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ABSTRACT

In these feyw Pages, reeder you will fing
Complete g theory, from McMillan does it stem,
To satisfy the criticizing wind.

The topic network's pure foundation treatg.
With definitions it begins, such ig system;
Then n-port broperties one here soon meets.

For general networks are such defined;
Then comes the distributional extension
For special type n-ports this holds refined.

The end has exponentisl varisbles to greet,

With generalized descriptions linear, the mention,
And parsdoxes 28 an unsolved feat,
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I. INTRODUCTION

Recently much interest has centered on obtaining a rigorous
theory of networks and their properties. Such interest seems to have
been originated by McMillan and Raisbeck;* end has culminated in
several detailed theories.2 Of especial note are the results of
Youls, Castriota and Carlin and the extensions of Zemanian. However,
although these are quite rigorous, they are, we feel quite complicated
for what is required. Further these treatments are strictly limited
to linear, time-invariant, passive networks and even in this case are
open to several interpretations which can lead to contradictory
results.3

Here we present a basic theory of what we believe to be the most
general types of conceivable networks, For this we abandon the
operator concept, which we feel is more eppropriate to control system
studies, and revert to the concept of allowed pairs, whose origin can
be traced to McMillan. The program is to define a system, 2 network,
and an n-port in terms of infinitely differentisble functions of
support bounded on the left. The major properties of such n-ports are
then defined, such as linearity, time-invariance, passivity and
solvability. Such physical networks are then extended to idealized
networks and more generalized variables through the use of the theory
of distributions. Once this is done, general descriptions of a large
class of linear, time-invariant networks can be given by using
exponential variables. At this point the (bilateral) Laplace transform
approach can be used in the standard manner.

The reader is assumed to have & working knowledge of elementary
matrix theory, as well as a small knowledge of the theory of distribu-
tions. The latter however, isn't used until Section IV, and it is
available in a compenion report.h Points which are of interest, but
supplementary to the main portion of the theory are expanded upon in
the appended notes.

* The superscript numerals refer to the notes at the end of the report.

-1- SEL-63-022




II. BSYSTEMS, NETWORKS & n-PORTS

We begin with the notions of systems and networks. Consider ﬁ
collection of physical elements which are connected together to form
some device. At this stage the entities are not restricted, they may
be electrical, mechanical, thermodynemicel, etc. For the present it
is sufficient to look &t the device at the access points, called
terminals, and thus essentially ignore the internel construction. In
general the device will have Kk such terminals which can be consecutively
labeled FJ, J=1, ..., k, where k may in fact be infinite. In
order to obtain a mathematical model, we associate with the device two
column vector variebles, £(t) and g(t), of k entries, with the jth
entry being associated with FJ. f and g are celled conjugate

_ﬁiﬁzaipid#%:?riables and are teken such that 2.& is the totel instantaneous power

" 29wl [ entering the device, here the superscript tilde denotes metrix trans-

f;iij:fé:::ﬁbsition.s Several ways are available for choosing the variables.
" In the electricel case, choosing T as voltege and g as current, two

possibilities are shown in Fig. 1.

a) b)
FIG. 1. POSSIBLE VARIABLE CHOICES,
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We will let fD+k denote the set of real-valued, k-vector,
infinltely continuously differentisble functions of the real time
variable, t, - <t <=, with support bounded on the left.6 Further,
let BNR be the saﬁ; as ﬁLk’ except that the support is bounded on
the left by a fixed constant tys by may be infinite. For a given
device we will then postulate that Ty exists and that! fe D +km D e’
ge iD_'_kq )] Nk’ Ty i8 to be interpreted as the creation time of the
device. This restriction on the variable is a physical one, since
such quantities appear to be of the type actually measured.B Hovever,
by a limiting process we will latér extend the domain of definition.

Now given & specific device, soms constraint, ¢, is placed upon
the £ and the g. We will incorporate in C the fact that f and g must
be conjugate. TFor simplicity we will then denote these constraint
requireﬁents by fCg, which can be interpreted as follows. Given an f,
which, by virtue of the constraints, is allowed at the terminals,
there is an accompanying set of allowed g&'s. Thus we can speak of
allowed pairs of variables I, g The set of all sllowed pairs then
serves to completely describe the device, which we define as a
k-access system, $. In more Precise language, given tN’ e system is

defined byT

S = (lf, gl £,ge D _,_kﬁ :DNk’ fCgl (1)

Note that although a system may be created at tN = -», it can't be
excited until some finite time, in this formuletion. If the variebles
are electrical, we call the system a network. For networks we will
assume f to be a voltage vector.9 The remaining treatmemt will be
limited to networks.

As an example consider a resistor § p» Of resistance r, vhich vas
created with the universe, tN = 49.10 We can then apply any current,
ge D, across the texminals. The voltage is then f = rg and

Sr = ([£, g]|fe £D+l, f = rg)

The allowed peirs for the resistor are of the form [rg, gl for any
ge D +1°
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In meny ¢ases the description given above ¥ields too much in-
formetion, and it is advantageous to delete the extraneous deta. For
many applications the terminals of a network are associated in n dis-
Joint pairs with excitations being applied only between the two
terminals of a pair. If such is the case, we take k even, and it is
convenient to relsbel the terminels, calling those for the Jth palr Tj
and T&, d=1, ..., n=k/2. In this situation, if the current enter-
ing Tj is equal to the current leaving T&, thie peir is called 3'29£§i
If all terminels occur as ports, the network is called an n-port, N.
For an n-port, only the n-vectors v(t) and i(t) of port voltages and
currents are of interest. The variables for an n-port will be taken
as shown in Fig. 2a) with Fig. 2b) being & convenient representation.

FIG. 2. n-PORT VARIABLES.

The network of Fig.la), for example, becomes an n-port if k = 2n
and we choose v.j = fZJ-l’ ij = 523-1’ EZJ =0, for =1, ..., n.

Carrying over the previous langusge we cheracterize an n-port by
N = (ly, iliv,ie D, N Dy, voi) (2)

The following examples serve to define the symbolism for some
important and interesting l-port and Z-port N.

SEL-63-022 sliz
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FIG. 3. REPRESENTATIONS FOR EXAMPLE 1.

Example 1:

a) The linear, time-invariant, resistor, capacitor, and inductor

are illustrated in Fig.3a). The resistor has allowed pairs
[ri, i] for any ie ®+l' The capacitor is described by

v, d(cv)/dt] for any ve 9+l' An equally valid description, if

t
cf0 1is L%L/1 i(x)dx, 1] for eny ie $+l. Dually the inductor has

-y

[a(21)/dt, 1] for any 1eD ;. Here r, £, ¢ are all real numbers.
b) The describing equations of the ideal transformer of Fig. 3b)

are
vy = TV
i, = =4
with the turns ratio T reel. With v,,ie 111, but otherwise

arbitrary, the sllowable peirs are [vz[T] s il[ 1]]. Note that v
1 -T
and i are not related and that not all v are allowed; only those

with v, = Tvz are acceptable. For each allowed v there are an
infinite number of allowed i. Since Vi = O, the total power input
is zero, end, when T = O, port one is a short-circuit while port
two is an open-circuit.

¢) The idesl gyretor of Fig. 3c) is described by
vy =71,
Vz = -711

with the gyration resistance, y, being real.12

-5- SEL-63-022



i i
[7[ 12]: [il]]: for any ie 9 5, 8re the allowed pairs. As with
-1, . ie D,

the transformer, the total power input is identicelly zero. If

7 = 0, both ports are shorts, while, if we allow y = =, both ports

are opens.

The networks of Example 1 are all idealizations of actual physical
elements. The inclusion of the ideal transformer is a conveniehce
vhich allows a comparatively simple mathematical treatment. However,
their use in physical structures is to be avoided sipce reelizations
require closely coupled colls with extremely large self and mutual
inductances. Ideel gyrators have been practically realized only for
microwave networks;l3 their inclusion is for completeness.

In contrast to the networks of Exemple 1 there is a whole class
of degenerate networks which must be congidered, in spite of the fact
that they seem to bear no relationship to actual physical devices.
Typical of these are the nullator, for which the only allowed peir is
[0, 0], end the norastor, which is described by (v, 1] with v erbitrary
and i arbitrary but independent of v.lu These are, respectively,
represented by the symbols of Fig. 4a) and b) where realizations in
terms of the elements of Example 1 are also given. Such degenersate
networks are often valuable for illustrating idees, checking results,
end investigating the generality of a concept.

1 i

o—[I[—OEcl—§ ;*(' %lo o = | Ef,% ;—-(- $1:-:
a) b)

FIG. 4. NULLATCR AND NORATOR.

In general we will limit the treatment to n-ports, in contrast
to k-terminel networks. Although this appears to put a restriction
on the generality of the theory, such is not the case, since we are
allowing the use of transformers. Thus, Cauer has shown how any
k-terminal network can be made equivaelent to a (k—l)-port.l5 The
procedure is illustrated for k = 4 in Fig. 5 from which the extension
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to arbitrary k should be clear.

e
b
|

1:1 )
) N ; é T3
.. v "
T'l o

a) b

FIG. 5. CONVERSION OF 4 TERMINAL NETWORK TO A 3-PORT.

If, in Fig. 5, the variables are chosen as indicated, the network in
a) is described by the same relationships as the 3-port in b).16 The
process is somewhat femilier from transistor theory where the trans-

formers ere omitted when treating the three-terminal transistor as a
2=-port.
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ITI. FPROPERTIES OF n-PORTS

The description of N by the use of the allowable pairs is
extremely general. Using this generality, we cen define some specific
properties in such a manner as to be applicable in the widest possible
context. After this is accomplished we can extend the notion of an
n-port and obtain more tractable descriptions for several important
clesses of n-ports.

We begin with the concept of linearity which is conveniently
phrased in the (v, i] language.lT
Definition 1:

N is linear, if for every [v., il]’ [Eé’ EQJGN and all real

constants, a,
(H) [q!l, qil]eN (homogeneity)

() [yg#v,, 1;+i,]eN (sdditivity)t®

Physically the definition means that et the ports superposition
holds. If N 1s not linear it will be celled nonlinear., Apparently
every physicel N is actually nonlinear. At best any existing N will
satisfy definition 1 for only some pairs and some a., Linearity is
then en idealization which is strictly only valid in practice over
some range of the variables. In spite of this, most of the theory
will be limited to linear N. This is Justified by the fact that a
first approximetion to a nonlinesr N is & linear N, Further, very
general results are availsble for linear N, while results for only
specific nonlinear networks can be found.

The N of Example 1 are all lineer while the network described by

[+4E§L 1] is not & linear N, if i is arbitrary. For comtrol systems
an important nonlinear network is the l-port defined by the curye of
Fig. 6a) and called the saturator. Another nonlinear N is the network
of Fig. 6b) for which

[0, E/r] + [v, {v+E)/r] = [v, (v+2E)/r] £ [v, (v+E)/r]

SEL-63-022 -8~
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with E 2 fixed function in ﬁll' Here the fourth and the first two
peirs are allowable while the third one is not.

v T
o 2
-VO/r : I

a) b) c)

FIG. 6. NONLINEAR N.

Some interesting l-ports show that homogeneity and additivity can be
separately violated. Thus the N for which v and i teke on only integer
values for t > t_, but for which v and i are in ®+l for all t,
satisfies the additivity requirement but not the homogeneity one. The
double-valued l-port described by the curves of Fig. 6c) possesses
homogeneity but not additivity.lg

The ideal diode of Fig. Te) is another useful nonlinear N.
Using it in the linear network of Fig. Tb) shows that a network

constructed from nonlinear elements need not be nonlinear..20

)

a) b}

FIG. 7. THE IDEAL DIODE.

In passing, it is worth point out that the set of allowed pairs
for a linear N forms a vector space over the field of real numbers,

if we definezl
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aly, 1] = [ay, ai]
[XQ: El] + [ng 12] - [31+Xé: Elfig]

The second concept of interest is that of time-inveriance.
Physically we would like this to mean that no elements inside N have
pParameters vhich change in time. In terms of the terminal behavior
this is best phrased in the following manner.za
Definition 2:

N is time-invariant, if for every [v, ileN there is a (v, i ]eN

such that, for every real, finite, constant 7 > 0,
[v(t), 1(£)] = [y (t+7), 1 (t+1)] (3)

In this we are obliged to take 7 > O since, in genersl,
v,ie D . Pictorially v and v, are related as shown in Fig. 8.

Weed
V(0

for u/""_"'//—-

N t I'N f;“l'f

F1G. 8. VOLTAGES USED IN DEFINITION 2.

If N is not time-invariant, it is only logical to call it time-varying
or time-variable. The networks of Exemple 1 are all time-invariant,
if the parameters are independent of time. Thus for the capacitor any
[v(t), a{ev(t))/at] has [v(t-1), d(cv(t-1)/dt] aliowed for any ve 5)+l
and eny T > O, when c is a constant, However, if ¢ = t then

(v(t), a(tv(t)}/at] = [vo(t+'r), io(t+'r)]
implies by a simple change of variable

v (t)

1,(¢)

But for 7 > 0 this io is not allowed since such s vy requires &

v(t-T)

a((t-t)v(t-t)}/at

current of the form

SEL-63-022 -10-



d[tvb(t)}/dt = d{tv(t-7)}/ar

Thus if c = t the capecitor is time-varying, which lends some
credibility to the definition.

As with linearity, time-invariance is an ideeslization which
apparently can never oceur in nature. This statement is Justified by
the fact that most networks must be built. Although it is possible to
conceive of networks existing since t = -, as Shelley's universe,lo
the most interesting devices are Presently being conceived. However,
8 study of time-varieble networks appears to be in its infancy. If N
is time-invariant, it can be extended from ﬁ)-mﬁmNn to ED_m by .
assuming 3) to hold for finite t > O.

Another concept of importance is that of pessivity. This notion
1s somehow tied to the presence of internal sources, however, the _
negative resistor shows that conceptually, at least, the source idea
isn't quite what is desired. Passivity is best defined in terms of
energy.23
Definition 3:

N is_passive if for every [v, i]eN and every finite t
t
&(t) =f Fw)a(r)ar > 0 (4)
=00

If N is not passive 1t will be celled ective. In contrest to
linearity and time-invariance, passivity cen actually occur in nature.
The transformer and the gyrator, as well as the nullator, are passive
networks for which £(t) = O.Zh If the describing parameters of the
resistor, capacitor, and inductor ere positive constents, these are

passive N. For instance the capacitor has, recalling that v(-w) = 0,
t
g(t) =u/" cv(7)2§£11d7 = cvz(t)/z
=00

Note that if c < 0, the capacitor is an active network. The passivity
of a given device will sometimes depend upon the point of view taken
vhen defining the methematical model. For instance, if only the

small signal behavior of & transistor is considered, the transistor

is active. However, if the bias sources are considered as being

-11- SEL-63-022




externally connected the transistor is passive,

Another property which has been greatly ignored, but whose
importence has been pointed out by Youla, is that of EOIVEbility.25
Definition b:

N is solvable if for every ee 5D+nf'\ D yn the equation

e=v+1
is satisfied by a unique [v, i]eN

Here we can consider & new u-port, called the mugmented network,
N, assumed created at tys &5 shown in Fig. 9, with [e, i]eNa.

FIG. 9. AUGMENTED NETWORK.

Bolvebility doesn't seem to be an idealization,26 essuming it, =a
matrix description will be guarenteed in the linear, time-invariant
cagse. The open, the short, end the passive networks of Example 1 are
all solvable while the mulleor, norator and negative unit resistor
are not solvable,

If N has any of the properties of linearity, time-invariance or
passivity then Na has the seme properties.zT This is not the case
for solvebility as is seen by the original N being a minus two olm
resistor. However, if N is passive end solvable then Na seems to also
be solvable,

Although the notions of linearity, time-invariance, passivity and
solvability are the most fundamentel concepts with which we will work,
there are several others of imterest. Among these is that of

SEL-63-022 —12-




reciprocity which stems directly from Maxwell's equations.28

Physically & reciprocal network should have the voltage response due to
& current excitation independent of an interchange of response and
excitation points. Mathematically this is formulated in the following
manner,29 where the normal level asterisk denotes convolution, in this
case of two vectors.

Definition 5:

N is reciprocal if for every [v,, 1,1, [v,, 1,]eN we have
El*ie = Eg*il | (6)

The difference between the power input to a network and the
forms in (6) should be observed. In the latter, variables for the
first measurement are convoluted by thelr conjugates for the second
meesurement. In contradistinction to the use of the words time-vafying,
customary usage requires that the class of nonreciprocal networks
contains the class of reciprocal networks. It also appears that
reciproeity is an idealization.

A trensformer is a reciprocal 2-port, since
Jx 1, =0= [Tv? A i,

1 2 2 2 1

-Ti ~Ti
1 1

In contrast, the gyrator is = linear, passive 2-port which is not

[Tvzl’ Va

reciprocel, if y # 0, since

[yi, , =71, J¢[1 =y(iy 4, -1 4, ) = -[rd, , -7i, W1
2, iy 1, 172,71, "2, 2, 1, 1

12 i

1

2 2l
There are many linear 2-ports which are not reciprocal, but only one
such l-port, the norator. The ideal diocde of Fig. T is a l-port which
is nonlinear, time-invariant, passive, solveble, but not reciprocal.

The notion of causality is of philosophical interest. Physically
this means that the application of some variables at time to ceuses
other variables to appear at time tl > to. We believe that by any
mathematical theory it is impossible to tell what is a cause and what

1s an effect. Thus, we limit our ideas to the concept of antecedance
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which 1s sometimes confused with causality.30

Definition 6:
N 1s entecedal 1f for every t_ > t there are [0, i(t)], [¥{t), oleN
for - <t < to’ and for every such pair

a) [0, 1(t)leN implies i(t)
b) [¥(t), OleN implies v(t)

gfor-w<t<to
Qfor-oo<t<to

The resistor, inductor, capacitor and nullator are all antecedal,
vwhile the transformer, norator, opens and shorts are not. A concept
somewhat related to that of antecedence is that of single-valuedness.
Definition T:

N is single-valued if every [_v_, _l]eN has i uniquely determined by

v and v uniquely determined by i.

Typlcal single-valued networks are the resistor, inductor, mullator

and gyrator, The saturator, transformer and norator sasre not single-

velued. Clearly every antecedal N is single-velued but the converse
need. not be true, as is seen by Fig. 6b). As we shall see, the
restriction of variables to $+ rules out the non-antecedsl and non-
single-valuedness of some networks.

Almost every synthesis method is based upon the synthesis of loss-
less networks and hence the next definition ls of some importance.3l
Definition 8:

N is lossless if

S) N is solvable and
P) N is passive and
L) for every ee fD_m’WfDNn’WLzﬂ

o) = [ “H(r)i(e)ar = 0 1)

Here e is v + 1 &as 1in (5). Relaxing the L_,_ requirement causes trouble,

since variables which don't wvanish at infii?ty can give a finite, non-
zero £(w). The passivity requirement is a convenience which will be
used to essure that v and i will lie in L2n if e does. Relaxing the
passive requirement allows the active capacitor with ¢ = v as a lossless

SEL-63-022 -1h-




network; however, the capacitor c = vz would still not be allowed since

-]
h[ﬁ 3v3dv need not exdst for eeLal. The linear, passive inductor and

+ -1

capacitor, as well as the gyrator and transformer, are lossless, while
the nullator and resistor are not. A network constructed only of loss-
less elements need not be lossless, as is seen by observing the inductor-
capacitor equivalent circuit of an infinitely long tranemission-line,
which has a purely resistive input impedeance.

=15 SEL-63-022




IV. EXTENSIONS

Using the theory developed so far there are ideslized situﬁtions
which can't be considered. For instaence we can't as yet excite with
unit step functions or impulses, or handle initial conditions in the
customary way, and a perfect DC battery doesn't qualify as & network.
We therefore now relax some of the physical constraints and cover
these and similar cases by taking suitable limits.

We will let 5)1'1 denote the real-valued n-vector distributions and
fD-;-n be such distributions with support bounded on the left, EDI:In is
the same as 1D_'m except the support is bounded at tN. All the desired
results will then follow from the fact that £D+n is dense in both 91:1
and fD_'m, that is, any distribution in D or D! 1is e limit of &
sequence of infinitely differentiasble functions in 9+n'32

For example the idealized network of Fig. 10a) results by taking
the limit of & sequence of networks of the type of Fig. 10b) where, as
a distributional limit

i = ) =
]J._:I'.‘I.!l u‘j u, uje 412 U unit step

A typical u, is shown in Fig. 10c)

J

o—o I o a0
r EU(I) Eui(f)

a} b}

ui(i)

~2/; -1/

c)

FIG. 10. LIMITING NETWORKS

SEL-63-022 ~16-
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If in Fig. 10c) we replace the points -1/J and -2/J by -J and -23,
then when the limit is taken, u(t) is replaced by the constant 1 for
all time. This then allows ceonsideration of perfect batteries. Since
initiel currents in inductors and volteges can be considered through
the use of unit step functions, the above limiting process allows the
standard procedure for incorporating initiel conditions. The smooth
functions of Fig. 10c) physically meen that such smooth variables, are
the ones actually appearing at terminels when a finite network is
congtructed.

In general it is hard to state exactly when extensions to dis-
tributional variasbles can be made. For instance the nonlinear resistor
r = 1 can not be extended to impulsive currents i = &, since 62 is
undefined.33 However, in the linear, time-invariant and solvaeble case,
to which most the remainder of this work is restricted, we can always
extend Nﬁ, and hence N, to distributional e and i in the following way.

By the solvaebility of N, if a sequence {EJ} hasg gj»o then zﬁ*flj
and these tend to a2 unique value. This value can only be zero, since
by linearity [Q,.g]eN. Consequently, if gﬁfg then‘ljﬂg and Na is said
to define a continuous mepping, defined as

-
1= Y [e]
Now, exciting with (e(t+t)-e(t)}/7, the current becomes by linearity

tya[ﬂﬂzi(ﬂ] = [‘ya[_e_(t-i-‘r)]- ya[E(t)]}/T

But by time-inveriance, for T > 0, we can write this as {i(t+t)-1(t)}/7.
Teking the limit asg 7+0 we see that

di/at = Y _[de/at]

In other words the continuous mapping ya commites with the operation
of differentiation. Considering any ee ianf’\ 9ﬁn, by the denseness
of D _MND_in D' M D! we can £ind a sequence of e.e D M D
+n Nn +n Nn N -—{D +n
éuch that Ej*fﬁ Applying these EJ to Nﬁ yields lje +n(ﬁ‘ N’ and,
by the continuity of the mapping, ijfi'with gngﬁh. By first re-
stricting e to ee D] Me!, vhere g! is the set of n-vector distribu-

Nn

tions of compeact support, we see with Schwartz, since Y " is contimous
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and commutes with differentiation, that Y q CET be represented by en
3h

nxn matrix, comvolution operator, Yoo
That is

]

i=yxe (8a)

¥ = [81 -y Ixe (8p)

where 8 is the unit impulse and ln is the nxn identity matrix. By
choosing the entries of e to approach impulses, we see that the entries
of y,_ ere in fDﬁn and, therefore, have support bounded on the left, if
ty > -=. We then extend (8a) from ee mﬁnﬂer’l to any e for which the
convolution is defined. If the columns of y_ are in 9;n? vhich is
always the case if tN > == or, as we will soon see, if N is passive,
then (8a) can be used for any ee @;n’ in which case E;fD;n results.
Of course this extension coinsides with the one obtained by letting
T < 0 in Eq. (3) when ee ®+n°35

To 11lustrete this procedure we consider a familiar example.
Exemple 2:

Consider a linear, time-invariant inductor. The augmented

network is described by

e = 1+gdi/dt
We can extend N, from 5D+l to unit step functions by either
solving this for e of the form of Fig. 10c) and teking a limit

or by inserting unit step functions directly in the differential
equation.
But

8(t) = Hm (Ju(t)-gu(t-1/4))
end thus we apply

e = e, = ju(t)-ju(t-1/3)
to the differentiel equation. This gives

15(8) = Ju(t)u(6-1/3)-e" Ayl /D i1 4y
By = pover series expansion

L-t41/3)/8 _ -t/2 -t/2

+H1/38)e + order (l/jz)
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Consequently, since e-t/za(t) = 8(t),

a1y = (1/0)e ™ u(s) =y (4)

Using this with (8a) gives i for any ee mll' Note that the
above differential equation for i allows the solution
1= -(1/£)e-t/‘eu(-t) when e = 5. This solution is ruled out,

hovever, by our extension procedure.

It tN = -=, then apparently ee 5)_:_11 need not imply that ie fD-:-n'
For instance the "network" for which i 3 takes the form of Fig. 11
when e e £D+l and 5, has e = & accompained by 1 = u(-t) = y_.

a
0

2

_ N

=i 1/j /i

FIG. 11. FUNCTIONS CONVERGING TO u(-t).

Such a network, if it is actually a network, presents somewhet of a
paradox, since inserting suitable e J-a into (8a) shows that the extend-
ed netvork has i j(-w);éo. That is, the original network and the extend-
ed network wouldn't coincide in this case; it appears than that
solvebility essentially doesn't hold here.

Let 5)1'. be the set of real, n-vector distributions which are
2n
finite sums of derivatives of LG vectors, If N is linear, time-

invariant, solvable and passive, then, as we now show, ee fDi implies
2n

i,ve ! . This is seen by noting that if ee D! then Citeel. Ffor

== LG = LG =""2n

@ any scalar in the set D of infinitely differentiable functions of

compact suppor‘t.36 Now Qxe = Ov0t¥l and C¥e can by approximated
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arbitrarily well by.gjefD+n and hence so will be a*v and axi by

solvebility and the continuity of a linear, time-invariant mapping.
But

t
[ (oxg) (oxe)dr =Lt(a*i)(am_r)dn[t(a»i)(a*l)dr+

t
2 f (o) (coes Jae (9)

By essumption the term on the left is finite and non-negetive. The
same holds for the last term on the right, by passivity and the fact
that the terms under the integral are approached arbitrarily closely
by ELn vectors. Consequently the other terms, which must be non-

negative, are finite and ee D3  does imply i, ve D! . This result
Zn 2n
will show thet the Laplace trensform of Yq is analytic in the right-half

Plene. We now turn to such considerstions.

Consider a linear, time-invariant, solveble N with its domsin of
definition extended as far into ﬂ)ﬁ as possible by (8). Let the
voltage of Na be .

g = Regeptu(t+k)

for k real, p = g+jw & fixed complex number, j = /:T; and E en arbitrary
complex constant n-vector; of course Re denotes the "real part of".

The resulting current is given by the convolution of (8e) as
° t
;k(t) = Re[[L/w ya(T)e PTu(t-'r-i-k)d'r]gep )
-0

By linearity the real pert can be taken at eny stage. For convenience
we then drop the Re and assume it to be inserted at the end of any
calculation. Taking the limit as k+o we get

i(t)

([ v () Farle(t) = ¥ (pe(s) (10a)

e(t) = EePt (10b)

This process can only be carried out if the term in brackets, Ya(p),
vwhich is the bilateral Laplace transform, Eb[ya], exigts for some p.
In general there will be some g, < o, such that Ya(p) exists for
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0,<0< 0. Equation (8b) gives & similar result for ¥v; such a
representation holds for v if and only if it holds for i vy (8b),
vwhere .{'.b[aln] = 1. If a linear, time-invariant N can be extended by
this, or any other, method such that v = Eept and 1 = ;ept are paired,
then we will call N, E.b-representable. The above shows that most such
solvable N are Lb-represent&ble, however, some nonsolvable N, such as
the nullator, are Lb-representable.37

An important class of £, representable N are the linear, time-

invariant, solvable; passive N. For such N, g g 20, 0. ==, and con-
sequently, in this case Y (p) is anelytic in o > O. This follows from
the fact, as we saw above, that ee 9' ylelds ie 5)' . Choosing the
entries of e all zero except for one %mpulsive entry? we can isolate
any column of Ya by i = Y *e. The entries for y, are 8ll zero for

t < 0 since otherwise, conwoluting with e 9 y @=0fort < 0, we
would have oi = ya*(a*g) nonzero for t < 0 which would contradict (9),
all for the above impulsive type of e. 38 Thus, for the type of N under

consideration, we know that the columns of ¥, ave in fDi and zero
Z2n
for t < 0. By the very definition of fDI'I we can write, where k is

finite, 2
k

v, =JZ d‘j(faj )/atd

with the columns of the nxn matrices fa 3 in Lan and zero for t < 0.
Taking the bilateral Leplace transform glves
k

Llyl = 1,(0) = ) plo e, ]
By a well-known theorem of Laplace transform theory, each j',b[f 1 1s
anelytic in o > 0, and dlmost everywhere on g = 0, and by this laat
formula for Y (p), the same result holds for Y (p) 39 Thet is Y (p),
exists and is analytic in ¢ > O and elmost everywhere on o = Q. For
netvorks with rational Ya(p) this gives a stability result, since it
says that no poles of Ya. can lie in the right half-plane,
The network for which e = & yields i = exp[tzlu(t) is not
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zb—representable. From the above comments on the existence of Yé(p),
this network can't be passive, but a direct determination of this
through (4) seems hopeless.

By exciting N_ with exponential ¢(t) we obtain, by (10) and (8),
exponential responses i1 and v for Lb-repreaentable N. That is

Li
|
5
i
£

e(t) = Eept ylelds (1la}
i(t) = IeP (11p)
¥(t) = ye¥ (11c)

For such N we therefore extend the domesin of definition further by
allowing [prt, Egpt]eN. We can then work entirely with Laplace
transform quantities by defining the frequemcy domain network, N(p), as

8(p) = ([V(2), I(p)]] [veP®, 1ePtlem (12)

For the frequency domain network, time no longer appears and we work
with functions of the complex variseble p. As is well-known, for
constraints which are represented by ordinary differentlial equations
with constent coefficients, N{(p) is simpler than N to work with, since
the congtraints become albegraic. The main advantage of such a
description probably shows up when synthesis is considered.
Example 3:
If we consider the network of Fig. 12, we see that Na is
described byho , ?

de di 471
e+-a-E = 21+3-d7t+2:1:2-

FIG. 12, NETWORK FOR EXAMPLE 3.
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Letting e(t) = Ee®®, i(t) = 1Pt glves
ing

(14p)E = (2+3p+2p?)T
Since
Y (p) = (p+1)/(2p%+3p+2)

vwe see from the Laplace transform interpretation, that o > -3/11-
since the singularity furthest to the right is on the v = -3/4
line. Since e = v+i, N(p) is described by

[((20%42041)/(p+1)]1, TleN(p)
for any complex I and g > o, = -3/l

Note that if a physicsl N is given, defined by (2), then N(p) is
unique, when it exists. Further, if N(p) is given such that Yﬁ(p)
exists, then by finding the inverse Laplace transform, Lgl[Ya(p)], and
using (8a), a physical network, N, is well-determined.

Limiting ourselves to the linear, time-invariant case, if
o, <a, N(p) 1s seen to form a vector space over the field of
functions of a complex varisble defined in g,<o< G if we define

alV, I] A [V, aI]
and
k1
[El, El] + [22: Igl é [!l+lr.2: El"'_I.z] *
As a result of the contraint defining N, we see that the vectors
[V, I] in N(p) form an r-dimensional sub-space of all possible vectors

[V, I]. If we errenge Y and T in a 2nx1 column matrix, [!], then we
I

cen find some metrix M(p) of complex functions defined in ¢ g <0<
and of rank 2n-r and order mx2n, where m 2 2n-r, such that

M(p)[-Y-] = O constrains ¥V and I to N(p). If 2n-r > n, we choose
I

o
r

o = 2n-r while if 2n-r < I, we choose m = n such that M is nx2n.
Partioning M into M = [A, -B] then ¥ields the fundamental equations

A(p)¥(r) = B(p)I(p) (13)
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These equations constrein V and I to N(p) and thus describe N. Of
course the A and B are not unigue, since M(p) can be premultiplied by

|
g
g
i

any nonsingular mxm matrix, with a description of the form of (13)
still resulting. Aes is seen by the nullator and norator, these
equations can be used to describe other than solveble networks.
Further, for a given network (13) cen be obtained in many weys. For
instence, as seen through (10a), A(p) and B(p) are essentielly
Leplace transformed gquantities and hence (13) can sometimes be
obtained by teking Leplace transforms of describing equations.

A more satisfylng proof of (13) can be given if N is linesr,

time-invarient, and solvable, as then

i=yxe (8a)

[81 -y, lxe (8v)

Convoluting (8a) by [8lnfya] on the left gives
[Bln'ya]*i = [Bln-ya]*yaﬁg = [ya-ya*yh]*g = ya*[Sln-ya]fg = ¥ ¥V

or

Yy = [81 -y lxi (14a)

Teking bilateral Laplace transforms
Y (p)V = [1-Y (p)IL (14b)

This is agein (13) with A and B explicitely evaluated; in fact

A end B ere here nxn.

Example b:
a) Consider the network of Fig. 13 |

bl

FI1G. 13. NETWORK FOR EXAMPLE 4a).
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The current flowing to the right through the capacitor is
i, = cd(vi-vz)/dt

The current il is
1 = -v2+cd(vl- 2)/dt

while the current i2 is
i

5 = vl-cd(vl- 2)/&1—.

Letting v and 1 be of exponential form gives

s )L 2

This is (13) with A(p) taken as the sdmittence matrix. Note
however that

TR I

also describes the network since we have merely premuliiplied by

N

b) The nullator is described by

N W

for which A and B are not square.
¢) The morator is described by

(0lv] = [o]{z]
d) The transformer is described by

A R

0O o© Vs, 1T I,

Note that, as with the nullator and norator no inverses exist
for A and B.

e) The voltage inversion negative impedence converter is defined
by
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2 2

By choosing A and B in different ways.one cen define new and
perhaps interesing linear, time-invariant networks. Pre-multiplying
(13) by e non-singular matrix C(p) we get

CAV = CBL (15)

Properly choosing C gives the familiar network descriptions. For
instance the impedance, sdmittance, and (normalized) scattering matrices
can be, respectively, defined by

7 - atB; 0=l (168)
Y=58%%; c-5t (16v)
8 = (Bea) Y(B-A); CA - 1 -5, CB =148 (16¢)

At this point we omit any physical interpretation of these and merely
point out that, since ’

V-I = (1,-2Y)F = 8(V+I) = SE

by (16c) we have
8(p) = 1 -2Y (p) (17)

As was shown before (11), every linear, time-inveriant, solvable and
passive N pogsess a 'Ia(p) which is in fact analytiec in o > 0 and exists
for almost all p = jw. Consequently, by (l"() , We conclude the funda- 4
mental result that every linear, time-invariant, solvable, paessive N !
has a scattering matrix which is analytic in ¢ > O and exists for
almost all p = jm.hg

Equation (13) is generelly only defined for a certain region in
the p plane, that for which the sppropriate Laplace transform converges. :
Whenever possible, we extend this region by anelytically continuing ;_'
N(p) to the left end right. BSince N(p) mey then become multiple-valued,
vwhenever we meet a branch point 04+JB we make a lineer branch cut to
=o+jB, if on the left, or {=+JB if on the right, and thus make N(p)
single-valued. For instance & branch point is met at p = O when
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considering the infinitely long R-L cable, with Z(p) = +p originally
defined only in the right-half plane. This analytically continued
N(p) is identified with the originel, since they both coincide in the
original domain of definition.

Natural frequencies are conveniently defined in terms of the
analytically continued N(p). P, is called a short-circuit natural

frequency if [0, ;(po)]eN(po) s ;(po);!g. Physically this means that
some nonzero exponential current can be forced imto the (extended)

network when zero voltage appears across the terminals. For instance
a short-circuit has every D, @8 & short-circuit natural frequency.
From AV = BL we see that :B(po) mst be singular at a short-circuit
natural frequency and hence, if Z exists, (15a) shows that P, 1is &
zero of the determinant of Z. The definition then corresponds to the
calculations normelly made and generalizes that of "frequencies
present due to only initiasl conditions."l"B The definition also holds
for non-meromorphic 2 matrices, for instance, for the infinitely long
R-L cable mentioned sbove, p = 0 is & short-circult natural frequency.
Dually p  is an open-circuit natural frequency if [V, O]eN(]_J ) for
¥(p,)#0.

In synthesis it is easiest to work with Ppassivity conditions in
terms of N(p) in place of the N of definition 3. Since, in the linear,
time-invariant, solvable case, after extending from fD to fD n? ve
can approximate any [Re Vept Re Iept]eN arbitraerily closely 'Dy a
sequence of allowed pairs [_\_rJ(t) s 1 J(t)] for the originel N, passivity

necessarlly requires

ep(t) =Lt(Re irePt)(Re ;ept)dr >0 (18)

for all t and every [V, IleN(p) for every p in Re p > O.

In many situations it is desirsble to investigate the internal
structure of a network. For this we define the notion of a circuit.
Definition 9:

A circuit C is an intercomnection of networks N, 1=1, ..., k.

By an interconnection is meant that the nl-vector of Nl, the
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nz-vectors of Nz, etc., are interrelated by Kirchhoff's laws. Here

k is an integer or infinity. We can connect external leeds to a
circuit such thet looking in from the outside C looks like an n-port.
0f course C must be constructed at a crestion time greater or equal to
the creation time of any of the interconnected networks. It should be
Pointed out that a cireuit cen be closed upon itself, that is have no
terminals, as is seen by the circuit of Fig. 1%.

A%

FIG. 14. A CLOSED CIRCUIT.

The concept of a cirecuit allows us to conveniently look at finite
networks.

Definition 10:

N is finite if it can be constructed as a circuit consisting of

& finite number of the networks of Exemple 1 (resistors,

inductors, capacitors, transformers, gyrators).

In essence, a finite network is defined by an equivalence class
of circuits.hs Thus, if circuits, Cl and C2 have external leeds

connected such that they define networks Nb and Nt » then we will
1 2

call C, end C, equivalent (&t the terminals), written C,~C,, if

Nbl S ch. For example, the circuits of Fig. 158), assumed to have
tN = —=, are equivelent. However, the circuits of Fig. 15b), which
are assumed created at tN = 0 with different initial voltages, are not
equivalent. This latter result only seems reasongble, since their

responses to different excitations will be different.
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F1G. 15. ILLUSTRATION OF EQUIVALENT CIRCUITS.
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V. CONCLUSIONS

Using what appear to be the most basic ideas, &n n-porf hes
been defined as well as the various types of properties that can he
possessed. In contrast to other such theories in the literature, such
an n-port can be nonlinear, time-varying or active. In the linesr,
time-invariant, solveble cases the types of variables allowed can be
extended from infinitely differentieble vectors of support bounded on
the left to distributionsl n-vectors. The varisbles in many such
cases cen a8lso be extended to be of exponentisl form, this always
being true in the passive case,

The definition of & network is different than commonly found.
That is, we don't define a network in terms of operators but as a
collection of pairs of variables. Our justification for this is that
in the operator description, L[f] = g, the verisbles f are best
thought of as inputs while the g are to be considered as outputs.
However, for a network it seems that sometimes a varieble will be used
as an input while at others times the same variable should be considered
gs an output. For instance if e voltage source is epplied to a resistor,
one naturally considers the voltage as the input and the current as the
output., But one can equally well epply a current source to the same
resistor in which case the current would be considered as the input.

It seems that the operator description is most approprieste in studying
control systems since, in L[f] = g, one here would wish to control an
output g by the use of the input f. Of course we did use the operator
idea in the extension to distributional varisbles. This was done,
gince we vorked with the augmented network where we alweys considered
e as the excitation and either i or v es the response.

The definitions of network properties must be given in terms of
the original variables, in place of the distributional or exponential
variables, since otherwise meaningless results occur. For instance,
the energy integrel Eq. (4) can't be evaluated for an impulse of
voltage on & capacitor. Further, an inductor would not look reciprocal,

since
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[N
I

= u(t), v, = £5(t)

i,=I-= conftant, Vo =0

are allowed with distributional and exponential extensions, but

£8%T = 2I£0 = Oxu
if
I£0, 2£0

In several works in the literature it is postulated that a
network is something possessing the various properties of linearity,
time-invariance, pessivity and sometimes solvability. However, it
seems to us that this is somewhat a misuse of the concept of &
postulate. It seems that what should be postulated is the existence
of physical devices subject to a mathematical deseription of the form
of Eq. (2), in the theory presented here. The various properties of
such a description can then be checked to see if the given network
possesses such a property, as Passivity, sey.

From working with the various definitions of part b), it seems
that most of these definitions ere as desired. However, it may be
that some future considerations would require some sort of modifications.
For instance, the definition of solvable is importent in the theory
of linear networks. Perhaps, though, there 1s some better concept
which contains that of solvability, which is needed for the study of
nonlinear networks. Similarly, reciprocity is defined for generel
networks, but perhaps with more study it would become necessary to
restrict it to purely linear networks. Like-wise the definition of
lossless, which hasn't been worked with much, may not be the most
appropriate one.

The "network" associated with Fig. 11 raises interesting
questions. For instance by observing this, one wonders if perhaps
every linear, time-invariant, solvable N can't be made Passive by
sugmenting (as in Fig. 9) with sufficient resistance.6 If so, then it
would appear that even for active networks, the Laplace transform

representation should converge in a right half-plane.
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NOTES

1. BSee McMillan, [Ref. 1], and Raisbeck, [Ref. 2]. McMillen's
epproach is closer to the work presented here than any other,
Raisbeck, although not quite so rigorous, is the starting point of
most recent studies. McMillan essentially assumes linearity,
time-invariance and reciprocity while Raisbeck assumes the
existence of an impedance matrix; both assume passivity.

2. See Youlas, [Ref. 3], Zemanien, [Ref. L], as well as Kinig, [Ref. 5].
These papers are all based upon the concept of a linear transforma-
tion. [Ref. 3] works in Hilbert spece and gives an excellent but
absfract theory for the scattering matrix. [Ref, 4] works with
distributions with some interesting time domain results. [Ref. 51
gives & rather campliceted theory but has some interesting
impedance representations.

3. See Newcomb, [Ref. 6]. This shows that by a suiteble choice of the
operator domain of [Ref, 3], networks which one would normally
consider as passive, causal and single-valued, need not have these
properties.

4. Bee the second section of [Ref. 35].

5. Typical conjugate variables would be force and velocity, voltage
and current, temperature and entropy change. One wonders if such
a ehoice can be made for biological systems.

6. Intiuitively, by the support of a function of time, h(t), is
meent the set of t for which h(t) is non-zero. More Precisely,
the support is the closure of the set of points in t for which
h(t)#0, [Ref. 7, p. 17]. The support of & vector being bounded
means that the support of each entry of the vector is bounded.

T. We use the standard set theory symbols. That is, e denotes
"contained in", 7\ represents "intersection", and A = (x| P(x))
means that A is the set of all x such that the proposition P(x) is
satisfied.

We comment that _.f_éfl) +kﬂ®Nn can not be replaced by fe EDNn if
tN = -=, since then f would not need to have support bounded on
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13.

1k,

15.

16.

the left.

If a measured entity were not infinitely differentisble, infinite
values would be obtained by the use of differentiators. This
argument is not too so0lid, however, since ideal differentistors
don't exist. One feels that impulses aren't allowed since nany
non-linear devices can't tolerate them.

If g is given as the voltage vector we merely relabel.

We assume for simplicity and with Shelley, [Ref. 8, p. 813], that
the universe has existed from eternity.

In germen an n-port 1s called a 2n-pole with this nomenclature
being teken over into English by McMillen, [Ref. 1, p. 225].
McMillen's definition is the only precise one we know of in
English, but it holds only for finite networks. Certainly the
original use of the word port is imprecise, [Ref. 9]. See elso
the IRE standard, [Ref, 101, [Ref. 11].

An interesting analog of the gyrator results from plasma rhysics.
For a charged particle of mass mAaqg charge q moving in s megnetic
field B with velocity'?, we have E%% = qvxB. If B is directed
only in the z direction with magnitude Bz, this gives

v.]=[° qu/m] Ve
R Iy

¥ ¥y
where the cyclotron frequency @, = qu/m is analogous to y and
represents the rate at which the particle gyrates around the B
field.
For microwave realizations of the gyrator see Laex, [Ref. 12,
p. Skk]. For low frequency realizations see Bogert, [Ref. 13],
where active circuits are used.
See Carlin, [Ref. 1], where these degenerate networks form a
basis for a synthesis technique.
See Caver, [Ref. 15, p. 161]. Cauer calls the k-terminal network
e "complete Zk-pole".
Note that the varisbles for the lower right terminal pair of
Fig. 5a) are uniquely determined from the other variables by
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the use of Kirchhoff's laws. If sources are only epplied at the

ports of Fig. 5b) the transformers can be omitted and the network
redrawn as '

17. The standard definition is in terms of operators, see Papoulis,
[Ref. 16, p. 821, or Youla, [Ref. 3, p. 106]. An alternate, but
gomevhat complicated, definition in terms of the state has been
glven by Zadeh, [Ref. 17]. This wes slightly improved at &
later date, [Ref. 18], to include L-C networks. Essentially
Zadeh's definitions ettempt to distinguish between linear
equations end linear systems, Thus in his terminology one system
could heve different initial conditions, while in the theory we
present, the same "elements" with different initial conditions
define different systems. Thie latter viewpoint seems to be the
only consistent one when just terminal behavior is considered.

It does, however, have drawbacks when considering internal
construction.

18. 1r [zﬁ, EJJGN then for real a, and finite m,
m m
g{:ai!J’ ajijleN. However, for a linear N, this result
3=1 3=1

apparently need not hold for infinite m. We could postulate
that 1t does hold for m = w, but none of the theory seems to be
changed by such an assumption.

19. The fact that homogeneity and edditivity could be separately

violated was essentially proven by Gerald Alonzo in the Stanford
graduate course EE 235.
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20.

2l1.
az.

23.

Of course anyone would be silly to build Fig. Tb) using diodes.
Practically the diodes wouldn't be ideal anyway and the resistor
equivalence would only hold as an approximation. The example does
1llustrate the fact stated, which would be taken as a weakness of
the definitions. Another exemple is given in [Ref. 17].

For the concept of a vector space see Birkhoff, [Ref. 19, p. 162],
The standard definition for time-invariance can be found in
Papoulis, [Ref, 16, p. 83]. This essentially reads: A system is
time-invariant if g(t) is the respomse to £(it) then g(t-tl) is the
response to f(t—tl). Although the physicel meaning of such a
definition is clear the methematics is rather imprecise since, by
simply changing the variable, almost any system is (mathematically)
time-inveriant).

Besides the definition given, others can be found. Shekel,

[Ref. 20, p. 269], defines a network as being passive if the
average power input in the sinusoidal steady state is positive.
This, however, allows a resistive network containing & negative
capacitor as passive. Raisbeck, [Ref. 2, p. 1511], requires only

e@) = [ Hetelar > 0

This, however, seems to restrict v and i end since €(t) could be
negative for some t < o but still g(w) > 0, this doesn't seem
reasongble, Youla, [Ref. 3, p. 110], allows complex excitations
and responses and then defines

e(t) = Re Ltg*(f)i(-r)af

vwith & superscript asterisk the complex conjugate. We believe
that & more meaningful definition for complex valued variables
would he

t
e(t) = f (Re ¥(*)(Be 1(r))as

Both of the latter £(t) agree with €(t) of (%) when the variables
are real.
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25.

26.

27.

28.

Youle, [Ref. 21], has shown that any realization of the nullator
using a finite mumber of the elements of example 1 must contain at
least one negative resistor and one gyrator. For this reason one
hesitates to call the millstor passive. In fact in early lectures
on this material the author inserted an extra clause in the
passivity definition to rule out nullators at any port. Such a
theory seems too ad hoc and we rely upon only the solvebility
concept to rule the nullator out, when so desired.

See [Ref. 3, pp. 103 & 113]. Youla refers to the concept appear-
ing in two earlier works which we haven't seen as yet, those of
Wu and Toll. Essentially, solvebility is assumed a&s a postulate
for & network in Youla's theory.

Tt seems to us that any truly physicel device is solvable. This
is true for multiple-valued or hysteresis type characteristic
curves such as obtained for tunnel diodes or iron-core inductors.
If, for such devices, one knows the entire past history the device
will be in & unique "state" at any given instant.

These are easlly established.

Linearity: For N_ we have [ee, ai] = [av+eileN since [av, aileN
for every a. Likewise [e,+e,, 1 +12] = [y +v+i) 41y, leE]eNa
since [V‘+Wé, ilﬁig]EN by linearity of N.

Time-invarience: Consider [g, 1] = [¥+i, ileN , then [v, ileN.
By the time-invariance of N, for v > 0, [¥(%), i(t)] = [36(t+1),
io(t+r)] for [v_, _O]eN Therefore [e(t), 1(t)] = [36(t+7)+
10(t+7), io(t+¢)] = le, (t+1), Eo(t+r)] where [e_, io] = [y i,

i, ]eN since [v , ]eN.

Passivity We have for N

g (+) L (F+I)1dr = v‘ld'r+ L Tiar

The last term is always non-negetive while the next to the last
term is, if N is passive.

See Remo and Whinnery, [Ref. 22, p. 45k], where Maxvwell's equations
are shown to yleld Lorentz reciprocity. The result of [Ref. 22]

js in terms of phasor quantities and thus we have replaced multi-
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Plication by convolution to comvert to the time domain. The first
real use of this result in = rigorous theory seems to be in
McMillan, [Ref. 1, p, 236].

29. Metrix convolution is defined by replecing multiplication by

convolution in the definition. Thus AxB is defined by

Z;aikfbkd. For finite, linear, passive networks this agrees with

the usual statement that for a reciprocal network the ratio of
response to excitation is invaeriant to an interchange of the
points of excitation and observation, [Ref. 23, p. 148].

The definition we give is valid for nonlinear, time-vavieble or
active networks but it is not clear if it is meaningful then. The
definition does make the following network nonreciprocal, since

V¥~V ¥ = BE(L. 4l -1, -1 }
1 =2 Yo 1,72, ey

T o~ o T,

Note that if the current "excitations" for messurements one and
two are the same, this network would look reciprocal (for these
excitations). In fact any reciprocal, solvable l-port is linear
since, with 1 = e-v, i&*}e = Eaf(se-zé) = ié*(sl-—i) requires with
e, = ae), [ié_ail]ggl = 0 or for the l:port Yp = av) and i, = ai,
are in N. Bimilarly vith e; = e, +e,, 11*_1_‘3 = _?rjl* e3-13) =
23*(2]_'_1) )5 :v:l*-e-B = I3%21 and similarly 12*23 = i *e, edding
glves (§1+§2-§3)*(21+32) = 0 or for the 1-port (73475, 1,+1,]eN
and hence N is linear. It is not clear if such is the case for

n-ports.
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Sometimes & reciprocel network is called "bilateral," [Ref. 2U,
p. 875]. Although we have never seen a precise technical defini-
tion of the word bilateral, we would prefer to apply it exclusively
to l-ports meaning that current passes in the seme wanner into or
out of a device. The ideal diode would not be bilateral and the
concept couldn't be meaningfully applied to the gyrator.

30. Here O is the n-vector of zeros.
A typical definition of causal is given in Youls, [Ref. 3, p. 111].
.The definition so given allows the open circuit as causel but not
the dual network, a short-circuit. For this reason our definition
has two clauses. In [Ref. 3, p. 111] it is "proven" that "except
in pathological cases, linearity and passivity imply causality".
However, as shown in [Ref. 6] we believe this only to be the case
when e proper interpretation of the concepts 1s used. Thus we
essentially assume some sort of "causality" by restricting N to ¥
and 1 in ®+n' An excellent discussion of causelity versus
antecedance is contained in Bunge, [Ref. 25].
A definition differing from that of Youla, but somewhat more
common, is that given by Papoulis, [Ref. 16, p. 85]. This
requires the output to be zero until to if the input is zero
until to. Youla's requires that if =X for t < to then

i, =1, for t < to. In definition 6 the existence of [0, i] and

[v, 0] is needed to be sble to consider a) and b). Without such

a clause one couldn't consider the non-antecedel 2-port.

31. Here LG is the set of real-valued square integrable n-vectors.
That is g;LZH if

JECHOIRE

It seems that an alternate definition in terms of conservative
systems, as studied in mechanics, [Ref. 26, pp. 3 & 347], could
be given. However, it also seems that such existing theories
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32.

33.

34,

3.

36.

don't haeve the complete generality contained in the concept of a
network. Definition 8 is essentially that given by Youla,

[Ref. 3, p. 119].

Except for the subscript n, the notation is the standard one
found in Schwartz, [Ref. T, P. 25]. The fact that 5)+n ig dense
in ﬂ)-:-n follovs in & manner simllar to Schwartz, [Ref. T, p. '_rs].
A simpler proof follows from Schwartz, [Ref. 27, p. 22]. Thus
let a sequence of infinitely differentieble functions, ¢ 52 of D 1
converge to &, @ J—rﬁ, where & is the unit impulse. Then, for any
distribution fe fD_;_l we can form @ J*f and @ J*f-v'o*f = f. Since

P j*f is in ED+ , this gives the desired result, after extending
to n-vectors in an obvious menner (component by component).

The impoesibility of defining 52 as & distribution is shown in
Schwartz, [Ref. 7, p. 117]. Kdnig has shown how the concept of a
distribution can be extended, such that 82 1s defined, [Ref. 28,
p. 448]. However, &.ufu.p under this definition.

See Schwartz, [Ref. 27, p. 18 theorem X and p. 20], which states:
Every linear contimious operation from either &' or 9 into D o
commting with differentiation, is the convolution £(T) = S*T
with & fixed distribution Se¢ D' and reciprocally. This gives a
rigorous jJustification of the physical result that the response
of a linear, time-invariant system is found by convoluting the
impulse response with the actual input.

Schwartz's result 1s not for the matrix case, but by considering
separate components of e and i, it is seen to yleld the matrix Yor
At this point, at least when n = 1, it is possible to set up a
Mikusifiski's algebra, [Ref. 29], since the algebra 3)_;_1 has no
divisors of zero, [Ref. 27, p. 29]. This allows us to work with
more general networks than those later called J',b-representable.
Of course (8) yields the seme [v, 1] pairs which originally
defined the network, by the definition of ‘.'Ja.

See Schwartz, [Ref. 27, p. 57, theorem XXV], where it is shown

that: In order for a distribution T to belong to EDI" it is
D
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37.

38.

39.

Lo,

necegsary and sufficient that, for any aeD , O.*T*eLP, recall that
-}
fel ifL |2(t)|Pat < e

We could have simply obtained Ya(p) by teking the Laplace trans-
form of (8a). We feel that the physical insight of Ya(p) being
the response coefficient in (lOa) for exponential excitations
lends motivation to the heavy use of the Laplace transform in
engineering work. The approach used follows that of Mason and
Zimmerman. [Ref. 30, p. 3%0].

Choosing t < 0 in Eq. {1-9) would give

t t t
0= L (oxv) (o¥v)ar+ L (e*I)(a*i)ar+2/ (o¥v)(o*i)dr

But each term on the right must be non-negetive, by passivity or
the sum of squares, end hence zero.

See Widder, [Ref. 31, p. 80, theorem 10]. The theorem reads:

If £(t) belongs to L, in (0, =) then

2
(2) R

s.im. | £(t)e Prat
R

exists for o > O end defines a function F(p) which is analytic
for o > 0. Moreover

F(p) = [ “e(t)e Pat(o > 0)

the integral converging sbsoclutely for o > 0 and

4:1.m. Flo+iw) = F(jo)

This is obtained as follows. Letting Ve be the voltage

across the capacitor, plus at the top, Kirchhoff's voltage law
gives e = i+2(di/dt)+ve. Letting 1 and i_ be the current down
through the right hand cepacitor and reeistor gives, by

Kirchhoff's current lew,

=14, dvc/dt =1, v, =1,

Therefore 1 = v +dv /dt. Solving the equation in e for A
adding this to itself differentisted and equating to i gives the
desired result.
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43,

1k,

For the concept of a vector space see Halmos, [Ref. 32, p., 3], or
Birkhoff and MacLene, [Ref. 19, p. 162].
* *
It is alsc true that for ¢ > 0, S (P) = S(p ). This results from
exciting N with e, = EeP” and g, = Ee¥ ° with E real. Then
i - *

1,() = ¥ (2)BeP® end 1,(t) = ¥ (" )EF "
currents. Conjugeting iz(t) we get

1, (8) = ¥ (5 B

are the corresponding

but this must be il(t) as it is the response to e . Thus, since

E was arbitrary
*, *
() =Y, (p)

vhich gives the sbove stated result for S(p). % and Y are also
enalytic in ¢ > O whenever they exist, since for instance

z = (1.48)(1 -8)"t

and Z becomes non-analytic in ¢ > O only where (ln-S) is singular,
but (ln—S) 1s non-singular everywhere in ¢ > 0 if 2 exists (for a
rassive network), [Ref. 3, p. 119].

We comment that in the extension to exponential excitations, terms
of the forms eplt+epzt, pl#pz, heven't been allowed. This means
that the seperate natural frequencies can be individually con-
sidered. For instance in working with {17) we don't have to kill
off natural frequency terms by a suitable choice of initial condi-
tions, as is sometimes done, [Ref, 33, p. 418].

To see this form

¢ F BT DTy ~
Sp(t)-ej(t) =LZ; [Re(Ve™ " )Re(Ie )1!J(T)]d1

= f t[Re(EePT)Re(LePT)-EJ(T)i J(T)]d'r+ Lt'j Re(¥e" )Re(ZeP" Yar

ty

where tj is the left bound on the support of !ﬁ and éﬁ' By
choosing tjﬁdn with o > 0, by time-invarience, the second integral

tends to zero, while the first integral does also, since Y ’-lj
approximete the exponentisls, Thus
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Jj-jilg Eip(t)-sj(t) =0

Note that
it o < 0.

for every finite t and hence ep(t) >0 a8 ej(t) > 0.

the second integral on the right won't tend to zerg
J

Letting V, = |vi|e'j‘¥vi, I, = |1,]e ¥y

(18) becomes

g
Ep(t) =L Zlvil IIiIeZcr'l'[cos(&u'H < v+ X Ii)+cos( X v,- X I:L) lat

t 1 VT
= Re —— 20T = ezPT]d'r
Z 2
%
¥ ¥
- 11: Re [~— 4 = ed2ub 20t

Letting t-» through instants when the second term essumes its
"minimnm" requires, Bs ¢ > O

Re (YD) - 3ri%al 2 0 11 wfo
or
(Re ¥)(Re I)>0if 0w =0
By choosing real V and I and combining terms, this latter requires
Re T\:*_]; > 0 for = 0 and thus & pessive network neceesarily has
Q(p) > 0 for o > O where
re (Y1) - Y| ifw=o
p) = .
ReVIifw=0

Clearly this requires Re '\*r I>01ino > 0 or if Y exists
Re[V YV] > 0 in ¢ > O (for any complex V), which is the essential
poeitive real condition. Writing

Re ¥'I = 3I¥1+ ¥Y) - §I¥1+¥1+ Vv + Pyl
+3¥1 - ¥ - ¥y«
=¥+ W 1 - HY - 10T - 1)

= %[i[ + i]*tln-g*sllx +I]>0
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45,

by the r'easoning asbove (lT). Thus we know that every linear,
time-invariant, solveble N has & scattering matrix S(p) ang

1) 8(p) is analytic in g > 0
2) S*(p) = S(p*) ing>0
3) 1,-8(2)s(p) tn o> 0

If 8 is rationel ang satisfies these conditions it can be

synthesized by known methods, [Ref. 34].

The relation C,~C, is a true equivalence relation, see [Ref. 19,
- 155]. That is

€~Cy
Cracz irplies szCl
Clecg, 02%03 implies Clac3

(Added in proof) Thig is not the case ag the following counter-
examples, which we previously exhibited, show, [Rer. 36, p. 36].

For this let z(p) = p2 or Z(p) = [b 0].
-p 0
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