to test a distribution for its properties. A typical testing
function is shown in Fig. II-1, if infinite differentiability is

assumed.

1
SUPPORT
F1G. 11-1. TYPICAL TESTING FUNCTION.

A matter of theoretical concern is the introduction of & notion of
convergence5 in 9. This is done to set a "topology", which in turn
allows the properties to be rigorously obtained in the framework of
modern mathematics.

We say that & sequence of testing functions, [mn], converges

(in D) to zero as nw if: &) all ¢, have thelr support in the seme

-5- SEL-63-021



bounded set of R, and b} for every integer k > 0, the sequence of k th
derivatives, [mnk)], converges uniformly to zero (in the customary
sense).
Definition II-I1:

A distribution T(t) is & linear functional6 defined over 9

which is continuous in terms of the above notion of

convergence in D,

A distribution, or generalized function, T(t) is then a process
of assigning to every testing function meﬁ) a complex number which we
shall denote’ by < T(t), o(t) >. We comment that in this expression
t acts as 8 dummy variable, since < T, ¢ » is & fixed number for
fixed T and o.

The linearity and continuity clauses in the definition of a
distribution mean that for all finite complex constants @ and B and
all @ e D

1) < 7T, ap 18P, > = A< T, o, > 4B < T, g, > (linearity)

2) <71, ¢, > converges to 0 if @_ (continuity)
converges to 0 (in D )

One can regard T as a vector space, and the set of all linear
functionals, continuous or not, defined over it actually forms the
dual vector space8 of D, Only the sub-space which consists of all
continuous linear functions has interest for us, since only then can
we freely transpose properties from ¢ to T in the scelar product
< T, >, This space of continuous linear functions, which is the
topological dualg of P, will be designated by 9'.

As we now see, distributions cen be endowed with the important

properties of functions.

3. Generalized FMunctions
We shall attempt to show how the usuel notion of function &and the

concept of distribution are related in such a way as to generalize the
notion of function while incorporating "improvements'.

It g(t) is a locally integrable functionlo it defines a distri-
bution by the expression

SEL-63-021 -6-



<ﬂﬂ,wﬂ>=ljﬂﬂﬂﬂﬁ

For conciseness, by function we will always mean a "locally integrable
function”,

The crucial step in the entire theory lies in calling this T, g
itself. This identification is essential; it ellows g to be considered
e distribution as well as a function.

Definition II-2Z;
If g(t) is & function then, for all geD,

<a(t), o(t) > = [ sltlatlat (II-20)

We may think of distributions as generalized functions, and can
then symbolicelly write

< T(t), o(t) > =fmT(t)qJ(t)dt (II-2b)

Example IT-1:
The unit step function, u(t),
1l £t+<0
u(t) = (1I-3)
0 t>20

is & function which can be regarded as & distribution with

<u, p> =£ p(t)at

Example II-Z2:
Al) squere integrable functions are distributions, since they
are locally integrable.ll In this case all the functions which
were correctly handled by transform theories without the notion

of distributions are included in the present theory.

Example II-3:
The impulse function can be adequately defined as & distribution
& by
-]
<5(8), a(t) > = 9(0) = [ slthe(eat (1z-4)

On the very right of this the symbolic notation of (II-2b) is
used and thus the sifting property of {II-1b) acquires precise
meaning. It is perhaps better not to call & the impulse function,

-T= SEL-63-021



since, as remerked earlier, it can not be a function. A convenient

graphic representation of & is the well-known symbol of Fig. II-Z.

8(t)

0
FIG. 1.2, SYMBOL FOR &.

A consequence of definition II-2 is thet every function can be
considered es a distribution. Eguations (II-2) motivate various
definitions for operations on distributions, since when a distribution
colncides with & function we naturally wish distributional operations
to coincide with functional ones. For instance we have, combined in
pairs, four operations of summetion, sceler multiplication, time
shif'ting and time scaling.

Definition II-3:
I, T, Te D' and a (complex), B (complex), a (real) £ O,

b (real) are finite constants, then for all pe D we define
<aT 48T, 9> =< T, 9> 48 <Ty 9> (II-5a)
1 t-b
< T(at+b), o(t) > = <'TET T(t), ¢(—E—) > (II-5b)

Note that these are simple extensions of what (II-2) gives in
the functional case. 1z
Example II-k4:

By (II-5b) we easily find

8(atsd) = T%T 5(t+2) (1I-6)

13

The notation T{t) may mislead the resder. In general, distribu-

' as the impulse shows

tions do not have definite "values at points t,’
et t = 0. However, we do say that T(t) is zero for tefl, where { is a

subset of R, if for every testing function, Py with support contained

SEL-63~021 -8-



in i we have
< T{t}, qh(t) >=0

The closure of the set of all t for which T is zero is called the
support of T. Thus u(t) has t > O for its support while the support
of 8(at+b) is t = -b/a. Of considersble interest for physical systems
is the space fDl of distributions with support bounded on the left;
that is, Te 9; if T has support in t > a for some finite real a.

If the distribution T is defined by a function g, as in (II-2a),
then T will vanish in the interval (a, b) in the sense of our defini-
tion if and only if g vanishes, in the functional sense, almost every-
where on (a, b).lLl

At this point it is worth noting that if T has bounded support
then for t ocutside the support of T the values of the testing function
¢ are unimportant. Thus, in some cases we can relax the requirement
that the ¢ be testing functions, that is have bounded support. For
the Laplace transform it is sometimes convenient to do this by using

o(t) = exp[-ptl.

b, Derivetives of Distributions

Let us investigete a convenient way to define derivatives of
distributions. That it is necessary to define the derivative of e
distribution is clear if we recall that & has been called a distribu-
tion and in applications we often encounter entities such as &', 5",
etc,

Going to (II-2a), let us set g equal to h' = dh/dt. If h' is
#lso a funetion, we have upon integration by partsl5

<h',9>=-<h, ¢'>

This result shows that there is only one logical way to define
the distributional derivative.

Definition II-k4:

If Te D' then for all geD the k th derivative is defined by
k k k
< T( ): Q> = ('l) <7, (P( ) >, k= 0, 1, g, ... (II‘T)

Clearly any distribution in D' is infinitely differentiable (as
a distribution) by this definition, since 9 is by hypothesis.

-9- SEL-63-021



Furthermore, our objective has been reached, that of meking the dis-
tributional derivative coincide with the functional derivaetive, when-
ever this letter exists.16
Example II-5:

Let us group exemples (II-1) and (II-3) where u end & were

defined, We have, since @(w) = 0, by (II-T),

<u', 9>=<u, 'q)'>='£ @'(t)dt = ¢(0) = <5, 9>
or

8(t) = u'(t) = du/at (II-82)

A simple expression takes care of all deriveties of &, by (II-4)
and (II‘T): is

<58(), glt) > = (-1)%¥)(0) (11-80)
which rigorously gives (II-le). For instance

<5'(t), o(t) > = ~9'(0)

< 8"(t), o(t) > = 9"(0)

and so on, Combining this with the scale change of (II-5b)
17

glves
1 b
5'(at+b) = ;FI- 5'(134-;) (II-—BC)

This example illustrates the facts that:

1). & can be considered without lack of rigour as the derivative
of the step function (in the distributional sense).

2). Since every locally integrable function generates a distri-
bution, every such function possesses derivatives (distributionally
again) of arbitrary order, but these derivatives need not be functions.
Here, the derivative of a function, u, was found to be a distribution,
8, which is not & function. For a function with & jump discon-
tinuity having right and left derivates at the jump, the distribu-
tional derivetive yields an impulse at the jump.

Exemple II-6:

The mapping l/t does not define a function under our definition,

since it is not integrable in the neighborhood of the origin.

However, we can define a distribution, denoted by PT(%), which

SEL-63-021 -10-



coincides with 1/t when t £ 0, bylg
- [=-]
< PF(%), p(t) > = lp [h[; E%E)dt +4[‘ 9§§ldt] (1I-9a)

Differentiating we define PF(—%), £>1, hyzo
1

1 -1 4
PF(t_”) =73t PF(F) (1I-9b)

The function 1n |t| has its derivative functionally equal to 1/t
for t £ 0. This is thus still true distributionally and we
havezl

410 |t] = PR(P) (1I-9¢)

Concerning integration, every distribution has an infinite number
of primitives (indefinite integrals), two of which differ by a
constant.?? For instance two primitives of 5(t) are u(t) and -u(-t)
with u(t) = l-u(-t).

5. Convergence of Distributions

Of special interest to engineers is the concept of distributional
convergence, since in the laboratory impulses are approximated by very
narrov pulses. That is, impulse responses are normally calculasted in
the limit where the pulse width becomes significantly less than
important time constants.

Definition II-5:
A sequence of distributions [Tn] , with Tne P', converges to
Te D', written

T = 1im T (I1-1082)
e I
if, for all g D,
lim <T-T , ¢ > =0 (II-10b)

One aspect of the above definition that may cause trouble is that
two notions of limit are involved. In (II-10a) the limit is, by
definition, in the distributional sense, while in {II-10b) it is taken

in the customary sense; cbserve that < Tn-T, ¢ > is merely a sequence

oo

of complex nmumbers. Of course for a series T =Zsi, Siefl)' , we take
1=

-11- SEL-63-021



n
Tn =§E; Si in the stendard menner.
i=
Example II-T:
We have that distributionally23
lim Tn(t) = 25(t)

with T as in Fig. IT-3(a) or (b)

=~ 1/n 1/n -2/n

a) b}

FIG. 11-3. SEQUENCES OF DISTRIBUTION CONVERGING TO 28.

Example II-8: ©

T{(t) =Zba(k)(t-k)
k=

defines a distribution, since

<Z]a(k)(t-k), g(t) > =ZO (-1)%) (1)
= =

k=
and this lstter is a convergent series for any fixed @, since

only a finite number of terms are non-zero, the @(k having

compact support.

Example IT-Q: ©

T (%) =Zba“‘)(t)
=

is not a distribution since
n n

‘Zf’(k)(t)’ a(t) > =pr(k)(o)
K=0 K=

SEL-63-021 -12-



will in generel not converge.

A fundemental end important property of distributions is the fact
thet a sequence, or a series, can always be differentiated term by
term {with the usual rules of calculus, this process is legitimate
only when both the original end the derivate series are uniformly
convergent.).

Theorem II-1:
If distributionally

T=1lim T
N=»o n
then
T(k) = limT (k), k = 0, l, 2, LI )
I n -]

In terms of series this takes the form, if T =;E;Ti then

T(k) =;E;Ti(k). The proof is immediate, since

< T(k)-Tn(k), Q> = (-1)k <I-T, q)(k) >

but m(k) is still in P and thus the right side of this has & zero
limit by hypothesis.
Example II-10:

The periodic waveform of Fig. II-4(a) has the Fourier series

representationzu
(t) = 4 sin(2i-1)t
g T 2i-1
1=

Since locally the jumps can be represented by step functions,
we have (distributionally)

gt(t) =ZB(-l)lb(t—i) = %ZCOS(Bi-l)t
1=~ i=1
as shown in Fig, II-#(b). Of course the series can be

differentiated again.
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FIG. 11-4. A PERIODIC WAVE o) AND ITS DERIVATIVE b),

6. Multiplication and Convolution

In general, multiplication can not be defined for any two distri-
butions, That this is true can be seen if we look at the product of
two functions g and h, their product is not necessarily another
function, a distribution is not necessarily defined.25 If 52 vere
defined it would physically represent an infinite point charge, since
g8(t) is the charge density of a point charge of charge q. But &
charge could become infinite in many ways, showing that 62 could have
no useful meaning. However, if at) is locally more regular than
T(t) is irregular then QT can be defined. This will be the case if
Qo acts as a testing function for T, which in fact is always the case
if @ is an infinitely differentisble function, that is < T, ap >

uniquely defines a distribution.
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Definition II-6:
If Te D' and @ is an infinitely differentisble function then QT
is defined by

<oft)-2(t), o(t) > = < Mt), ot)p(t) > (II-11)

We will in fact use (II-11) to define OT whenever this can be
defined, that is not only for infinitely differentiable Q.

Example II-11:
The femiliar sempling property

a{t)s(t) = a(0)s(t) (IT-128)
of the impulse, &, is an immediate consequence of (II-ll).26
Sim:l.].a::‘lyz'-r

a(t)st(t) = a(0)s'(t)-a'(0)s(t) (II-12b)

These show that for a6 we only require & continuous at zero
while for &%' we require at most that & be one time continuocusly
differentiable at the origin,

Further we hsw'ez8

(aT)' = a'? + oT" (II-12c)
a special case of which is
(gu)' = g'(t)u(t) + g(0)s(t) (I1-124)

One should in general use care in using distributional multipli-
cation since it isn't always associative. For instance, one finds,
(a.t)-rm(%) = 0 since 5.t = t:8 = 0O

Bo(t-PF(%» = & since t-FF(%) =1

The usual cormtitivity and associativity rules do hold, however, 1f
all except at most one of the terms are infinitely differeniteble
functions.29

We recall that for two functions, g and h, the convolution, g¥h,
is defined by

gin(t) « [ glen(e-n)as
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If we now revert to (II-2a) we see that in the functional case the
distributionel interpretastion 1530

<en(t), o(t)> = [ a0 [ w(x)oltrrarlat

=)

This is the natural form to use for the distributional extension,
which, as with multiplication, can't always be defined. In contrast
to multiplication where the problems were of a local type, the problems
are here of a global nature.
Definition II-T:

For S, Te ', whenever the convolution S#Te¢ 9' can be defined it

is given by

< sx¢T(t), o(t) > = < 8(t}, < T(t), o(t+r) > > (11-13)

We note that the problem is here that ¢(t) = < T(t), o(t+t) >
is a function whose support is in general non-compact, However, ¢ is
infinitely differentiable, since ¢' = < T(t), dp(t+t)/dt > by the
linearity and continuity of the functional. Thus (II-13) does define
a distribution, S%T, whenever ¥ is of compact support or if the inter-
sections of the supports of ¢ and S are compact for all testing functions
@. If T has compact support then so does ¥, and in this case S*T
elways exists. If both 5, T¢ i& then agein S#T always exists, and is
in 9;, since < T(1), @(t+1) > will be zero for t larger than some
contant while $(t) is zero for t smaller than some constant.

As can be seen by a short but somewhat tricky argument3l

S*¥T = TxS (II-1k4)

Example II-12:

Since & has compact support it can be convoluted with any Te Dr.
We have in fact by en immediate application of (II-13) using
(IT-4)

™5 = T (II"lBE')
Likewise, by further using (II-6),

P(t)x5(t+b) = T(t+b) (II-15b)

A similar property holds for higher derivatives32
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g k) _ oK) (II-15¢)
Example II-13:
We have if C is eny complex constant33
(PF%)*C =0 (II-16)

which shows that the convolution may be zero even though neither

term is zero.

Although the convelution is always commutative, that is (II-1L)
generally holds, it need not be associative, That is for any three
distributions R, 5 and T, in general

(R#S)*T £ Rx(S*T)
as is seen by3
(1xd7 )¥u = O¥u = 0 £ 1%(5'%u)
However, if R, S, Te @;_then
(R#S)%*T = Rx(SxT)
and further, under these conditions S*T = O if and only if S = O or
T = 0. That is, ﬁl_fbrms an algebra under convolution which has no

I = 1

H
1]

divisors of zero.35 As an applicetion of this result we show how to
find a primitive, as mentioned at the end of parsagraph i, for any
Te 91. Such is Tyxu which we write

t
Txu =»Z; T(1)dT

since, by (II-15c) and associativity
(T*U)' = (T*u)*&' = T#uskd! = Ted = T
T. Some Important Results

A consequence of some importance for physical systems is the fact
that 9 is dense in D'. That is any distribution can be arbitrarily
closely epproximated by testing functions, or more precisely36

Theorem IT-2:
For every Te D' there is a sequence with Tneﬁ) such thet

T=1lim T
o n

Physically this result means the following. In the laboratory it
appears that we can only encounter testing functions in the measure-

ment of physical veriables. This because measurements start and end
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at finite times and all variables could be passed through differentia-
tors.3T However, it is theoretically convenient to build our theories
upon distributions, such that quantities such as impulse responses
can be considered. Doing this, theorem II-2 shows that any theoretical
results cen be obtained to arbitrarily good accuracy in the laboratory.
Exemple II-1k:
For both linear and nonlinear systems the unit step response is
of interest. This can be determined by applying inputs which are
sequences of testing functions of the form of Fig. II-5, where

€ converge to zero.

—

FI1G. I1-5. PeD CONVERGING TO u.

38

A result of some importance is the following.

Theorem II-3:
On every open set whose closure is compact, every distribution T

is the k th derivative of a continuous function.

In other words, locally T = g(k) vhere g is a continuous function.
For instance 8(t) = [tu(t)](z). This allows us to replace some argu-
ments concerning distributions by arguments concerning continuous
functions. In general the continuous function, g, and the derivative,
k, will vary with the open set under consideration. Of especial inte-
rest, however, are those T for which T(t) = g(k)(t) for = < t < w;

such T are said to be of finite order., & is of finite order while

0

Z s(k)(t-k) is not.
=0
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We do not present any proof of theorem II-3, However, we can
check its validity by considering an ordinary function, everywhere
differentiable, This function g can be considered es & distribution
defined by the integral (II-2a) and its generalized derivative (II-T)
equals the ordinary derivative interpreted as a distribution.

The study of linear physical systems customarily proceeds from the
impulse response. The following theorem makes the conditions under
which such a description is velid rigorous.39
Theorem II-k:

Every operation L, L{q)e 9' when @e 9, for which, with @ and g

complex constants,

a) L{ap,+8p,) = oL(9, )+BL(p,) (linearity)
b) lim L(cpn) = L(Jﬁ_i’g_g q)n) (continuity)
c) L*'{9p) = L(o") (permutation

with differentiation)
is of the form

L(g) = S*p (II-178)
for a fixed Se D'.

Here in fact

S = L(3) = lim L(an) (II-17D1)
lim® =5, 59 (II-17c)

Thet is, S is the impulse response; such & sequence converging to d
exists by theorem II-2. Further, by theorem II-2, L can be extended
to as much of P' as possible by teking distributional limits in
(II-17a). In theorem II-4, condition a) limits the result to linear
systems, condition b) is & continuity condition, which seems to be
frequently overlooked in engineering theory, and condition c) limits
the result to time-invariant systems. 0 In other words, every linear,
continuous, time-invariant system can be characterized by its impulse

response.
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Example II-15:
A linear, time-invariant system has an output given by

10
Uey) =
lye

for inputs Bneﬁ ; 4im & = 8. But
lim L(an) = 10u(t)
and thus L cen not be described by a convolution operator, since

. 10
ouhls Lo, £
1+e

The term on the left of this must be in 9;, Bn and u both being
in D!; the right hend term clearly isn't in 9;, since its

support is not bounded on the left.

8. Naive Physical Interpretation

Before continuing further we present a concise possible physical
interpretetion of the meaning of' the distributionel representation of
physical variables.

Consider a physical varieble which we can mathemstically represent
by a function, v, which we assume at this point to be in 9. One, but
certainly not the only, way of determining v is by the totality of
responses of all possible measuring instruments excited by v. In fact
it is sufficient to excite only those instruments, each characterized

by a separate testing function @, as a glance at peragraph 3 will show,

fes]
whose responses are of the form [‘ v(t)p(t)at; perhaps such an instru-

-

ment is best called a weighted integrator. This is illustrated in
Fig. II-6, where the varisble v can be considered as the voltage at

the terminals of & network.
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VOLTMETER NO. 1, @D

NETWORK v VOLTMETER NO. 2, q:zeﬂj

VOLTMETER NO. 3, P,

I 9] =

/A L/

o0
nth METER READING, <v, @_ > =f v(t) P, (1)de WiTH ve D C D”
—o0

FIG. Il-6. EXPERIMENTAL MEANING OF DISTRIBUTIONS.

Theoretically such measurements would completely characterize v,
elthough practically it would be somewhat difficult to "greph" v in the
customary sense from such data. It is from the theoretical advantages
geined, in terms of formal operations, that the theory of distributions
stems. The picture is somewhat analogous to the frequency domain
descriptions of great use in engineering, where manipulations are
generally easy, but recovery of the time functions is sometimes
difficult.
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NOTES TO II

1. For a treatment of the Stieltjes integral see Widder, [WI 2, p. 126].
Using the Stieltjes integral a representation of & yielding the
sifting property is

P
L p(t)au(t) = 9(0)
where u is the unit step function, that is u(t) is zero for t <0
and unity for t > 0.

2. TFor a thorough preview of the theory of distributions the intro-
duction of Schwartz's book is of interest, [SC 1, pp. 3-11].

3. By the closure of a set is meant the points in the set as well as
limit points of the set; thus the closure of -1 <t <0 is the
set -1 <t <0, For example the support of the unit step function
is the closed set 0 £ t < =,

4. The word "compact" in the definition of @ is equivalent to the
word "bounded” in the single varisble case which we are treating.
The words "testing functions" signify an analogy with the Fourier
series representation of periodic functions, where sines and
cosines serve to test for the coefficilents of the series.

Another example of a testing function is

2 2
p(t) = e—l/(t-a) e-l/(t-b) u(t-a)u(b-t), D> a
vwhich is depicted in Fig. N-II-1.

L N

a b

FIG. N-1I-1, TESTING FUNCTION.

The requirement that testing functions be infinitely diffe-

rentisble is closely connected to the consideration of derivatives

of impulses. To ellow treatment of E(k), which mathemetically
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can be thought to represent a physical k-pole electric moment,

[sT 1, p. 177], ve must take the testing functions to be infinitely
differentiable.

The introduction of a notion of convergence makes 9 into a
topologicel space, [PA 2, p. 34], in which notions such as con-
tinuity can be rigorously defined. The real usefulness comes into
play as a consequence of the fact that these notlons are naturally
extended to the topologically dual space of distributions. The
concept of a topological space is fundemental to mich of modern
mathematics. However, a thorogh understanding of topology is not
necessary to grasp the meaning and applications of distributions.

By a functional is essentially meant a mapping of a set of functions,

in this case 9, into the complexplane, see for instance [KO 1, p. 62].

For a given testing function @ and a fixed linear functionsel T,
this mapping is a fixed complex number, in this text denoted by
< T, @ >. Suitable examples of this mapping are given by (1I-2a),
(1I-4), (II-8b) and (II-9a)
We adhere to the standard set theory symbols, thus @e?d means ¢
"is contained in the set" D

As stated in note 6, < T, @ > is a fixed number when T and @
are fixed, but when T is fixed, < T, ¢ > is & complex number which
varies with @. The notation strives to emphasize that we are
deeling with a scaler product of T with @. A similar attempt 1s
clear in the use of the notation T.p, from vector analysis. Both
notations are used by Schwartz and they have the same meaning.
Other notations in use are T(p), [SC 1], and T < ¢ >, [ER 1]. For
our purposes the notation < T, @ > seems to be the most symbolic
since it correctly suggests that the space of distributions is
dual to the space of testing functions. This notation is favored
by Schwartz in his lectures on mathematical physics, [sc 7, p. 4]
and follows that of Friedman, [FR 1, p. 6].
Vector spaces and their duals are well treated in Halmos,

{HA 2, pp. 3 & 20].
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9. A topological dual space is, by definition, the subset of linear
functionels which are continuous in terms of the notion of con-
vergence defined by the topology of the original space. That is,
if 9 is any topological vector space, then the elements of the
topological dual space ' setisfy the conditions 1) and 2) below
definition II-1.

There are of course discontinuous linear functionals on 9,
but these seem to have no importance, [SC 7, p. b4].
10, By & locally integrable function is meant & function g(t) for

b
whichHZ- |g(t)}at exists and is finite for every finite a and b.

g{t) = t, g(t) = 1//t and g(t) = exp(t) are locally integrable
but g(t) = 1/t is not., Whenever it is necessary to specify the
type of integral used, we will assume it to be taken in the
Lebesgue sense, [BU 1], since the mathematical literature is
based on this. In most cases assuming the integrel to bhe in the
normal (that is, Riemann) sense will cause no difficulty. We see
that (II-2) requires two functions g, and g, to be identified if

fwlsl(t)-sg(t)ldt =0

-0

a (4) = 1t>0 o u,(t) = 1t>0
0t <0 0t<oO

sre identified with u(t); in other words the value of the unit

Thus

step function at the origin doesn't metter.
11, g(t) is square integrable if it is "measurable" (that is,

essentially can be integrated) and
[ -]
-[; la(t)]%at < =

Over any bounded interval g satisfies
b 2 2 [P 2
[ Tetwlen® < (o-e) JRECIEIEE

by Holder's inequality, [BU i, p. 65]. Thus g is locally

integrable.
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1z,

13.

1k,

15.

16.

To see (II-5b) we have

< g(at+db), o(t)> =‘Z:mg(a.t+b)t:p('l:.)dt; X = at+b

L ws(x)cp(%—b T:;l’f

< aTE(x), o) >

H

but x, being a dummy varieble, can now be replaced by t.
We have

< &{at+b), o(t) > = < m&(t), P

1
A
B~
.
o+
e
.e
——
!
v

< (), e(t) >

This is a consequence of the fact that in the theory of distri-

butions the integral in
o
<g, 9> =“Z; gpdt

is taken in the Lebesgue sense where two functions are in fact
identified if they are equal "almost everywhere," the last two
words having a precise mathematical meaning, [BU 1, p. 37).

We have for functions

fmh'(t)cp(t)dt = —fmh(t)q)'(t)dt

-0

<h', 9>

I

=~-<h, ¢>

where in the integration by parts we used the fact that @ vanishes
at 40, Notice also the need of infinite differentiebility of
e D, if we wish h to have derivatives of all orders, as a
distribution.
That is, (II-7) agrees with the functional derivative by the very
manner in which it was derived by generalizing the result of
note 14,

Maybe one of the most startling points of this theory is
apparent here. We are evaluating derivatives (distributionally)

of discontinuous functions! This is one of the points where the
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conventional theory fails; to speak of derivatives of u, call
them 5, and more to speak of &', 8", etc., in the customary
sense is certainly to go too far.

17. To obtain the scale change in &' we have

< §'(at+b), oft) >

< T—rﬁ'(t), (X2 ) >

- <T—r6(t), ap(*=2 )/dt >
T—T'E'¢ (-)

1 b
< oo (), oft) >

18, See [SC 1, p. 37] or [SC 7, p. 14]. Thus the function of
Fig. N-II-2(a), where
g = etu(-t)+3e-tu(t)
has
t -t
g' = eu(-t)-3e u(t)+25(t)
as shown in Fig. N-TI-2(b).

FIG. N-}1-2. DISTRIBUTIONAL DERIVATIVES,

19, FPF stands for "pseudo-function' or what is equivalent in the
theory of distributions, "le partie finie de Hadamard,"” see
(sC 1, p. 38]. 1In the case of 1/t Hadamard's finite part reduces
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20.
21.

to the principal value of Cauchy, and thus, in this case PF is
sometimes written VP, see [SC 7, p. 16]; we use FF since VP is

not valid for t-ﬂ, £ > 1. PF(%) defines a distribution since the
conditions of definition II-1 are seen to be satisfied. Linearity
is obvious end only continuity need be checked. Since @, has
compact support we can choose the interval {-A, A) to contain the
support of mn after writing

gl Hlawe [ 20t - o [ olbee
we then have

1 A g (t)
lim < PF(E), cpn(t) > = lim PFL\ ——dt

But

= A&‘?—}dt = fpn(O)PFfA ‘i.‘.-f-PF-/-‘A qJn(t)-q)n(O)

SR
LA LA LA % i3

In this the first term on the right is zero since 1/t is odd

el

while the integrend in the second term is bounded in magnitude
by the maximum va%ue of @h. Teking absolute values gives
@ @ (t)
[EFJr —E%r—dtl < 2A[max|p’| ]
| n
By the definition of convergence in 9 this term tends to zero

as =, Thus
1
lim < PF(E)’ mn(t) > =0

vhen ¢@_ converges to zero, which proves the continuity.
PF(1/t”) is also given by a Hadamard's finite part, see [SC 1, p. 41].
Precisely

< (1nlt])! o(t) > = - < 1nlt], @'(t) >

-Lm 1n|t|p'(t)at

[H

But
[-:] o
-éﬂ ln t @'(t)dt = ‘%—iﬂ[ in t @'(t)dt

s %_J;B[(-ln t cp(t)l':+ [mﬂtﬁdt]
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= %EB [in e¢(0)+‘lnm9%32dt]

since 1n e{g(e)-p(0)] tends to zero as e+0 because
¢ 1In G[EiEJEQLQl] tends to zero since € 1ln ¢ does, {e)-0(0
€

remaining finite being an approximation to the derivative at zero,

Thus
< (1n|t]|)}', o(t) > lig (1n ep{0)-1n em(O)t[ﬂ E%Eldtffn Egézldt]
o otk

< PR(E), o(t) >

22, To see thet every distribution haes a primitive we merely reverse

It

(IZ-7) for k = 1. However, the integral of ¢ may not have compact
support, so we first restrict to those @ = X which are exact

differentials, and hence have compact support, since X = ¥' and
t

JF Y (t)ar = ¥ are both in 9,
'~ t
< [Ta(nar, 1(8) > = < -2(8), ¥(x) >

=)
Then for any peD we choose a fixed @ e D for which_/1 @O(t)dt =1

-0

o0
and find A -_--/n p{t)dt and an exact differential X such that
=

o(t) = rp(t)+ (%)
Then

t b t
<f T{7)dr, p(t) > = < x/ T(7)dr, cpo(t) >+ < -T(t), f A(r)ar >

t t
Thus, by assigning‘/1 T(t)dt at QO,\/H T(t)dt is determined for

for all g P. Letting P, and P2 be two different assignments at

1
Dy then

< Pl(t)-Pz(t), p(t) > = a < P, -P

L]
>
(]
1]
Q2
=
~
c’.
o
ja ™)
ct

5

where C is the constant value of < P -P,, ¢_>. But by (II-2a)
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z3.

2k.
25.

26.

zT.

28.

29,

this means that Pl—Pz = C, or two primitives differ by a constant.
The sbove follows [(SC 1, p. 52].

The proof of this limit is as follows:

For Fig. II-3(e)

25(t) = Lim [n{u(t-2)-u(t+3)]]

since

1/
< ntua(s-Butedn-es(e, a(6) > = af " olelat-av0)

which is zero in the limit. Similarly, for Fig. II-2(b). Observe
that the ususl argument of taking 5 as the limit {in the usual
sense) of a sequence of pulses shaped as in Fig. II-3 as nw
is meaningless (i.e. the usual limit does not exist). An approach
like in [AS 1, p. 22] is to be avoided.
see [KA 1, p. 393].
See [SC 1, p. 117]. Note that g = h = 1/t are functions but
g-h = 1/t is not. Konig, [KO 3] has defined a multiplication for
any two distributions, but one generally obtains entities which
are not distributions, such as &-u # u-b.
We have

< o(t)e(t), o(t) > = < 8(t), alt)e(t) > = a(0)p(0)
< a(0)s(t), oft)
Thus, for example t5(t) = O, eta(t) = 8(t).
We have, by (II-T),
< oft)er(t), oft) >

V

n

n
A

= < 8(t), -a'(0O)p(t) > + < 5'(t), af0)gp(t) >
= < a(o)st(t)-a'(0)a(t), oft) >
Thus for example e°U6'(t) = 5'(t)-a5(t).
Here, [sC 1, p. 120],
< {ar)', 9> = (-1) <0T, ' >=<T, -0p' >
<a'T,9>=<T, a'g >
<OoT', p>=<T', 0p>=<T, -0'0-ap' >
< -a'T+(aT)', 2 >

where the last follows by subtracting the first two results.

This result as well as the non-asscciative exemple are stated
in [8C 1, p. 121].
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30. For the distributionel expression of the functionel convolution

we have

< g*h(t), o(t) > =¥/qw[\/ﬁmg(r)h(t—r)drl¢(t)dt
L[; k[; g(x)n(y-x)p(y)axdy; x = 7, y = ¢

JP (t)[_/n h{t)p(t+r)drldt; x = t, y-x = 7

which is the desired expression. The integral interchanges are

fully justified by Fubini's theorem, [BU 1, p. 63].
31, To see that S#T = T*S we first look at the case when

o(t+t) = o(t)e(r). Then

< 4T, 9 > = < 8(t), o(t) < B(7), &(7) >> = < 8(t), o(t) >.< ™(t), e(1} >
< %5, ¢ >
by linearity. But any @(t+t) can be written as

o(t+7) = lig >r 8 3 (#) 3 (%)

for suitably chosen ©,, and gjk’ [sCc 1, p. 108], and thus

ik

< TS, 9> = Un 22‘(< 5, 0,,>< 1T, §3k>) = < S¥T, @ >

In Schwartz, [SC 2, p. 10], this is obtained by defining the
convolution by the use of the tensor product and (II-13) is
derived as & conseguence.

To see that T*B(k) = T(k) form

Las
ra
L]

< 1(t), < 8(x), olter) > >

<2(t), (1% ) > = <« B (x), (1) >
Q form

< e (1), oft) >

33. To see that (PF%)*C

1 -]
<ER), < ¢, alurrP>= < PRd), [ olterlar >
]

-g 400 oo co
- up | /_; L L ot )ar)ass J; X L o(£+7)d7)at]
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3h.
35.

36.

37.

38.

39.
Lo.

= lip [IE%( Lmq)(»x-rr)d'r)dx-!-'[w%( qua(tw)d-r)dt]

- g [ 3 [ smaan [ [Cotmana

=0
This example is due to Schwertz, [SC 2, p. 27].
These results ere stated in Schwartz, [S8C 2, p. 29]. For the
definition of an algebra see Hille and Philips, [HI 1, p. 19].
See [8C 1, p. 75]. One can pick a sequence of infinitely
differentigble funciions, 8, perhaps not of compact support,
converging to Te D' by forming

g (t) = x5 (t)

where & €D but lim 8 =3, [sc 2, p. 22].

Of course ideal differentiastors don't exist and thus one can't
really tell if meesured functions are infinitely differentiable
or not. It seems that this may possibly be a postulate of
physical systems which allows & simple theory ylelding all
measurable results.

See [sC 1, p. 82].

See [sC 1, pp. 18-20, 53].

The generalizetion of this, velid for time-varying systems, is
given by Schwartz, [SC 12, p. 223].

291- SEL-63-021



III. FOURIER TRANSFORMS - GOOD FUNCTIONS

Summary: In this section the theory of Fourier transforms of a certain
class of functions is given. We are not concerned here with the
most general Fourier - transformable funetions, but with those
functions for which the theory takes its simplest form. The results
obtained will be conveniently extended in the subsequent sections to
more general clesses of functions end distributions.

We define in paragraph 1 the "good" functions which are in-
finitely differentiable, continuous (as well as all their derive-
tives) functions that vanish at infinity faster than the reciprocsl
of any polynomial. The good functions constitute a space, S,
vhose topological duel, §', consists of the Fourier - transform-
able distributions. For transforming series the notion of con-
vergence is given,

The Fourier transformetion is defined in paragraph 2 in the
standard form which appears in the engineering literature,

Fly(t)] =L/n w(t)e"jmtdt. A correspoding expression is given for

the inverse trensform, F [y(w)]. Of key interest is the fact that
F[¢] is a good function if ¢ is a good function.

Paragraph 3 gives itwo properties of the transformation, which
Justify the existence of the section. The first of these is one
form of a Parseval's theorem, vwhich allows the shifting of the
Fourier transform of distributions onto the Fourier transform of
good functions, This result, to be used extensively in this text,
is < ff[Wl]: vy > = <y, T[wz] >. The second property consists

of the transformation of time differentistion into frequency
multiplicetion, ‘F[w(k)] = (,jw)k Fly), and is needed to obtain
the corresponding result for Laplace transforms.

1. Good Function

For distributions the most general Leplace transform is obtained

by extending the distributional Fourier transform. This latter is in
turn an extension of the familiar functional Fourier transform. How-
ever, in place of considering arbitrary functions it is sufficient to
work with the limited class of "good" functions, This allcws us to

use only simple arguments from the very beginning; the usual tricky
manipulations necessary to work with the classicel theory need not be
considered.

The set of "infinltely differentiable functions of rapid decrease,"

which are merely called "good functions,” will be denoted by § and is

defined as follows.2
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Definition III-1:
¥ is a good function, ¥e §, if
(2) ¥ is (continuocusly) infinitely differentiable and
(b)lt}_i..g_p ]tm\l!(k)(t)| = 0 for all integer k, m > O.

Thus the good functions vanish st infinity as well as all their
derivatives, faster than the reciprocal of any polynomial. However,
their support need not be compact, as the following example shovs.
Example III-1:

a)  ¥(t) = tm‘exp[-tz]ES for any integer m > O.

B) Since condition (&) is violated,

n(t) = expl-|t|]¢§.
Since condition (b) is violated,

n(t) = exp[tl¢S .
Clearly no raticnal, non=-zerco, function of ¢
can gualify as & good function.

Agein 2 matter of theoretical importance for obtaining the Fourier
transformeble distributions, which form the topological dual space of
&, is the notion of convergence in 8 ., Precisely we say that a
sequence of ¥ eS converges to zero if the sequence of tnw (k)(t)
converges uniformly to zero for all integer k, m > O. 3

2. Fourier Transform Definition

With the definition of the good functions the basic Fourier
transform pair can be introduced.
Definition III-2Z2:

(a) If ¥(t)e § , then by definition,

5 [¥(t)] = w(w) =Lw¢(t)e'jmtdt (III-1a)

(b) If ¥{w)e §, then by definition
¥ t[‘l’(c’n)] =¥(t) = %[ q'(m)e'j‘”tdm (III-1b)

In this definition § is called the direct Fourier trensform, or

"

just the "Fourier transform,” and J +the inverse Fourier transform.
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Here j = /-1 and @ is a resl variasble, physically to be interpreted as
radian frequency, w = 2af. For later convenience the variables w and
t upon which ¥ and ? depend are indiceted as subscripts. These will
usually be omitted but are sometimes necessary for clarity, as in
convolution expressions (see, for instance, notes III-7 and IV-15).
As a consequence of Ye &, F[¥] exists for every real w and

&"m[lkf]e §, that is the Fourier transform of & good function is egein
a good function., This is in fact the real justification for considering
definition III-J..5 The operators J and T are actually inverse to

each other, since
F[gv]]l =v (II1-22)

gl lyl=v
whenever ¥ and ¥ are good functions. We also note that from (I1-22)
we can write (III-1la) in the form
FL(t)l = <¥(t), expl-jot] >

Exemple III-Z2: 7

¥(t) = exp[-tzl has Yaw) = % exp[-('z—‘f)zl

3. Two Basic Properties

Although all of the standard properties could now be given,
there are essentially only two required for further generalizations.
The most important property is one form of Parseval's theorem.
Theorem ITI-1:

If \I‘l, ‘1‘255 then

[ vatngian < [ wton ey (111-30)

Here, by (IIT-18) . 1 and 11'2 are the Fourier transforms of \ifl
and \Irz. The result is seen to be true by inserting the integral for
ll’2 into ghe left integral of (III-3a) and converting to a double
integral. By (TI-2a) we can rewrite (III-3a) in the more useful

form
< Fhoyl, v, > =<y, FWH,1> (I11-3v)
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That is, if ve treat y, and y, as "sampling” functions, then sampling
?[wl] with y, is equivalent to sampling ¥, with F [wa], (or ¥ [wz]
with wl). This notion will then allow us to shift F off of distribu-
tions onto good functions.

The second, but somewhat less vital property concerns differentiation.
Theorem IIT-2Z:

If y, Yed, then

sf[q:(k)] = (Jm)k‘}'[\lt]; k=0,1, 2, ... (ITI-La)
F( w(k)] = (—jt)k'§ [vl; k=0, 12, 2, ... (III-4b)

This is seen by integreting in F[v'] by parts and applying
induction on k to the result.9 As is well recognized, this is the
fundemental property which makes the Fourlier transform useful in the
enalysis of lumped physical systems; that is,the operation of
differentiation is converted to frequency multiplication. Egs. (III-h)
will be needed to obtain this result for the Laplace transform. How-
ever, they also give a method for finding transforms of certain
functions, &s the following exemple shows,

Exemple ITII-3:

F (-2t exp(-t%)] = Eerp[-(;2)°)

since this results by applying (III-4a) to example III-2,
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NOTES TO IIT

1. For instance the "limit in the mean" considerastions necessary to
work with general square integrable functions need not bother us
here, [BO 1, p. 108]. Of course such concepts do not disappeer
completely, but show up later when actually evalusting distribu-
tional transforms. Essentially, then one advantage of the distri-
butional theory is to remove such complications from the general
theory; classical difficulties still remein in many numerical
calculations.

2, The definition is that of Schwartz, [SC 2, p. 89], with the name
"good" function coming from Lighthill, [LI 1, p. 15). These y are
analogous to the e D and will serve to test the general Fourier
transform. Such ¥ may be complex, but as polnted out, need not
heve compact support. The essential reason for requiring condi-
tion b) is that the Fourier trensform of ye ® is also & function
in §.

3. See [sC 2, p. 90] or [sSC 10, p. 12].

4, Other possible forms for the transform pair are commonly met. For
instance, {WI 3, p. 3]

Fle) = —]-'—___ q;(x)e-'juxdx
Ver ‘oo

F [yl = -_l:L y(u)eday
Son
or [sC 2, p. B7]
F [v] =f p(t)e 98y

T iyl = [ w(e)ed? ey

oo
These have the advantage of symmetry but are quite inconvenient
for obtaining inverse Laplace transforms in the distributional
case.
5. We should properly index § with t or « but omit this.
If ye § then F{y] clearly exists, for all real w, since
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| 5 [y]] gf ly(t)]dt < e

Loo
The last inequality holds since ]wl has a finite integrel over
every finite intervel, ¥ being continuous, and the contributions
near infinity are small, since |y| is bounded by every integral
power of 1/t for large t. In other words, if ye §, then y is
sunmable over the whole line, [BU 1, p. 65].

To see that Flyle§ if ve §, we have, [SC 2, p. 105]:

8) aw/dn =fw -th(t)e-‘jwtdt

which also exists for all w, since tyed . Differentiating any
number of times then shows that ¥ ({w) is infinitely differemtiable.
b) Integrating F[dy/dt] by parts gives, since y(4=)} = O,

jo ¥{w) = f [dty/dt]e-'jmtdt

Since the right is finite for all w, so is the left. Repeating the
process multiplies the left by jJw again, but w?‘P (w) must again
be finite for all @ and thus |w ¥ (w)|-+0 as |w|+«=. Q.E.D.

This is proven in [BO 1, p. 10]. We comment that even though J

is replaced by -j in the exponent, 2x F [g] need not be the complex
conjugate of F [g] (with @ and t interchanged). This would,
however, be the case for a real good function, g.

See [SC 10, p. 7} where it is shown that

ffzﬂf[exp(-rrtz)] = exp(-rrfz)

The result of the example follows by 2 simple change of variable
using

RUCHES - SO
a

which immediately follows from (III-la).
In detail, [BO 1, p. 2],

[ v« [Crmt [Come e
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=q£:nh[:”vl(Y)Wz(X)e'jxydxdy
- [T1o [y 0e ey

=_Z:n v (¥ v, (v)dy

All the integral interchanges are justified by Fubini's theorem,

[BU 1, p. 63], since all the integrals exist as a consequence of ¥
being absolutely integrable if ye § . 'This result combines a trens-
form with an original in contrast to the convolution which combines
two originals or two transforms. Parseval's nawe is assigned in
[sc 2, p. 871.

The first step is seen in note 5b). The result for F follows

by obvious replacements in that for I .
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IV. FOURIER TRANSFORMS - TEMPERED DISTRIBUTIONS

Summery: This section consists of the definition and properties of
the Fourler transform of distributions. We ceannot assure that
the Fourier transform of en aerbitrary distribution exists (e.g.
those with the wrong behevior at infinity, such as [exp(t)u(t),

exp(tz) do not have Fourier transforms); only those distributions
which are in e space §' are Fourier transformsble, This space

§' is the torclogical dual of the space & of good functions
tresated in section 3. The Fourier-transformeble distributions
are here designated "tempered". The tempered distributions are
distributions of slow increase at infinity. In parsgraph 2 a
theorem (IV-1) is given which shows that a tempered distribution
is the derivative of a function which behaves as a polynomial at
infinity. Of course, the definition of tempered distributions
is that of lineer {contimuous) functionals on §.

In paragraph 3 the Fourier transform is defined for a

tempered distribution. The scaler product
< f}'m[T(t)], V(w) > = <Mw), ¥ m[wy(t)] > defines the direct

Fourier transform; an anslogous expression exists for the inverse
transformation. These definitions are shown to coincide with
those usually given for functions.

Paregraph L consists of the multiplication and convolution
in §'. For this we define the "fairly good functions,” which
are slowly increasing, infinitely differentieble functions.

These functions constitute a space which is denoted by Obﬁ the

Fourier transforms of functions in E)M constitute a space of
distributions denoted by Oé. From the definition of fairly good

functions some results can be drawn:

1) A tempered distribution can always be multiplied by a
faeirly good function and the Fourier transform of this product
is the convolution of the individual Fourier transforms,
eq. (IV-10).

2) We can always convolve any distribution in §' with the
Fourier transform of a fairly good function. The Fourier trans-
form of this convolution is then the product of the Fourier
transforms of the separate terms being convolved, eq. (IV-11).

The results on multiplication and convolution are valid in
other contexts, which are sometimes of interest in physical
problems. The supplementary result at the end of the section is
concerned with one of these results, which in fact can be deleted
on & first reading of thetext; it 1is, however, important
because it refers to energy relations and establishes a natural
link with the Hilbert transform.
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1. Introduction
In this section the definition of the Fourler transform of some

distributions is presented. The restriction to a certain class of
distributions is so important that for this purpose, a new space

8', which consists of the Fourier-transformeble distributions is
introduced. These are called tempered distributions and a theorem
will be given which establishes & criterion to determine whether a
given distribution belongs to o' or not.

A question might arise et this point, why consider separately
Fourier transforms of functions (section IIT) and of distributions
(section IV)? Since these are generalized functions, as we have seen
in section II, the treatment of Fourler transforms of distributions
should contein that of functions &s a particular case,

A simple reasoning might clear this aspect. In section III we
have considered the simplest c¢lass of functions which are Fourier-
transformeble. Those few pages contaln a simple, yet complete, theory.
There we introduced a space § which will be extensively used in this
section, This space contains some simple functions which are Fourier-
transformasble (they were called good functions).

This space & consists of functions which act as the testing
functions for defining the Fourier transform of a certain class of
distributions (these are the tempered distributions)}. Reason enough,
we believe, to consider the two ideas separately. Obviously, the
results of this section have as a very particulsr case those of the
preceding one.

Two corments seem to be in order, The first is concerned with
the complexity intrcduced by the consideration of so many speces.

Are they really necessary? A mathematician might consider them
essential to a precise statement of the theory. For those interested
in evaluating some transform they are not so critical but do serve to
give the conditions under which evaluations can occur. The reader
might find it useful to refer to the appendix on spaces at any moment
when their meaning or definition seem to be obscure or imprecise -

and we do hope this will cause an improvement of the understending
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of the theory, not the contrary. Second, this section is concerned
with the definition and important properties of the Fourler transform,

F [T], of & distribution T. Since the idea of & distribution may be
somewhat new to the reader, it may well be worth pointing out that
thls section is concerned with a rigorous generalization of the scaler
product < T(t), exp[-Jwt] > , which, it will be recelled, is a complex
number whose value depends upon the veriable w. However, some of the
details of the theory are concerned with the fact that < T(t), exp[-jwt] >
doesn't exist for every distribution T for which a Fourier transform
exists, for instance when T(t) = 1.

2. Tempered Distributions
Just as the space D' of distributions is defined as the

topologicel dual of the space ) of testing functions, so is the
space & ' of Fourier transformeble distributions defined as the
topological duel of the space § of good functions. That is, the
space §', the dusl of §, of "slowly increasing distributions"” or
simply tempered distributions,l is the set of linear functionals,
defined over §, which are continuous in terms of the notion of
convergencez in 8. We can see that every testing function is a
good function, since the good functions need not have compact support.
The relation D C9® implies that Do 5', because of the notion of =
dual space. This means thet every tempered distribution is itself a
distribution, and < T, ¥ > is well defined for every ye9 as well es
for every Ve § .
The space o' consists of the Fourier transformsble distributions,
the tempered distributions. The reason for this name, as well as a
convenient test to tell if a distribution deserves it, are the subject
of the following theorem.3
Theorem IV-1:
A necessary and a sufficient condition for T to be a tempered
distribution (i.e., Te §'), is that there exists some bounded
function, h, such that for some real m and integer k' > 0O

a*' 2
P(t) =dF[(l+t )™ h(t)] (1v-1)
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In other words, Te §' is such that its behavior is somewhat
smooth, being a derivative of a function which behaves as a polynomial
at infinity.

For taking transforms of series it is necessary to have a notion
of convergence in S$'. We will say, by analogy with definition II-5,
that a sequence [Tn], T €S t, converges to Te §' if, for all ye S,

m < T-T, ¥ > =0

Example IV-1:
We list several important types of tempered distributions.
a} 6(k)eS' as h=u, m=0, k' =k
b) If g(t) is & sumable function, over ~ <t <, then ge §' as

| [ “e(x)ar

0, k' = Lt

c¢) If g(t) is a square integrable function, over = < t <=,
then ge S'.5
d) g(t) = ate §', & = constent, as h = a/2, m = k' = 1. Note

h(t)

with m

fl

that here g is not a good function.

(k)

By observing (IV-1) it is clear that if T is tempered then T
is tempered as well as any primitive,
Example IV-2:
explt]d §t since none of its integrals behaves as (l+t2)mh(t)
with h bounded for all t. 'This is equivalent to the fact that

o=
the partial sums of Zti/il do not define a convergent sequence
i=0

in '; these partial sums are not bounded by & fixed polynomial.

3, Fourier Transform Definition

The Fourier transform theory can now proceed by applying the
results of section III. This follows from the fact that if T is
tempered then for every good function y, < P(t), v(t) > is well
defined, and, hence, since JF[y] is also a good function, so is

< Mw), .‘fm[w(t)] > well defined. The Parseval's relation, &s given
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by (III-3b), then shows that there is only one logical definition for
the Fourier transform of a distribution.

Definition IV-1:
If Te §', then we define F([T] and & [T] by, for ell ve §,

< ff'm[T(t)L w) > = < Hw), fr’m[\lr(t)] > (1v-2a)

< F Ml Y5 = <28), F vl > (17-25)

As in section III, ¥ is called the {direct) Fourier transform
and F the inverse Fourier transform. Also, as in section III, we
will normally teke the variable for J to be the radian frequency w
and the variable for F to be time t, and, thus will frequently drop
the su'bscripts.T

It is still true thet in the distributional cese F 1is the
inverse of ¥ , and vice versa since by (iv-Z) and {1II-2)
< FL Flrl), v>=<9F[?], Fhl>-<1, F FlWll>=<1, ¥v>

That is, for eny tempered distribution

F[ glr]] =7 (IV-3a)

F [FI[T]] =1 (Iv-3b)

t

An obvious, but quite important, conclusion from this is that the
Fourier transform of a tempered distribution T can only be zero if T is
zZero.

Although < T(t), exp[Fjwt] > is not always defined for a tempered
distribution, whenever this is defined we can calculate the Fourier

transforms by

F 7] = <m(t), expl-jut] > (Iv-ha)
F (7] = %; < T(t), expljwt] > (Tv-kb)

That is, when the right of (IV-4) exists, we can think of the Fourier
transform as being given by the same formula used for functions, since
by our symbolical convention of (II-2b), (IV-4a) becomes

F [ =fm Tt )e %t

=C
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Unfortunately the expression in {IV-4) can not be evaluated for all
tempered T and one must rely upon the definitions of (IV-2) to evaluate
the Fourier transforms. The expressions of {IV-2) do exist for all T
which are good functions, as well as for & and its derivatives.
T(t) = 1 is an example of a tempered distribution for which
< 1, exp[-jat] > doesn't exist, see (IV-5d).
Example IV-2:
By the last comments the functional Fourier transform and the
distributional one coincide, when the former exists, Thus the
pulse of unit height and of width 2T,
(t) = u(t+r)-u(t-1)
has
(7] = [2sin wrl/w
Example IV-3:
Using (IV-h) with the property of the impulses derivatives,

(II-8b), immediately gives, Tor integer k > O,

F 150507 = (5" (TV-58)
7 (58] - Z(-g0)" (Iv-5b)

Then by (IV-3), we directly get

f[tk] = EnJRb(k)(w) (Iv-Sc)
F [Go)™ = 84t (1v-50)

Example IV-4:

We have, by a simple application9 of example II-6.

FIPR(T)] = -jnsen @ (1v-6a)

5 (PR()] = dsgn ¢ (Iv-6b)
Then by {IV-3), we directly get

7 [sgn o] = PF() (Iv-6c)

F [sgn t] = PR(5) (1v-62)

An important consequence of these equations is found by writing
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2u(t) = l+sgn t
2u(-t) = 1-sgn t
and using {IV-5c) with k = O and (IV-64)

F [u(t)] = m(w)+FR(3;) (Iv-Ta)
F () = 6 (w)-FF(37) (IV-Tb)

L, Multiplication and Convoluti-n

One of the baslc reasons for the use ol the Fourier transform is
that under such a transformation multiplication and convolution become
interchanged. Unfortunately any two tempered distributions can't be
convoluted or multiplied, and, thus, we must put some restrictions on
these operations.ll In order to state precisely when these operations
can be performed it is necessary to introduce the classes of distribu-
tions mentioned below,

By the formula for multiplication, (II-11), we write

<a(t)r(t), v(t) > = < T(t), oft)w(t) > (1Iv-8)

If T is an arbitrary tempered distribution and yed , this requires that
& be such that oy by a good function. This will always be the case if
€ is & slowly increasing infinitely differentiable function or &
fairly good function. The space of fairly good functions is denoted
by C)M and characterized by the fact that a(t)e(SM if the absolute
value of the k th derivative, Ia(k)(t)l, for every integer k > 0, is

bounded by & polynomizl in t {whose degree may depend upon k);12 as
examples we can state that t, sin t, exp{ jt] are fairly good functions.
Then, if Qe O, and ye §, we have'3 aye § and (IV-8) can be formed for
every Te §°'.

Since a(t) = t* 15 a fairly good function, we can multiply any
tempered distribution by tk. This easily allows us to show the

important result concerning the Fourier transform of the derivative.lh
?[T(k)] = (jm)k?[T] = &'[5(k)*T]; k=0, 1, 2:e¢ (IV-9a)
"}[T(k)] = (-jt)k F[Ttl= 7 [a(k)*'r]; k=0, 1, 2.-. (Iv-9b)
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The results on multiplication can be used to obtain the desired
properties for the convolution. By a straightforward application of
the definitions of multiplication, convolution and the Fourier trans-
mm,%swstmtmrmommﬂksy

F lar] = Jz“—ﬂ Flals FlT] (Iv-10a)
F [ar] = F (@)« F [T] (Iv-10b)

Consequently, since JF[T] = S can be chosen arbitrarily in §', that
is, given § let T = 7 [S], we see that we can always convolute distri-
butions of the form of F[a], with @ a fairly good function, with
arbitrary distributions in §'. The space of these distributions,
such that their (inverse) Fourier transform is & fairly good function,
is callied the space of distributions of repid decrease and denoted by

E)é. One characterizatioan of @ é is by the fact that Tef)é if T
is the finite sum of derivatives of continuous functions, the latter
being such that their product by (1+'t.2)m is bounded for every m > O.

By taking the inverses of (IV-10) we immediately see that if S is

of repid decrease, i.e. S¢ c':’ and Te § ', thean

F [5xT] 58] FIT] (Iv-11a)

F [sx1] = 20 F [8]- 7 [T) (IV-11b)

These concepts are best illustrated by some simple exemples.
Example IV-5:

B(k) is a distribution of rapid decrease, since

5(}:) _ g(k+2), k>0

3

where

g(t) = (e "-e"" Yu(t)
This has (l+t2)mg(t) bounded for every m asnd all t. Then for any
Te §' we have

Fio{xr) = Fs(1. FlT) = () FITI
by (IV-1la) and (IV-5a). This gives an alternate justification
of {(IV-9a), as well asenother way of seeing that (jm)ke Oy
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Example IV-6:
Since e %tu(t)e O, vhen Re a > 0, this has a Fourier transform,
which by (IV-ka) is

18

-at 1
3"[8 u(t)]:m,fie a>o0
This is indeed in C)M. Thus, since
-bt -at
[e-atu]*[e-btu] A
a-b
we obtain from (IV-11)
e-bt_e-at 1 1
?[—“-E:E—- al = e Re a> 0, Re b >0

Example IV-T:
e:cp[,jtzl belongs to both O(': and OM ana®?

2
Flexp 3t°1 = (143)/z expl -3 ]
2

Supplementary Result:

Although in the general case one must restrict one of the members
of a convolution to be a distribution of repid decrease, there are
special, and important, cases where this restriction need not be kept.
For a case of much interest for physical systems, becesuse of energy
relations, we introduce the ﬂ)i spaces. For these we recall that

q
Lq is the set of (measurable) functions, g, for which

_Z:nls(t)lth <ew

The space ﬂ)i consists of those distributions which are finite sums
of derivativesqbf functions in Lq. The result of interest is then the
following.20
Theorem IV-2:
If Se D; , Te 9£r’ 1<g<2 1<r<2, then
q
s#Te D , (1/s) = (3/a) + (1/r)-1
5
F[sxT] = FI[s8]- FI[T]
with all three transforms being functions. In particular § [8]

is the product of = polynomial by a function in Lq' where q' = ¢/(g-1).
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Example IV-8:
Consider
5(t) = T(t) = BF(3)
Lz’
since at infinity the behavior is as 1/t. By the last theorem we
have, using (IV-6a)
F (PE(Z)*PF(3) ]

Ve have21 SeLzeﬁ) ' , but 8 is not a distribution of rapid decrease,

(-jnsgn w)(-Jjnsgn w)
2
= =N
But -x° is the Fourier transform of -ﬂza(t) and hence we obtain,

by the uniqueness of the Fourier transform,

1 1 2
PF(E)*PF({)= -1 5(t) (1v-12)
This yields the Hilbert transform pairs, since, letting Te S)i r
1< g< 2, with 4
s = - 4 [2R(3) 1o (1v-138)

shows, by use of (IV-12), that
T - -3 [eR(}) s (IV-13p)

Then 8 and T are a Hilbert transform peair. Note that one can add
constants to both S and T and the result is unchanged, since
l*PF(%) = 0 by direct calculation using {II-13).
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NOTES TO IV

In Schwartz, [SC 2, p. 93], the tempered distributions are called
"tempérées" as well as "distributions & croissance lent," that is,
distributions of slow increase. We recall that the notion of
topological dvual is mentioned in note-II-G.

That is, if Te §' and ye§ +then < T, y > satisfies conditions 1)
and 2) listed after definition II-1 of section IT. For this reason
vwe have to introduce the notion of convergence, which follows
example III-1, in & .

See [SC 2, p. 95], where this theorem is proven as part 1° of
Theorem VI. Although Schwartz doesn't so state, m > O can be
assumed, as otherwise (l+1:.2)m can be absorbed in g. Schwartz
writes (IV-1) as T(x) = dp[(l+x2)k/2f(x)]/dxp, the factor 1/2
essociated with k apparently stemming from the fact that (l-t-xz)l/2
is associated with a distance. "

Recall that if g is & summable function thenhl‘ g(t)dr is an

ebsolutely continuous function and hence is bounded, [BU 1, p. 55].
It only makes sense that summsble ge §', since all such functions
have & Fourier transform in the functional sense, [BO 1, p. 1]. That is

| 5 l&]| = lf g(t)e 0tat| sf |&(t)]at

with the right side finite when g 1s summable, this being
essentially the definition of summability, [BO 1, p. 32].

We first recall that, on the whole line = < t < ®, summable
functions, such as g(t) = 1/(l+t2)l/2, need not be square
integrable and thus example IV-lc) is not a special case of
example IV-1b)., The fact that square integrable functions are
tempered distributions follows as a special case of the result to
be given in note-IV-20; the square integrable functions are defined
in note-II-11,

See [SC 2, p. 95]. Note that exp{t] is locally summable but not
summable on the whole line, and thus example IV-1b) doesn't apply.
Since neither exp{t] nor u(t)-exp(t] are tempered they do not have
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Fourier transforms and thus raise a need for the Laplace transform.
This is no longer the case for u, since ue &', and thus the standard

argument that the Laplace transform is introduced to give u, or
u-cos t, a transform bresks down in the distributional case [GA 1, p. 100].
:?l T. Occasionally, as in convolution expressions, it becomes necessary
Hid to pay strict attention to all the parasmeters, as done in (IV-2).
. We comment thet in the scalar product form of (IV-2) all the
!; ; parameters esre dummy and can be replaced by any other appropriate
%: symbols. In (IV-2) we use T for the "operand” of both § eand
I ?; since a1l that is of interest i1s that we operate on a tempered
distribution. This is somewhat in contrast to section III where
ffi we wished to emphasize the relationship between y and V¥ .
ﬁ 8. To see that F[T] = < T(t), expl-jut] > when this exists we
mﬁ_ proceed as follows.

< F,IT], ¥w) > = <), F l¥(t)]> by (IV-28)

It

< T(Y)’_/ w(x)e-Jyxdx > by (III-1a) and a variable change

i =\Zﬂ v(x) < T(y), e-jyx > J]dx by lineerity

i =\/ﬁ Ww) [ < T(t), e 9% 5 Jaw by a veriable change

TIdentifying this with (II-2a) we get (IV-4a) whenever F [T] is a
function. The result for '§ follows by simply replacing J by
I -j in the exponential and multiplying by 1/2x.

u&j 9. Here

}‘! sgn t =

1 itt>0
-1 iIfT+t<0

|

(i

lidh To see that (IV-6a) is true we can use (II-9a) with (IV-ka).
I‘.

[}

F[PF(F)) = < FR(L/%), expl-jot] >

@ -€
Ligl [ (1/t)expl~ ot lat + [w (1/t)expl - jut ]at)

%-1»8_[ (1/t)(expl-Jot]-expl juwt]}at
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10.

la-

13.

1k,

= =23 éiB[ (1/t)sinlat}dt = -jxsgn w

since‘g (1/t)sin wt dt = (nsgn w)/2 by [IW 1, p. 198].

The result for

F follows by dividing by 2x end conjugating.

The dissymmetry of F versus F

equations.

clearly shows up in these

In obtaining (IV-T) we have used the fact thet F[T4+8] = FI{T] +
F [s] which follows from the linearity of < T+8, ¥ [y] >.

For instance u(t)®u{-t) is not defined but ue §'. Likewise 5.5 is

not defined but &e §°'.

See [SC 2, p. 99] for this cheracterization. The name "fairly

good” is ascribed by Lighthill, [LI 1, p. 15].

Cleerly §c O, since, definition III-1b), }%T_mhmly(k)(tﬂ = 0,

in conjunction with continuitys shows that e § satisfies the

requirement for @, thst |cr.(k

t.

(t)| be bounded by a polynomial in

If ae O y &nd Ve 8 then ay is an infinitely differentisble con-

tinuous function.

Since

(o)™ Zb( BoltyEt), (L

Wwe have

1+ < Zo( Ky el 1y (k1))

sy ey 1))

for large |t|

vwhere p is defined by |a(i)| < |tpl for large |t|. Since
0 because ye &, this shows that Qye §.

(k-1)

o WL D
ioTlsee that T[T( )
< ?[T( )], V> =

= (jag)kﬂ-' [T] we proceed as follows:

<rr(k), ff[t[:]>b.‘f(l'v-23)
(1) <m, a3 [w]/dm>by(II'r)

(-1) <T,
< ffm[T],
-51-

¥ [( jt) 1;(1:)] > by note ITI-5a)
(Jw) ¥(w) > by (IV-2e)
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- < ()" 5 7], ¥(w) > by (IV-8)

The result for ? merely replaces j by -j in the multiplier.

Clearly ¥ (T] - [B(R)*T], since T" = a(k)*w by (II-15¢).
15. To see that for ¢ O |, and Te §', Flor] = Flalx TFITI, ve

have

< § lo)2(t)], wlw) >

< Aw)Hw), F [¥(t)]> vy (1V-22)
< Mw), Aw) F, [¥(t)] > vy (IV-8)

- <o), F [ F.lalt)]]-g [¥(2)]> by (1V-3a)

= < MNw), ¥ m[w(t)]-gi- < g [o(s)], expl jwt] > > by (IV-bb)

= <), =< Flo(t)], 7 [y(t)]-explior] > > by linearity of <,>

- <2(w), =< F lo(t)], F_[¥(t+1)] > > since

f s(tar)e Wby o &I f w(t)e Eat

- <o), o g1 < 5 [a(t)], ¥(t+7) > ] > by linearity of <,>

- < FT(0)], 5= < F ()], vlort) > > by (IV-2a)

- <5 g (0(8) I g fa(6)], W) > by (1I-13)
The proof for § is similar except that no multiplier 1/2x
appears at the fourth step.

16. In the French "rapid decrease” is "décroissance rapide", The
condition stated is necessary and sufficent for Te @é,
[sc 2, p. 200]. O] is not the dual of O, [sc 2, p. 101],
and hence we don't write © y Tor @c':, but 0;, and BM are in
a one to one correspondence. That is, every distribution Te O":
is the Fourier transform of some Ge @, T = ¥ [a], and vice
versa, [SC 2, p. 12k]., Schwartz's proof of this seems quite
delicate, but we essentially get around this problem by defining
© (': to have this property.
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17. To see that if Se Oé and Te §' then

F(s]- F[T], we rewrite (IV-10b) as

“
5
I

Flow]l = 7Flalx F [U) and then let @ = g[s], U= g¢[T]
gliving

Flglsle Tl = F1 FIsll* F [ FITI] = s¢T
Applying % to this gives the desired result. The result for
F follows in the same manner,

18. Note that if a = jB, B real, then e-'jBtu(t)é 0], since
(1+“c.2)e-‘jBt is not bounded for lerge t. However, e-dﬁtu(t) does
have a Fourier transform, since e'jﬂtu(t)e §', as is seen by
(IV-1) with m = k' = 0. Noting (IV-4a) with {II-11) we need
merely replace avf in (IV-Ta) to get

-jpt 1
5 [e”PPu(t)] = w(wp) + Ty
19. This result is stated in [SC 2, p. 126] and proven in [LI 1, p. 49].
20. See [8C 2, pp. 112 & 126] for a proof of theorem IV-2., The
properties of fDi are as follows. As is customary we define Lq

Q
as the set of measursble functions, g, for which, [BU 1, p, 65],
- -}
f |e(t)] %t < =
‘)

Then define D 1l < q <w, as the space of infinitely differentiable

L 3
q

functions (of arbitrary support) for which all derivatives are

also in Lq, [sC 2, p. 55]. One also must define & notion of

convergence in 9 for reasons which should now be clear;

L

€ 9, comnverge to zero (in D; ) if for every non-negative

q q
integer k,

-]
(X)py19
1i t dt = 0
J_,;.n[; |93 (£)]
Letting q' be defined by q' = q/{q-1) we define Pl 51 <q <=,
T

q
as the topological dual of S)L . DNow clearly §c 9 L ( ¢ denotes
q

q
"is conteined in") and thus SDi. ¢ §'. The distributions in
ql
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il 21.

5 - - T e 3 v o = —= - Sk - e =t
- = - T —— L =

S e

R T oy

P; ere characterized by the following result, [SC 2, p. 5Tl.
q

Theorem:
1°. A necessary and sufficient condition for Te 5)£' is

q
that T be the finite sum of derivatives of functions
in Lq.

29, A necessary and sufficient condition for Te fDi. is

q
that for every at)e 9, a*TeLq.

Thus de¢ f[)L for any q, since = g'+g with g = e-tu(t). Further

L, ¢ EDL which gives the result of example IV-lc).

One of the most important of these spaces for physical problems

is fDilz, because of the relation of square integrable, Lz,
functions to energy.

This is a special case of the statement of [SC 2, p. 127] that
pF(td)e 9 for Re q < -1/2.
2

SFL-63-021 -5k~




V. LAPLACE TRANSFORMS

Summary: The definition and maein properties of the Leplace transform,
£[T], of a distribution, T, are the subject of this the principal
section,

The first paragraph considers the types of distributions which
have a Laplace transform; these being the distributions, T, for
which T(t)exp(-ot) is tempered for certain o, the pertinent o's
being denoted by oeT'(T). In paragraph 2 the Laplace transform is
defined by the use of the Fourier transform of section IV,
£lT] = %L[T(t)exp(-at)]. LIT] is then seen in paragreph 3 to be

an anaelytic function of the complex variable p = g+jw for p in
the interior, P(T), of I'(T). In this interior the magnitude of
£ is bounded by the megnitude of a polynomiel in p, eq. (V-10),
a fact vwhich means that one need consider the complex inversion
formula only for continuous T(t), eq. (V-20d). As shown by
T(t) = u(t), the Laplace transform on the boundary of the con-
vergence strip mey be & non-functional distribution end will
reduce to the Fourier transform when o = O if O0eT{T). Of course
elr] = pe[T], eq. (V-T).

The subject of paragraph 4 is the Laplace transform of the
convolution and of the product, as with the Fourler transform,
these two operations are transformed into eech other. Under
suitable restrictions one has eq. (V-12a), £[sxT] = £[8].£[T]
while, eq. (V-168), £[aP] = Llal*L[T], this latter requiring
& proper interpretation, since a2 complex convolution is involved.
From these two results most of the important properties follow,
b such as L[T(t+b)] = L[T]+exp(bp) and £[tT(t)] = -dg[T]/ap.

i Paragraph 5 is concerned with inverting £[T] to get T. A general
form of Jordan's lemma is used to allow the application of the
residue calculus to £[T] which are single-valued with isclated
singularities.

1, Transformable Distributions
The most profitable means of defining the Laplece transform for
distributions is familiar to engineers. This consists of making a

transition from the Fourier transform by inserting a convergence
& factor exp[-ot] and then working with a complex variable in place of
& real variable.l This process allows one to obtain more general, and
apparently more useful, results than by other methods, such as taking
distributional limits of sequences of integrals.2

Let the complex frequency variable be p = g+jw. The following
argument shows that for a distribution T, the set of p for which
e-ptT(t) 1s a tempered distribution is a converge strip: by observing
thet e-J“mgf)M, we see that e 9%ge §' ir ge 8 ', see note IV-13.

-55- SEL-63-021




Thus, if e_ptTe §' for a given ¢ and w, this must hold for all w at this
given o.

3

The convergence strip- can be defined by the connected set of real
points T'(T) for which this strip intersects the o axis; for example as

shown in Fig. V-1.

LINE OF CONSTANT o

CONVERGENCE REGION

FiG. V-1. CONVERGENCE STRIP.

Here T(T) may be closed or open on either the right or left and it may
be empty; the left and right boundaries will be respectively denotedh

by o, and O For exemple for T = eatu(t) the convergence strip is

£

defined by 0, = Re a < 0 <@ = Os for E = B the entire plane forms

the convergeice strip, while for T = et u(t), T is empty.

3ince the customary situation treated in engineering texts limits
o to the interior of T'(T), the interior, denoted by P(T), is of some
importance; for T = eatu(t), F is o> “g = Re a, By the very meaning
of the convergence strip, for every gel'(T), e-UtT(t) has a Fourier
transform, being tempered. For & given distribution, T, there is a
fixed convergence strip, P(T), conversely given a real { convex) set,
', there is & fixed set of distributions, celled 3'(r'), whose con-
vergence strips contain that defined by T'; that is, if Toe §$ (") has
its convergence strip defined by FO(TO), then PfF\PO(TO) =T, We will
generally make a distinction between a I' defining §'(T') and the I(T)
defining the convergence strip for a fixed T in the menner illustrated,

that is, by explicitely exhibiting T in brackets for T'(T).
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It 1s necessary for evaluating Leplece trensforms of sequences or
series to state what is meant by comnvergence in §'(T'). However, since
for each oel, e pe § if Te §$'(r), we revert to the definition
given for &', That is, a sequence (T}, Te §'(T'), converges to

Te §'(I'), if for eech gel" and all ye §,

-gt
lm<e [T-Tn], ¥v>=0 (v-1)

o

As we shall see st the end of paragraph 3, exemple V—5-b),§;16(k)(t-k)
k=0
is not a convergent series in &'(I') for any non-empty T'.

2. Laplace Transform Definition

The principal definition is now conveniently given.

Definition V-1:
Given T" and Te &'(I') the Laplace trensform, LP[T] is defined, for

each p = o+jw with gel’, by
-gt
LZP[T(t)] = F  [e7770(t)] (v-2)

that is, for every ye 9,
< s:p[T(t)], vw) >=< F m[e-UtT(t)], y(w) >

In this definition the scalar product is formed with respect to
o for each cel'; o is then a perameter which is allowed to vary such

that p can be considered as a complex variable, As with w on 3:03’

13
ke

§ the subscript p on LP will normelly be omitted.

f Clearly the Laplece transform reduces to the Fourier transform

§ when o = 0. We also note that given T we can choose I" to be a subset

J of T'(T), in which case the Laplece transform is only given for a subset
of its possible convergence strip., When < T, exp[-pt] > exists, we

i have5

alr] = <t), e Pt >, oel’ (V-3a)

which shows more clearly the dependence upon p then (V-2). Consequently,
if T is a function this reduces to the normel definition of the Laplace

trensform as

siel - [ " n(t)e Prat (V-3b)

-y

T

Thus the tables valid for transforms of functions remain true when
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applied to this new definition. We note, however, that the definition
coincides with the bilateral, or two-sided, transform, which of course
reduces to the one-sided trensform if T(t) has support in t > 0. But
now one has no trouble finding the Laplaece transform for generalized
functions, and one doesn't have to worry about different sequences
defining &, such as in Fig. II-3, giving different results for £[&].
Note that the seme comments hold concerning this form of £[T] as were
glven for (IV-lba); that is (V-3) can not alwaeys be used and we must
use (V-2) in the general case.
Example V-1:

Since, by (II-12a), e'“ta(t) = 5(t), we see that I'(d) yields the

entirep plane as the convergence strip for &. Then by either

(v-2) with (IV-5a) or (V-3a) with (II-4) we immediately get6
ela(t)] =1 (v-kba)
By the use of (V-3a) with {II-6) we also have
£[6(at+b)] =-T§Tepb/a, afo (V-lb)
Example V-2:

The unit step function, u, has I'(u) defined by o > 0. Since the
Laplace transform for u is normally given only for o > 0, the
customary theory is somewhat incomplete., By (IV-Ta) and (V-3b)

we get

Flul = (o) + PF(j—i')) g =0

glu(t)] = 0 (v-5
S l? e Ptar = 1/p a>0 )

If we restrict ©vo o > 0, this reduces to the customary result.
In fact we can easily see that the ¢ > 0 result reduces in the

(distributional) limit to the ¢ = O result,

Example V-3:
™t) = exp[pot], P, = 0 +Jw, has for its I'(T) the single point

¢ = 0_. By a simple argument
Pt
gle ~ 1 = Ena(arab), 0=0
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3. Differentietion, Analyticity Properties
The conversion of differentiation to multiplication has long been

recognized as one basic property of the Laplece transform. This carries
over to the distributionael cese. By using an argument identical to

that used for the Fourier transform,9 or what 1s essentially the same,

replacing jw by p, we see that
elml®)y o Ee(r]; ger(T); k=0, 1, 2, ... (V-7)

In the speciel case where £[T] = < T, exp[-pt] > this is eesily checked
by applying the very definition of the distributional derivative,
(II-7). Equation (V-T) again shows that the distributional Laplace
transform is to be considered as bilateral. But, if T is a function
which is zero for t < 0, we can write, using (II-12d),

T(t) = g(t)u(t)

T'(t) = g'(t)u(t) + g(0)(t)
from which we get the familiar unilateral result

Lig'u) = £igul-g(0) (v-8)

Note that T(T) and P(T(k)) mey differ, as seen from T = u,
= &, but (V-7) only holds for cel’(T).
Turning to properties which depend on analyticity requirements we

(1)

first define
o 0 )
3P - %[60 -3503] (V-9a)

d 10 .0

Spx =[§ So +J§5] (Vv-9b)
For a given T, in the interior of the convergence strip, defined by
f(T), we find that the Cauchy-Riemann equations

oelT) _
Spr
are satisfied.’® As a consequence, £[T] is an analytic, or more

precisely "holomorphic", function in the interior of its strip of
Lk convergence;ll in this interior an expression for the derivative is
£ dglTl/op = deiT]/dp.

Now considering T' to be given, for each ogel’ £l ] is a mapping of
§'(r) into §', since the Laplace transform is merely e Fourier
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transform. However, in the interior of the convergence strip the image
of this map, being holomorphic in p, is a function of w for each o;
this need not be the case on the boundary, as shown by example V-2.
Consequently in this interior of ', § '*(P) is mepped into a functional
subset of §'; for each g 't.hisl:a turns out to be OM.

Since every function of G)M is characterized by the fact that
every derivative is bounded in sbsolute value by a polynomial, we see
that if T has a Laplace transform, then for every closed subset, I'',
of F ve hcanrel3

|elr]] < M|p|™, ge M ¢ B (v-10)

where M and m are non-negative constants, m an integer. This is
immediately seen to be verified in the finite order case by writing

with the functional Laplace transform converging absolutely, and using

¢lT) = pele]

In this case, since g(t)eapt is absolutely integrable
M > L |e(t)| e at

Equation (V-10) has some importance for inversion, since we can
invert £[T] by first considering &[ ]/pk which corresponds to the
Laplace transform of a function,
Exemple V-k:
We have for real a
Flul = m(w) + F(z;) , o=

£le®u(t)] - (v-11)

[--]
£ e"(P-a)tdt = -1-)%-5 , o>a

Ing > a, £ is clearly holomorphic., Then, (V-T7), o

azn'a(w) + (2a+jo) +PF(Z-), o =&

el u(en(@ - | &
% s 0> 8
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In o > a+e, for any ¢ > 0, we have
2Lt u(e)1 )] < Mip|s w> 2

In the study of pessive systems the square integreble functions,

L2 functions, are of extreme importance.. Here we give a result which

contains the L2 results as a special case, Defining, es at the end of
section IV, D to be the space of finite sums of (distributional)

q o
derivatives of Lq functions, where we recall, go'.-'Lq if f lg(t)] %t <o,

-

we can obtaln the following result.lh We first recell that the space

of fDi distributions conteins the L2 functions as a subspace, This

2

theorem allows a rigorous proof of the fact that a pessive system is
"stable". 1

Theorem V-1:

If Te EDI'_I , 1< aq< 2, has support in t > O then I'(T) contains
q

the closed right half line ¢ > 0. Consequently, £[T] is

holomorphic at least in the open right half plane, Re p > 0.

Example V=5:
a) The Laplace transform
g(r) = /p-1
can't arise from Te fDi with support in t > 0, since /p-1

2
has & singularity (e branch point) at » = 1. A physical

consequence of this is that /p-1 can't be an impedance
(driving-point or transfer) associated with a passive network.

b) The distribution

T(t) =Z5 B(k)(t-k)
k=

 has no convergence strip, that is I'(T) is empty, since we would
require, by (V-4) and (V-T), that its Laplace transform be

oo
pre P
k=0
20

By the ratio test this converges in the region ma <e -crz
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which is es shown in Fig. V-2 and is not a convergence "strip”.

Consequently the series for T is not convergent in $'(r) for

s

oo
FIG. V-2. CONVERGENCE REGION FOR z pke—ke,
k=0

any non-empty I'.

-

4, Convolution and Multiplication
To a lerge extent, the usefulness of the Laplace transform is

due to ite ability to transform the comvolution of two functions into
the product of its transforms. We obtain here similar results con-
cerning distributions, derived as before from those for the Fourier
transform.

Fundamental here is the fact that £[T] is & fairly good functionm,
as a function of w, for each Ueﬁ(T). Using this in conjunction with
the fact that the fairly good functions are Fourier transforms of
distributions in O, we see that for each aef(T), et Or. But
the main cheracteristic of 0; is the fact that its members can be
freely convoluted with members of S§'. Consequently, given two
distributions, S and T, for which the convergence strip of one inter-
sects the interior of the convergence strip of the cother, we can con-
volute e-UtS(t) with e-UtT(t) for o in such an "intersection strip".

Since,l6
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e b(exT) = (e "% g)x(e r)

we see from the convolution result for the Fourier transform,
(Iv-1le), that'T

clsxr] = £[s].elT] (V-12a)

at least for oel'(s) MP(T). For example (V-12a)} holds for each point
in the shaded region of Fig. V-3a). But in cases such as shown in
Fig. V-3b) equation (V-12a) need not hold on the common boundary. How-
ever, it will hold on such a common boundary if e °T’S and e °TPp are
both rapidly decreasing distributions.

“ I(T) i I'(s)
2 ]
% ]
7z 7
” ]
Z Z
z : ZE
~
Z Z
2 Z

-] e = fw

C¢s) I(T)
o} b)

FIG. V.3. POSSIBLE CONVERGENCE REGIONS FORE[5.T].

This further shows that if S, T, U have I'(S) intersecting a
common strip of intersection of f(T) and F(U) then

(S#T)%U = sx(T*U) (v-12b)

since
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glExT)*U] = gls]. elrl. olu] (v-12¢)

In other words, in contrast to the general case for distributions, the

order of convoluting the type of distributions under consideration is
immaterial. Note that the conditione for {V-12b) ere not satisfied for
S=1,T=5"', U=u.

By the uniqueness of the Fourier transform we know that £[T] = 0
if and only 1f T = 0. Thus (V-12a) shows that, under the conditions of
validity of (V-12e), S#T is only zero if one of S or T is zero; that

is the algebra of distributions with convolution treated as multiplice-
tion, has no zero divisors.
Example V-6:
Since £[5] = 1, by (V-4a), then, (V-12a),
£le*1] = £[T]
verifies that 5 can be convoluted with every distribution.
Example V-T:

The convolution can be used to cobtein results on integration.
Thus if S has I'(8) with a point in ¢ > O, we have by (V-5)

t
els(t)vu(t)] = gl I s(r)ar] = Ze(s] (v-13e)
= t
Consequently, in this case, the primitive-[1 8(t)dr exists and

o

can be found by inverting p-lﬁ[S]. Similarly as for &[u{t)] of
(V-5) one can show that
na(m)-PF(jch) a=0 |
elu(-t)] = (V-13v)
-1/p g<0

Consequently, if S has I'(S) with a point in ¢ < 0, another
Dprimitive results from

£ls(t)ru(-t)] = £l [ “s(x)ar] = - Lels] (V-13¢)

Exemple V-8:
As ve slreedy know, example IV-1d), S(t) = t%e §°, But, in
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pact e ThtXe only for ¢ = 0. By (IV-5¢) we see that

c[t¥] = ZquB(k)(m), g=0 (V-14)
If we let T(t) = e-tu(t), then by example V-1,

gle ()] = 1/(p+1), o > -1
where ¢ > -1 defines ﬁ(e-tu). Consequently, by (II-12b) using

(v-12a)
L[t*e—tu(t)] _ 2nj5 (o) g=20

D+l i/
= 2138 " (w)-2785(w)
This is just the Laplace transform of t-1 and thus, as can also

be verified by direct celculation
t*e-tu(t) Sl
Exemple V-0:
If S =5"-5 eand T = e-ltl, then in the interior of their common

strips of convergence, defined by g, = -1 end g = 1, we have

ei(em-ope t1 - (221)e 52 - -2
p -1
Thus, by the uniqueness of this result,

(s"-5)we 1Bl = _28

We comment that £{5) holds for the entire plane and not just
_l<o< 1.

Example V-10:
We have, by (II-15b),

5(t+b)xT(t) = T(t+b)
and thus, by (V-4b) and (V-1la),
e[T(t+b)] = ®P.glT) (v-15)

The Laplace transform of the product of two distributions can be
defined. Although this yields some useful results it doesn't seem to
have been treated in the literature. We can obtain the following

result.
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Let e'“ta(t)e Oy for vel(@) = ', and e"’t'r(t)e §' for oel(t) =T

1 27

then e'atcﬂ'e § ' for cel'{aT) = 1"3 w]:lerel8

38 = Y1402

U3r = 0100
define P3. From the Fourier transform result, (IV-10s), we getlg

1 .
f.P[Cﬂ‘] = Er“[ajl *£[T] j oy, oel'y (V-16a)
oy 0-0q

vhere, for example, L[a]i means that fl{a] is evalueted as a Fourier
1
-g.t

1l

transform, in w, of e ~ at) for any fixed o, el The convolution on

l.
the right of (V-16a) is to be thought of as thst in w of two Fourier

and o~0., held fixed, If T is a

transforms with the parameters o 1

1
function we can rewrite (V-16a) as

W ae (o, +Jw, )t o -( (-0, )+3( Nt
.EP[GT] = E%L [L a(t)e ! dt][L T(t)e Tra e at]de,

In this last we can now let alefl vary, define P = cl+jm1, and convert
to a complex integration elong any path in the convergence strip of

a(t), extending from @) = -» to @, = 4=, as shown in Fig. V-4, to getzo
1
= === aj- Tid -1
gloal = 52 [ o1 1:8, (712, (V-16c)
leP
i\
L
F': Ik
it
i
i . SEL-63-021 g
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POSSIBLE INTEGRATION PATH

FIG. V-4. POSSIBLE PATHS FOR £[aT).

Consequently, LP[OT] can be considered as a complex convolution, even
when T is not a function, this interpretation being valid for (V-16a),
if the convolution is interpreted in the distributional sense when the
convergence strip for @ reduces to a single line. Note that ay
completely vanishes from .L',p[dI'] after the convolution is carried out.
Example V-11:

For o, = O we have, by (V-14) end (V-16e) as tke Oy

1
eltf ()] = %V wymalT) ,  oer(T)
(k)

differentiates with respect to w. In a region where £[T] is

Now for the convolution ¢ is held constant and then & merely

holomorphic, with o held constant, the derivative with respect to
Jw is the seme as that with respect to p and we get

k
elt™n(t)] = (-1)1‘9-(-1-‘5‘1—[?-]- ,  oef(T) (v-17)
P

This also holds along the boundaries of the convergence strip for
T, if we interpret the derivetive as being with respect to jw.

As a special case we have

a1 ()] = (-1) g—i - -1
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which checks t6'(t) = -8(t) as given by (II-12b).

Example V-12:
Let n(t) be a function for which e-atn(t)eCDM with I"(n) inter-
secting the origin and then let
nl(t) = n(t)u(t)

Then, by (V-16a),
1 1
= - P *_
N, (p) = &ln;] = £[mu] = z=¢£[n] [ »
g,=0
1
this being valid for every ¢ > 0. Explicitely (V-16b) gives

1 re N(le)
Nl(P)=2—ﬂL ':'pjjw'——‘l‘dwl, ga>0

This gives Nl(P) in terms of the boundary values of N = £[n].
Nl(p) can be thought of as an analytic extension of N(jw) into
the right half plane. The inverse of Nl(p) is an "antecedal"
function, that is, it vanishes for t < 0, while this need not be
the case for N(p). For instance if

n(t) = 1
then
N(Jo) = 2n8(w)
N(p) = L/
and then, as expected from n, = nu,
nl(t) = u(t)

Note that N(jo) is not in general the limit of Nl(p) as o+0, this
would be as in (V-5) for N, = 1/p, but the sum of two such limits;
one from the right for t > 0 and one from the left for t+ < 0.

Example V-13:

The frequency shift result can be obtained from this convolution.
We have e-Gteatef)M for ¢ = -Re a. 'Then

t

1 l *L[s]l
ol=Re a2 o-Re a

= 5(w-Im a)*G([o-Re al+jw) = G(p-a)

£ [e*a(t)] = Fele

where G(p) = £p[g]. Thus
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£, [ea(t)] = ¢ [a(t)] (v-28)

As with the Fourier trensform the convolution results can be

extended to 9D i spaces. Thus, from thecorem IV-2 we immediately see
- q -
that if e UtSeﬂ)i and e UtTeﬁ)i for a common 0, 1 < q9<2, 1<r<2,

then agein the (rgal) convolutioi of (V-12a) holds for this g.

If, after multiplication by exp[-gt], a(t) and T(t) are square
integrable functions multiplied by polynomials in t, then the complex
convolution of (V-16a) still holds.21 Such & result has considerable
importance for nonlinear system analysis where the following example

ig of interest.22

Example V-1h:
Let
a(t) = e*u(t) clal = 1/(p-8) , g>Rea
T(t) = e tu(t) elT] = 1/(p-b) , G >Reb

then, by the last comments

I 1 1

E;' 5:;*5:3 g>Rea+Reb

glor] =

- o)

This can be checked by writing

aT:BT;B:eat

and using

£lpT] = %;; - [2n5(w-Re a)]«P—:_Lb

5. Inversion

Inversion of Laplace transform expressions stems from the fact
that F and § are inverses,

Given a I' and & "Laplace transform", written®d F(p), defined in
the convergence strip determined by I', we define the inverse Laplace
transform, E-l, as follows.

Definition V-2;
The inverse Laplace transform of F(p) is defined by

-69- SEL-63-021



L) = & T [Fo+jo)] (v-19)
for any oel.

Here, as with £ itself, ¢ is & parsmeter which actually disappears;
explot] multiplies i-t to get rid of the exp[-ot] inside of ¥ in
the Laplace transform definition. Suitsble restrictions put on F(p)
for it to be a Laplace transform are clear from the properties of (v
that :1.5:2}+

1) If T is a point then F(p)e §'; that is, for this one g, F

considered with w as the variasble is & tempered distribution or

2) If T is open then for gel'' C T = F, vhere I'' is any closed

subset of T', F(p) must be holomorphic in P and satisfy

|F(p)| < Mip|™

for non-negative constants M and m (which may vary with I
but with m integer), by (V-10).

In the first of these cases § [F) certainly must be in s',
since F maps §' inmto §'., Here the result, E-l, need not be
independent of the only cel’, as the following example shows.

Example V-15:
If
F(p) = 8(ew,) , o =0,
L 1 uot _ aot edwbt
£y (Fl=e"~ - ¢ t[ﬁ(arwb)] =e =
t
_ LR Db = ot
T 2n 3 By = Ogtdwy,

In case 2), however, L-l is independent of ¢ and any gel’ can be
chosen for performing the inversion.%”’ From (IV-4b) we see that when

the scalar product is defined

E_;l[F('p)] = 2—i < F(p), eFt 5 y gel (v-20a)

or using the integral representation of this

1:;1[3‘(13)] = -E—%L F(p)eptdm , gel (v-20b)
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Thet is, for each fixed o, 5-1 can be calculated by integrating over w
along a line of constant ¢, for instance as shown in Fig. V-1. By
letting ¢ vary we can convert this to & complex line integral, as was
done to get (V-16c), the path being as in Fig. V-L,

-1 1 pt
g, [F(p)] = 2ﬁjd[\F(P)e dp (V-20c)
gel’
In obtaining this it is necessary to assume that F(p) vanishes at
infinity in order to apply Ceuchy's integrel theorem.26 Since for
vefl, F(p) is bounded by a polynomisl we can divide by pk for sufficiently
large integer k to guarantee this. Consequently, whenT = P, we can
always obtain, by (V-T),
k
-1 t
£ ()] = 5l o E(p) Pty (v-20d)
t k' 2xnj k
dat P
gel’
with k chosen such that the expression between brackets is a continuous
function.zT This shows that every Laplace transformable distribution
is of finite order, being the k th derivative of a continuous function.
This is substantiated by the fact, as seen in example V-5-b), that

[--]
Z; B(k)(t-k), which is not of finite order, has no Laplace transform.

0
Since F 4is unique and F [ § [T]] is just T itself, we see
that E-I[F] is unique under the two conditions stated above. Further

we have, as should now be clear,
£ HelT(s)]]
I ele R ()]

By the uniqueness, any means we have of obtaining L'l, or £, gives

T(t) oel’(T) (v-218)

F(p) gel (v-21b)

n

the correct answer. Of course the most common way of doing this is by
the use of tables.28 However, the line integral (V-20d) can always be
used, and sometimes it can be conveniently evaluated. As is commonly
recognized, in the functional case, this evaluation may be carried out
by the use of the caleculus of residues. Here the theory rests upon

Jordan's lemma, which we find in English in only a restricted form.
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Before proceeding we quote the most general form of Jordan's
lc-:‘mnua.29
Jorden's Lemma:
If G(p) is such that there exists a sequence of curves C on and
Crn’ as shown in Fig. V-5, with their rediitending to infinity
and such that

1) |G(p)|+0 for p on C, end C, as o=

end
2) G(p) is integrable on C,p 80d C_,
then
fG(p)eptdp-—a-O for t > 0 as (v-22e)
cﬂn
ot
G(p)e” dp—==0 for t < O &5 1w (v-22b)
Crn
(1}
w
nn
R
c CI'l"l
fn [ c
1 I g : a

FIG. Vv.5. CURVES FOR JORDAN'S LEMMA,.

Tn Jordan's lemma the curves can originate in either helf plane;
that is ¢ > 0O or c < 0 is allowed. This can be gpplied with Cauchy's
residue theorems° to eveluate ¢ L. Given a single-valued F(p) we
divide by pk such that

o(p) = F(p)/p"
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vanishes at infinity and then consider the two closed curves shown in

Fig. V-6.
L
';' -~
“tn 5 "2‘//2%

m

\

N\
AN

a} b)
FIG. V.6, INTEGRATION PATHS FOR EVALUATION OF £-1,

For t > O we consider the left hand curve and see by Jordan 5 lemma
and Cauchy's integral theorem that the integral from a to a is

given by the sum of the residues of G(p)e at singularities inside
the curve. BSimilerly for the right hend curve for t < 0, except we
use the negative of the residues, since we traverse the closed curve
in the clockwise direction. Thus we obtain, with riﬂ(t) and r, (t)

the left and right residues of G(p)e at finite singularity by letting
n (and a ) tend to infinity,

& f _(_leptdp Zﬁ r, ,(t)u(t) -Zb r, u(-t) (v-23)

I oel

¢ L is then the k th derivative of this.
l It should he observed that this form of Jordan's lemms sllows an
\ T3~ SEL-63-021




infinite number of singulerities, which in fact can be essentisl. It
merely requires that there be some space between singularities in which

the curves Cﬂn and Crn can be drewn.

Example V-16:
A system has for the Laplace transform of its impulse response
F(p) = Pel/P : ¢>0

The impulse response can be found by (V-23). We form G(p) = F(p)/p = el/p
and then G(p)ePt has at its essential singularity at zero

b tn-l
r,(t) =Z {o-1)in!

as can be seen by multiplying the series for el/P and ept. Thus

-1 a g1 o 4no2
£ [r] = ol mu(t)] = 5(t) +Z mu(t)
n=

=
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NOTES V

1., This process, for functions, is familiar to the generations of
engineers raised on the book of Gardner and Bernes, [GA 1, p. 103].

2. See for instance Rehberg [RE 1, p. 38], or Korevear, [KO 4, p. 386].
In both of these en analytic continuation must be made to show that
£[8] = 1 can be mede to hold for the entire p plane.

3. The set I' is "convex”, thet is, given o,, 0,€T then o_ = xul+(l-x)uaeP

for a1 0 < x <1, [SC 3, p. 97T]. In otherzwords givgn o,
es in Fig. V-1, every point between these two lines is in I,
i, Thus possible I’ are defined by Ly P 4
ete, Actually, ar is the supremum of points in I’ while ¢ is the

£
<o <g, see
r

end o
r,

<0< Ur, g,<0x Ur’ g, <0< Oour
infinum. Strictly T’ defines a "region" only when o
note V-11,

5. To see that &[T] = < T, exp[-pt] > we revert to the similar result
for the Fourier transform, (IV-4a), and use the definition of &[T]

with (II-11),

£

L[T] N3 [e-otT(t)] = < e-UtT(t), e-'jmt S < T(t), e"‘(a‘l'.jm)t >

<2(t), e Pt >

6. £l8] = 1 is immediately obtained for all p. One need not first
obtein this for o > 0 and then analytically contimue to the left,
as in other theories, [KO 4, p. 386]. Note that the one sided
Leplace transform would give zero for L[5] defined by Fig. II-3b)
end 1/2 for Fig, II-3a).

T. We have

1 g < D

P2 2 Y2 2
I o -HD 0 HD

Sl

Taking the limit as ¢ = = -0 gives & [u], since

SN
2

1
— g 1+(nw)

I

This results by integrating the sequence and showing that the
integrals converge to u, see [NE 1, p. 9], where this result is

proven and used to obtein a Hilbert transform theory.
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8. To see that flexp p.t] = 21(5((1)-(1)0) we note that

-oot p0 Juhx
<7 le e L,y(x)>=<e , '.fx[qr(t)]>
Jo x
=<l e ° g [y(e)]>
But, by (III-le),
Jo_x 0 - 3x(t- )
e O F [y(t)] =I v(t)e at
=[ q;(tmo)e"jxtdt
Thus ot pt

<Fule e’ vx)>=<1, F [¥ta)]>

= < 3:(.0[1]’ W(MO) >

< fm_%[l], ¥(w) > by (II-5b).
Consequently, by (IV-5c)
pt
ele © 1= F [1] = En’é(m-mo)
o

9. To see that _{:[T(k)] = pk,g[T] we have

< gl v > o <), ¢ 1>

- <1w), & 5 1] > = ()" < Mo), T 5 D)/ >

< Nw), f los gt )y (6)e (9198 )0z 5

< e %% (), l ‘m(a+jt)k¢(t)e-‘jwtdt >

=< F 170, (0450)¥(w) > = < PEIT, ¥o) >

10. We have

3 F [ n(t)]
<—&  ¥@) > 2§ < F L), v >

- <), g (0] > = <l )], F (1>

= < ¢ uw)}, F () > =< ffm[-E"”t(tT(t)]], ¥{w) >

or

SEL-63-021 -T6~




Q/
—

elT]

= -g[t7(t)]

1

and  yg [e"%p(t)] ot
< “’am y ¥w) > = (-1) < F [e "2(t)], ¥'(w) >

[}

(-1) < ™ w), F W'(£)] > = (-1) < ™0 (w), (Jo) F ¥(t)]>

< (-3t n(e)]), ¥() >

or
2T |y plen(s))
Consequently

2LE L 8L 95 L _prem)-gPeler]
Of course the derivetives can only be calculated inside the con-
vergence strip, since on the boundary one can't define the derivative
in the manner used in the interior, Observe thet p* can be con-
sidered as p¥ = o-Jw in the above expressions.

11. In English "analytic" is used somewhat loosely, thus F(p) = 1/p is
usually called an analytic function in the entire plane, even
though it hes & singularity at p = 0. The concept we need excludes
any singularities in the region under consideration. Such is that
of "holomorphic". Precisely, F(p) is called holomorphic in &
region i1f it haes a derivative at each point of the region. Since,
for such consideration, a region is defined as an open connected
set, & function can only by holomorphiec in the interior of a set.
For precise concepts, not availeble in English, concerning complex
veriable theory, see Veliron, [VA 2, p. 321].

12. See Schwartz, [SC 3, pp. 199 & 202]. This rests upon showing

I that e 7'T(t)e @) when oefl, since them, by the definition of O,

we know the Fourier transform will be in 0 The reason for

T(t)e O' is not, as yet, completely clear to us.
13. For each oel'' ¢ I we have, since £[T]e Oy @s & function of w
(for each o),

n I
ldk_{:[T]/dmkl <M |l %< M_| o+l y
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Teking M and m to be the maximum values (m is integer) of M and n_
over all oel't glves the result. M and n are finite since we limit
to a closed subset of f.

14, The fDI" spaces were discussed in note-IV-20.

15. See the gompanion report, [NE 2], for a proof of the fact that any
passive network, if it is linear, time-inveriant and solvable
(i.e. somewhet continuous), has a scattering matrix which is
holomorphic in the open right helf plane.

The proof of theorem V-1 is as follows. We first consider

TGLq cDy, » 1 <q<2. Then if o = O we know £[T] exists, since

q
the Fourier transform does, by theorem IV-2. If g > O then we

Al o @ "(""g" ot
[J |2(t)] e "Fat]? < [f IT(t)lth]-[f e el at)9-*
0 0 0

have

by HOlder's inequality, [BU 1, p. 65), end the support constraint
on T. But the right side of this is finite, since TeLq and ¢ > O,
and thus £[T] exists as an absolutely convergent integral. Since
&[T] exists in ¢ > 0 it is holomorphic in this region, as shown
below (V-9).

Now if Te f!)I'_' then

m 2

N7 (k)
T _5_1 T, Tyely
1=

by the definition of 9] . Then, by (v-7),

q
m

glr) =Z1 pelr, ]

which is then holomorphic in ¢ > O, being the sum of such functions.
This also exists on g = 0. Q.E.D.
16. We have
-gt -gt
< e (s(t)¥r(t)), y(t) > = < s(t)x(t), e y(t) >
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17.

18.

19,

20.

-o(t+1)

< 8(t), <T(t), e y{t+r) > >

at

< 8(t), e 7" < "M (1), y(t+r) > >

< e'“s(t), < e (1), y(t+t) > >

< (e7%s(t))#(e T0m(t)), ¥(t) >

e ¥ (s(t)xT(t)) = (e"%s(t))xn(e TPn(t))

We have by (IV-lle)
Fle T (sam)] = Fi(e Cs)x(e™tr))

= Fle%s]. §le™n]
We also assume that T is the distribution whose strip is inter-

sected in the interior, if it isn't we can relabel.

We have
-(ag-0,)t -g,t
< e’“ta'r, y>=<e = T™(t), e 1 a(t)y(t) >
-(a-ul t
<e ™t), mo(t) >

-g.t
Since e a(t)y(t)e § with ye§ . Thus the smallest ¢ that

will yield e'aquTeS for ell possible o.el’. and o.e

16T o is given

2

17
938 = 915%%2
Similarly for U3r = 0y 405,
To see that £ [07] = zclal| *£[7] | ve write
gy g-04
-0.t -(g-0,)t
F le “tor] - F [te To(t)y e L m(t))]
-g.t ~(g-0,)t
1 1 1
= 5= Fle Toft)lxg [e P(t)]
by (IV-10a).
To obtain this complex integration we can epply Cauchy's integral

theorem, [KW 1, p. 48], that is if F(p) is holomorphic in a
region R then for any closed path C in R

f\F(P)dp =0

c
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Applying this to the region defined by Pl requires that the inte-
grand venish at infinity, the path being as shown in Fig, N-v-1

A AT 400

-

:

N
1~}

%

— e o vl et e e -
—y ur o e, G e o
-

-~
AT —oo

FIG. N-¥-.1. CLOSURE OF PATHS AT INFINITY.

-ot
EJ, e 9% are funections

21, To see that nP[oT] = E%s[a]*s[T] when e”°
in L2 multiplied by polynomials in t, we first note that if
a, TeL2 then by the classical theory, (BO 1, p. 112}, which still
remains velid for distribution, & and T are the Fourier transforms
1 of two L2 functions, If @ end T are L2 functions multiplied by
polynomiels (in t), then, since time multiplication is equivalent
to frequency differentiation, @ and T are (inverse) Fourier trans-

forms of distributions in ﬁi , see the theorem IV-2. Thus
2

oft) = ?t[A(m)] ,  Ae 9)112

F . (B(@)], Be @iz

: Note that then A%Be 9£ by theorem IV-2. Also by theorem IV-2,

=
which can also be written from (IV-1l) as

T(t)

F [AxB]
we see that

2n § [A). § [B]

|_l

= F [l = == F( Flalx F(T]]

a(t)-2(t) = 57 on
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22.

23.

2k,

25.

26.
7.

Teking the Fourier transform immediately gives

§ [a-1] = 2= Flalx FIT]

Inserting the exponentiel convergence factors in the proper places
again gives (V-16a).

See Weber, [WE 1, p. 41k], where the complex convolution is used
to solve nonlinear differential equations,

We put quotes on "Laplace transform" since F{p) must satisfy
certain restrictions to be a Laplace transform.

If T is closed on one or both sides and contains more than one
point, it appears, but does not seem definitely known, that as o

4 OT 0 F(p) mst tend to F(U£+Jm) or F(cr+Jm)
respectively, in the distributional semse. This was certainly
the case in (V-5).

The proof that 3-1 is independent of ¢ is given in [SC 3, p. 202]
and is as follows. Since F(p) is holomorphic, we have, see (V-9sa),

20

end then, from (V-19)

approaches g

ag:t
Ft[F] = 17t F LF(®)] + et 7 t[g—‘:] by (V-19)

[}

et F LF(@)] - 3 3 t[g—f;] by 3F/dp* = 0

te” F L [F] - 3(-3)te™ F [F] by (1v-0b)

=0

That is 3;1 is constant as far as o is concerned.
See note V-20.

That we can guarantee'jp Eﬁ%leptdp to be a function is clear from
D

the following,
F(p) considered in o is in Oy &nd thus its inverse, being a
Fourier transform, is in E)é. But distributions in C% are

characterized as being finite sums of derivatives of continuous
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functions, see above (IV-11), Dividing F(p) by pk removes these
derivatives when k is chosen equal to the largest value of

"derivation",

28. For two sided tables see Van der Pol and Bremmer, [VA 1]; for en
extensive set of one sided tables of distributions and "pseudo-
functions" see the small but excellent book of Lavoine, [LA 1].

29. See Doetsch, [DO 1, pp. 22k, 272] for the proof of Jordan's lemms.

30. See [KN 1, p. 130] for a proof of Cauchy's residue theorem which

[ is: If H(p) is single valued and enalytic inside and on the

simple closed curveC except for a finite number of singularities

| P1s Doy oo, P, inside C, then

T T

I n
| 1

359 Heda )
j k=1

where r, is the residue of F(p) at Py

In our case each path enclosed only a finite number of
singularities, even though G(p)ePt may have an infinite number.
The single valued constraint puts a limitation on the use of the
"residue" method of evaluating (V-20d).
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VI. CONCLUSIONS

In the preceding pages the classical theory of Laplace transforms
has been generalized, following the ideas of Schwartz, to allow the
rigorous treetment of distributions.

As a preliminary to this it was found necessary to review the
theory of distributions, Section I, glving the basic definitions and
principle results, Some of the important results, such as theorem II-4,
seem to be unavaeilable in English., With this in hand the Laplace trans-
form could be defined by the use of the Fourier transform. Thus
SectionIII gives the most elementary definition end properties of
functionel Fourier transforms, while Section IV treats the distribu-
tional case merely by working in a dual space.

The Laplace transform in the distributiconal case is agein seen to
be able to handle distributions which can not be treated by the Fourier
transform, even though the (distributional) Fourier transform will
now handle such functions as the unit step function. The main
properties of the Laplace transform £ are: 1) in every closed interior
subset of its convergence strip, it is bounded in magnitude by e
polynomial, 2) it is holomorphic in the interior of the convergence
strip and reduces to the Fourier transform when the latter exists,

3) convolution and miltiplication transform lnto each other as well as
differentiation and variable multiplication (in both t and p),

4) inversion can always be converted to functional inversion, if the
convergence strip is open.

In working with functions it is sometimes convenient to write the
bilateral Leplace transform as the sum of two unileteral transforms,
[WI 1, p. 2371,

£ir] =fmf(t)e_Ptdt =f f(t)e-ptdt +f f(-t)eptdt
Leo 0 0

The tables and properties which are well-known for unilaterel trans-
forms can then be carried over to the billatersl cese. In the distribu-
tional theory, however, such & decomposition is out of place and can
lead to erroneocus answers, For instance letting f£{t) = 5(t) then,
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since 8(t) = 5(-t), the right side would yield two for meny people,
while the left would yleld unity. Consequently, this splitting has
been avoided in the text even though it is useful in many situetions.

Except for the result of (V-16a), most of the material can be
found in the literature, in scattered form. However, many of the
concepts are illustrated by examples, which though quite simple, can
only be properly treated by the distributional theory.

In the preceeding we have given a special case of the theory
presented by Schwartz, Actuelly Schwartz trests the situation where
the variables, t, p. etc., lie in n-dimensionel spaces. Such a theory
is of great importance in electromagnetic theory and nonlinear systems
synthesis. However, most of the theoretical results are simple
extensions of those given here; examples, though, are harder to carry
out. For instance the relation of (II-2a) involves an n-dimensional
integral with t replaced by an n-vector t. The differentiation of
(II-7) becomes a partial derivative and the Laplace transform of
(V-3b) becomes

£[T] =fm (t)e R 2at
Lo
vhere p and t are n-vectors with p.t denoting the scalar product,
Since this more general theory is easily understood once the one-
dimensional case is mastered, we have limited the theory to the latter.
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APPENDIX - SPACES

Because of the need for staeting precieely the conditions under
vhich various operations can be performed, many spaces have necessarily
been introduced in the theory. Since the presence of some of these
mey lead to confusion, we append this section as an attempt to clarify
some of the relationships.

The most basic space is J, the space of testing functions. As
can be appreciated from section II, numerical calculations are seldom
mede with testing functions, which are infinitely differentiable
functions taking the value zero outside of a bounded range of the
varisble, However, typical testing functions can be exhibited, such

is o(t) = {expﬂi%i +-§%§]]u(t-l)u(2-t). The real use for 9 is in

defining its (topological) dusl 9', the space of all distributions.

Thus between any testing function @ and eny distribution T there is a
"scalar product" defined, < T,p >, which has the following properties,
these being the same for the @'s as for the T's:

<TJ a£p1+Bq)2>
<0Tl+BT2,cp>=a<Tl,qa>+B<TB, P>

a<T, P >4 <7, P, >

%&E <T, mn'> 0 if ¢, converge to zero in g

= '
%&g < Tn’ >=01rf Tn converges to zero in 9

Since D' contains all locelly integrable functiomns, it contains D
es & subspace., However ' contains distributions which are not
locally integreble functions, such as impulses and doublets.

In order to work with the Fourier transform, one is forced to
restrict considerations to special distributions, those forming the
spece &' of tempered distributions. To see why this must be the
case we note that to define ¥ [T] we would wish to have

< FiTl, p>=<17, Flgpl>

which is seen by epplying §F to functions and using (II-2a). But,
although F [p] can be defined for all testing functions ¢, < T, §lp] >
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can not generally be defined for any distribution T, since it can not
even be defined for T = exp[tz]. The most convenient way of obtaining
the desired properties of the tempered distributions is to introduce
the space § of good functions.. The good functions are somewhat like
the testing functions, being infinitely differentiable, but they need
not have bounded support (they and their derivatives must vanish at
infinity faster then the reciprocal of any polynomial}. A typical good
function is ¥ = exp[-tu].

The space §' is then obtained as the (topological) dusl of §,
that is by extending the scalar product such that < T, ¢ > is defined
for every good function §. Typical tempered distributions are the
impulse and a&ll its derivatives as well as the squere integrable
functions. However T = etu(t) is not tempered. As a consequence of
this latter example, 2 more general class of distributions, those
tempered in a region, §'(r') is introduced. These are defined by
requiring e-ctT(t) to be tempered for some o, oel’, such that they
possess a Laplace transform.

Since the good functions need not be zero outside & bounded set,

§ contains the space 9P of testing functions as & subset, Since
§ 1is also contained in § ', we can show the relation between the

basic spaces by Fig. A-1l.
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FIG. A-1. CONTAINMENT OF SPACES.

Several other spaces have been introduced. Since multiplicaticn
of distributions can't always be carried out, the spece of fairly
good functions, OM’ and their Fourier transforms, the rapidly de-
creasing distributions, Oé, were introduced. Thus any tempered
distribution, T, can be multiplied by any fairly good function, C,
and convoluted with any rapidly decreasing distribution, S, while
still preserving the relations

F lor] = Flalx F(T]
F[s*T] = ¢ [s]. FlT]
Although OM and Oc': are not duals, one has 9 ¢ § ¢ @M,
0, ¢§ c9'
Since one sometimes wishes to convolute distributions not in

Oé end still preserve the above relations for the Fourier transform,

one introduces the :])I'I spaces. Thus fDil is the space of finite
q q
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sums of derivatives of Lq functions and theorem IV-2 holds. Alsc one
] t ] ] t
has ch D q, 0, ¢ EDch fDLr c P if q<r.
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