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A hysteretic RC line for solitary pulses

‘1. INTRODUCTION

Solitary waves, of which solitons are special cases, are wave packets which
have constant wave form and velocity [1,p.2]. Consequently they hold some
promise as information carriers in electronic systems, For example one can
conceive of pulse signal processing systems in very large scale integrated
circuits, VLSI, where the pulse signals are solitary waves. Since we have
previocusly shown the convenience of hysteresis in the generation of pulses
of importance to solitary wave systems Bﬂ, it is of interest to investigate
transmission systems based upon hysteresis that can support solitary wave
pulses. Here we show that through the use of distributed shunt "broken~
sloping" hysteresis a resistor-capacitor, RC, line can support solitary
pulse waves. In doing this we develop the theory for such lines with
design criteria and then show by numerical example that the design criteria
can be met, thus proving the desired existence.

2. THE LINE AND ITS OPERATION

The transmission line to be considered will be taken as having one space
dimension, of coordinate x. At any point x along the line Fig.la shows

the assumed equivalent circuit to be used to represent a segment of the line
of differential length dx; Ffor the present we will assume the line to extend
uniformly over -=<x<®, Figure 1b shows the i-v characteristic assumed for
the nonlinear resistive element shunting the capacitor. The characteristic
of Fig.lb we will call "broken-sloping" hysteresis, this designating the fact
that it consists of two broken linear portions. However, Fig.lb has three
specializations that we would not aseribe to all sloping hystereses, these
being that (1} one portionm, having positive slope, passes through the origin
and is zero to the left of it, (2) the other portion has an endpoint at the
voltage origin, (3) the slopes of both nonzero portions are identical.
Specialization (1) is in order te cbtain a zero resting state, specializat-~
ion (2) is to ensure an eventual return to the zero resting state while (3)

is to simplify the rather extensive calculations which follow in Section 3.
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Figure 1. Hysteretic RC transmissions line
(a) Differential section equivalent (b) Broken-sloping hysteresis ass-
circuit. umed a > 0, b < 0, VT > 0.

The philosophy of operation is as follows. Prior to the arrival of a
solitary pulse at position x, the differential section at x rests at zero
voltage and current; hence the hysteretic nonlinearity rests in a stable
manner on its upper branch at the origin. When a positive pulse arrives,
the current if increases, drawing energy from previous sections. The in-
crease in voltage at x charges the capacitor C whose dynamics ensures smooth
changes in the voltage. However, if the incoming pulse contains sufficient
energy, the voltage at x will reach the threshold value, V of Fig.1b, in
which case the current 1f jumps to the value I2 < 0 on the lower hysteresis
branch. The hysteresis element then acts as a current source to excite
succeeding sections while, if the solitary input pulse simultaneously begins
to decay, the voltage v begins to decrease. When v teaches zero the
current if again jumps from b < O to zero and the differential section
returns to rest, having passed the solitary pulse on to succeeding sections.

As this description indicates, the system requires careful design to
ensure appropriate matching of voltage levels and timing. For this reason

we develop the mathematics of the systems operation in the next section.

3.  MATHEMATICS OF THE PULSE DESIGN

Let v(x,t} and i(x,t) be the voltage and current at pesition x and time t
on a line having the differential section of Fig.la. We will assume that

the broken-sloping hysteresis can be adequately described by the character-

282

where

Since,

ain co

wvhere

ion wi

To simp
time s
V> o,

On bot
this b

whare

For fu




ig-

ins

TS .

an

ization
h W] if v(x,t) <0
av y Q= vix,t) « VT and f(v(x,t_)) >0
(upper branch)
) e (3.1)
av + b y 0 < vix,t) « VT and f(v(x,p_)) <0
(lower branch) or VT < u(x,t) < w
where a > 0, b < 0 and VT > Q.
By writing Kirchhoff's Laws we have
c T + f(v) = % ° i G " (3.2ah)

Since, by definitionm, solitary waves are travelling waves whose shapes rem-
ain constant, we assume

vix,t)

viet - x) = V(y), ¥ =ct - x, (3.3a)
I(Y)v (3.3b)
where c is the velocity of the wave. Using a prime to denote differentiat-

ion with respect to y, and substituting (3.2b) into (3.2a) we get

i(x,t)

Y _E_g Vv - .(1_;_ £(V) = 0. . (3.4)

To simplify matters we can next scale impendances, to bring G = 1, and scale

time so that cC = 1, Assuming from now on, unless otherwise stated, that
V > 0, the scaled version of (3.4) is

0 on upper branch
LT T = =
v \/ av=¢eb, e 1l on lower branch{ °

On both branches of the hysteresis the same characteristic polynomial results,
this being

(3.5)

2

P(s) = s“-5-a = (s-sl)(s-sz) {3.6)
where
5, =% 1+ T+ 3%a] = a8 > 0, s, =% [1 - T%4a)= a8 < 0.(3.7ab)
For future reference we note
8y + 8, = 1 s 2a, 5,8, = o, §) = 8,.= Vl+ba = 28, (3.8abe)
0« “s, €8 < S; " Sy (3.9)

The sclution to (3.5) takes the form
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Vu(y) = Ale + A on upper branch
Viy) =

A S . s (3.10)
th(Y) = AIE + Aje -3 on lower branch

where the A, AZ’ Al' Az are determined by initial conditions for (3.5).
On the upper branch

v(o)] = [t 1] WY . Ial =% s, .V(O):,(3.11ab)
V' (0) s, 5, LAzl A, -5, 1] V(O

Consider at t=0, x=0, a rising pulse being formed from the resting

state. Then

V(o) =0, V'(0) =0 (3.12)
and (3.1lab) gives
= = 1 '
Al = -A2 s, v (o). (3.13)

Since A1 > 0 and s; 7 o, 5, < 0, V(y) = Vu(y) will eventually increase with
y (as seen from (3.10); that is, at a given x, v(x,t) will eventually in-
crease with t. Hence there is some y = Yo such that the threshold voltage

. . .. , - - .
VT will be reached with positive slope, that is V(yT) Vu(yT) VT.vu(yT)>0

Viy) =V (y,) = Al(eslyT S 2Ty vy (3.14)
Since Al is known from (3.13), in principle Yo can be determined when a and
VT are specified, but for design purposes we will find it more convenient to
specify Yoo In any event switching to the lower hysteresis branch necessar-

ily takes place at y = yp at which y there is a jump in If from I1 to Iz,

I jump = I, - I, = b, (3.15)

Since this is a finite jump, no impulses of current occur and the presence
of the capacitor consequently forces V(y) to be continuous at y = Y-

Further, it shows that there is at most a jump in I' in which case I(y) is
continuous at Yoo the implication of which is that V'(y) is also continuous

at y,, as seen from (3.2b). _In summary,

s.Y¥ s.Y . S.¥ . 8,¥
r _ %2t v - ) T 2t _ b
A_(e e ) =V, (yp) = Vg V. (yp) = Ape + Age T+ (3.16)
5.%¥ S,Y - 5. - 5,¥
VT _ 2 _ o _ T 297
Al(sle 5,8 ) Vu(yT) Vi(yT) As,e *+ Ay8,e . (3.an

These two equations determine A and A,, given the other parameters for the
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system. From {3.16),

=5,y - (s.-s.)y
b 2T 1 72797
Ay = (Vg + e - Aje (3.18)

while substitution of (3.18) into (3.17), with replacement of VT by (3.14)
gives

N s -5y
2 b 1T
A, = A - ———c¢ (3.19)
1 1 8 s, a
which, on substitution in (3,18), gives
- s “5,Y
1 b 2°T
AZ Al + s, 3e . {(3.20)

Since Al > 0, A2 < 0 but A, way be positive or nmegative. Considering Vl(y)
in (3.10) we see that the valtage will certainly reach zero if Al < 0, which

1s

s -5y
L5, T, A (3.21)
91 23

By the choice of a small enough, (3.21) can be obtained and under it we are
insured that there is a Yo such that there is a return to zero voltage on
the lower hysteresis branch, that is,

Viyy) = V,(yp) = 0 = Aleslyo + 4, e 270 _ 2. (3.22)
Even if (3.21) is not true we possibly may achieve Vn(yo) = 0, but in any
event (3.21) is a guarantee. Again (3.22) may be solved for Yor given the
other parameters, but for design purposes it is convenient to note that
choosing Yo can lead to the avoidance of solving transcendental equations.

Consequently, at this point we use (3.22) in conjunctien with (3.19)-(3.20)
4 .

to determine szcyohyT) sl(yo_YT)

[sl(l-e )-52(1-—e Y]

1%
e - e

1 b
. 2

1 52

(3.23)
270

The condition for A1 to be positive can be rewritten from (3.23), by noting

that the bracketed term must be negative, to be

l-esl(yo'yT) 5,

p — e — (3.24)
5,007y 3,

I-e

At ¥y = ¥y we switch to the upper hysteresis branch. On it Vu(yo) =0
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by continuity though the derivative may be nonzero. Since our desire is to

have the system return to the resting state of zero, we next require

VL(YO) % 0, which by continuity of V'(yo) means

A 5.¥ - S,¥
. _ Yo %0
0= Vg(yo) As e + Aysqe . (3.25)
Again expressing this in terms of (3.10)-(3.20) and using (3.23) gives
5.¥ 8, (¥ =¥ir) s,¥ 5 (y,"¥)
sy Yo, 2707t Y50 270, 1707t )1
' -
0> Vl(yo) S A 57, (3.26)
e - e 4
which is
- s, (y =yo)
s1 (52 sl)yo 1-e 170 °T
-_—c e ey g ol B (3.27)
S2 8, g7y

1-e

Since V;(yT) = 0, the maximum of Vl(y) is at y

Yp and the pulse monoton-
ically decreases.

When (3.24) and (3.27) are simultaneously satisfied the response has
If(yo+) = 0 with V(y0+) % 0. Hence, by (3.1) If will remain at zero .and
{3.2ab) becomes V'(yo+) = V(yo+) = 0, in which case the system returns to
rest at the origin. The realizability constraint for the existence of a

solitary pulse wave can therefore be expressed as

CI A _ s, (y . ~¥.)
le L70°T s, (8,84)¥5 | 1= 170 T
ey e < e o= <0 (3.28)
1o 270771 2 2% Y
-a 1-e

In conclusion, when (3.28) is satisfied we can design our system by
choosing V'(0} = (sl-sz)A1 such that a solitary pulse wave is guaranteed.
The velocity of propagation of the pulse is given, from our normalization of
cC =1, by

c = 1/C. (3.29)
Thus, we can alsc design for a given pulse velocity by appropriate choice
of C.

4. A DESIGN EXAMPLE

We normalize time and admittance level to choose ¢C = 6 = 1. Let it be
desired to have the pulse peak time, Yo and the pulse turn-off time, Yo

chosen as
YT = 1! yO = 2 ([.'1)
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.1}

these being true (normalized) times at x = O for a pulse that is zero before

y = 0 and after y = Yg* We are free to choose a. For numerical conven-

ience, set

a=4/9.

(4.2)

Then P(s) = s2-s5-4/9 and s, = 413, s, = -1/3, in which case all the exponent-

ials of interest are determined

y S¥o  _
UT _ 43 - 3.7996678, e 27T = o 173

L]
n
1

0.7165313,

¥ sS,Y -
10 | 873 o 14301018, e 20 . Y3
The realizability check of (3.28) is satisfied, as
8
~9.8552961 < —= = ~4 < -0,3515777.

2

1]
[}
1

0.5134171.

We wish to choose V'(0), VT and b such that a solitary wave results.

the equations of Section 3, namely 23, 14, 19, 20 and 13, we have

Al = —Az = —-(0.0538175)b ©

(3.0771365)A1 = ~{0.1656037)b

=
]

>
1]

1 A1 + (0.1186187)b = (0.0648012)b < O

-
ha
L]

-AL ¢t (2.5121023)b = (2.5659198)b

wm)=%%.

(4.3)

(4.4)

From

(4.5)

As seen, b < 0 is a free parameter which can be used to assist in designing

with physically realizable components. Thus, let us choose the threshold

voltage to be one volt; VT =1 gives b = -6.0385124. Choosing this value

of b pives
V. =1, A

1= 0.3249776 = -AZ’ 4y

AZ = =-15.494338, ~b/a = 13.586653, Il = aVT = 0.444444,

= -0.3913028,

v(0) = 0, V'(0) = 0.5416293.

} (4.6)
J

Figure 2 gives the resulting pulse and broken-sloping hysteresis, the pulse

being described by
-

(0.3249776)1? -e I. 0y «
viy)| = 4
y=ct=x

L 0 2y

3Y 3 B0
(-0.3913028)e® * - (15.494338)e 7~ + 13.586653, Ley<y =2
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{a)

Figure 2. Design example results; b = -6.04, y, =1, y, = 2.
(a) Solitary pulse. (b) Broken-sloping hystéresis.

{b}

516 BROKEN-SLOPING HYSTERESIS CIRCUIT

Impottant to our design is the existence of electronic circuits for the real-

jzation of the required broken-sloping hysteresis. This can be achieved by
putting in series a linear resistor and a broken piecewise linear negative
resistor.

The analysis can be carried out graphically as illustrated in Figs.3a
and b, which show the voltage-controlled characteristics of the two compon-
ents, these being curves which are most conveniently realized by electronic
devices. Figures 3¢ and d show these characteristics inverted so that their
voltages may be added, as is done in part e. Again taking the inverse of
the characteristic pives the final broken-sloping hysteresis of Fip.3f. We

see from Fig.3 that we desire

=b, Sr. . a, (5.1)

I S+y

‘1’=Y: véale lb
which become the design equations for specifying the positive and negative
resistors. Most convenient is the choice of equal positive and negative

slopes in the negative resistor, & = ¢, in which case a = 6/2.
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Fipure 3. Design of broken-sloping hysteresis
Negative resistor (b) Positive resistor
Inverse of (@) (d) 1Inverse of(b)
Series connection characteristics(f) Inverse of(e)
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Figure 4 shows a circuit which will realize the characteristics of Fig.3, the
negative resistor circuit being that of Endo and Mori EJ,p.lS] in which an
op-amp is used. In Fig.4 the current source shunted by diode D, is used

to shift i_ of Fig.3a up by I+ when v_ > 0, Dq {and Dh) is used to cut off
the current i_ whem v_ < O and the current source shunting Dy shifts i_

back to the origin at v_ = 05 D.L and D, provide paths for the Iw's vhen D3
and D, are open. The current sources are readily realized by transistors
[ﬁ,p.lOQ], hence the circuit of Fig.4 is suitable for integrated circuit
constructions. Dy is a current inverted diode which can be realized by

loading a curtent inverting NIC (nepative impedance converter) by a normal

diode.
Yol | =
+
v, R,=%
le
v
D, Dy
'IW
D,
Figure 4. Circuit for broken-sloping hysteresis

6. DISCUSSION
Here we have shown that through the use of broken-sloping hysteresis as a
nonlinear shunt element RC transmission lines can be made to support solitary

pulse waves. In so doing we have been able to set up design equations which
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allow for certain specifications of the pulse shape, such as peak value,

time to peak value and length of pulse, as well as pulse-wave velocity.
The results, though, are by way of an existence proof since it still remains
actually to construct such lines. Toward this construction, Section 4
gives an op-amp circuit which is a possibility for designing desired broken-
sloping hysteresis characteristics. However, constructions will best take
place in lumped-distributed structures, rather than fully distributed ones
as treated here, where the hysteresis components load the distributed RC

lines at discrete intervals. Consequently, a theory for such lumped dist—
ributed structures now seems in order, especially to see if solitons can be
obtained in similar eircuits. Also needed are stability studies and a more
fully justifiable theoretical treatment of the multi-valued characteristics
resulting from the hysteresis, say through semi-state theory. For sure the

topic holds many fascinating areas for future study.
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