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Abstract

Use of the Fibonacei recursion relation and
completeness of the corresponding binary coefficient
sequence yields complete ternary and quaternary
Fibonacci number representations suitable for constru-
ction of efficient Fibonacci computers.

I. Introduction

Multi-valued logic has a rich history both in
philosophi¢al and computer hardware contexts with an
extensive bibliography built up even prior to 1965.1
Since that time one finds it applied further in many
and varied situations, such as to neural model[ng2
and "possible" automata. Here we discuss it in the
context of Fibonacci computers thravgh an interesting
equivalence between binary, ternary and quaternary
logic as applied to such computers,

The Fibonacei computer has been introduced® as a
computer which performs calculations in terme of
Fibonacci numbers rather than binary ones. As such it
has apparent advantages for error correction because
of the reduadancy built into the numbetr base. Too,
it allows construction in terms of normal binary logic
hardware since any integer can be represented in terms
of the Fibonacci number base using only binary
coefficients3. Bur if one goes to ternaty coefficients
then special error correcting properties come to light,
with the Fibonaccl number base with ternary coefficients
having special advantages for detecting and correcting
burst errors.

Here we point out equivalences between some binary,
ternary, and quaternary representations of arbitrary
integers for new classes of Fibonacci computers. Since
finite sums are appropriate for computers, we investi-
gate the restrictlions imposed by finiteness, where
completencss within the range still helds. Along with
this investigation comes that of efficiency of the
representation for logic construction. In Section 11
we make these Investigations while in Section III we
briefly discuss further the significance for computer
systems.

IT.Binary to Ternary and Quaternary-
Fibonacci Number Representations

In this section we show the equivalence of binary
welghted and a certain ternary and quaternary weighted
Fibonacel base number representation.

As background we recall that it has been shown7
that the Fibenacci representation

m
» 1
jfz bjuj , bjE{O 1} (1)
where
uj=uj_l+uj_2 , uo=0, ul=l (2)

is a complete representation of all positive integers
in the range [0,M],
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where

M= U sl (3

This holds true for various initial values or "secds, "
A=u0 and B=u1. with the one chosen in (2) glving the

Fibonacci numbers and A=2,B=1, giving the Lucas
Numbers. Thus any positive integer N,0=N<M, can he
expanded in the Fibonacci representation using bhinary
coefficients on the Fibonacci numbers, Fl=ui' as a

complete base or radix set.

l. A Quaternary-Fibonacci Number chresentat[pg

We use the Fibonacci number sequence to provide usg
with the radix numbers in the weighted binary represcn-
tation of (1)

2]

= 7 F,
N jiz bj 3 (4)

of all positive numbers less than or equal to M=Fm+7—2.

From the characterizing property of the serics we have
the difference equaticn applied to odd subscripts, as
follows:
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which has only even subscripted terms on the right.
Therefore, substitutions will convert the binary

o
representation I
j=2
subscripted Fibonaccl numbers, an, appear, each with

thj into one in which only even

coefficients

d =¢b

n 2n L

201 Pamer » PTLZa.ook (8)

Indeed the (m-1) bits (bz‘b3"°"bm) give

m

Z b,F, =b F+b.F.+...4b F
m m

3=2 i 272733 (9a)

= (b2+b1—b3)F2+(b4+b3-b5) Fa+(b6+b5-b7)F6+
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K
= Cattaa )T (9c)
K
= T 4,F
ey L2 (9d)
m m+]
where k = 5 if m Is even, or k = -5 if m is odd,
which yields (8) with b1=0, and bm+l=0 (9e)

The possible values of d1 are shown in Table 1.

Table 1
Coefficient Relations

bogar by By | Y
0 0 0 0
0 0 T
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 2
1 1 1 1

1t should be observed that the transformation of the
bi% to the di's ts a many-one transicrmation, showing

the added redundancy in the binary representation. We
see that di are quaternary (four-level) digits, and

the k-digit representation.

£ 4,F

{dd,...d)
i T R

K (10)

{s a complete representation of all positive numbers
in the range (0,M), (where M=F_ .-, m=2k or m=lk-1},

using only k gquaternary digits, i.e. one half the
number needed in the binary representatfon. An
important point to make, however, is also that by

using only cven subscripted Fibonacel numbers as radix
numbers, negative numbers are also nmaturally represent-
ed by simply extending the representation to negative
subseripts. We should recall chat 1-‘_21 = -in for the

Fibonacci numbers.

The range of integer numbers represented has now
been extended (doubled) to (-M,M)., The representation
is complete and may be formulated as

k
L

d,F, ~ (d_d d_jdod...d )

1F2 B L A" 20y

1=-k

Notice chat the digit d, is superiicial because
it weights on FO which is zcero (F0=0 for the Fibonacet

series), and therefore it does not contribute any-
thing to the sum. The essential quaternary-ibonacei

83

representation of all fintegers in_the range (-H,M) is
(d-kd—k+1"'d~ld1"‘dk) and uses 2 k digits.

It may be observed here that this representation
is peculiar in that the left half k digits are all
zeros in the representation of a positive number,
while the right half k digits are all zeros in the
representation of a negative number. This supggests a
more economical representation using only k+] digits

(dodld2"°dk)

where d. 1s used to denote whether the positive sub-
scripteg or the negative subscripted Fibonacei numbers
are used correspondingly with the weights d1d°"'dk'

The digit d0 may be used on a control input line into

a Fibonacci number generator (a circuit or a software
program) to control the peneration of the sequence of
positive or of nepative subscripred radix numbers.
Being a four-level diglt, d, also allows the control of
two more conditions, such as the representation of
"sero" (without need to generate, set or check the
weights dldz"'dk) or the designation of an arithmetic

overflow condition.

2. A Ternary-Fibonacci Number Representation

In the binary representation

m

L b,F
jm2 41

we may observe a possible transformation of a scquence
...+1'Fj_ +1-F +0'FJ+1+...intu its equivalent ...

1 i
+0°F, ,+0-F +1+F ...i.e. of a bit sequence...l110...

[ M AT
into the bit sequence ...00l... . (Notice that this
transformation denctes the redundancy that exists in
the Fibonacci representation of integers}.

This property may be used to eliminate the
passibility of encountering the 001 combination in the
bits (b21_1b21b21+1) in Table 1. 1If every 001 triplet,

which is encountered in a sequence of odd-even-odd
subscripted weights, bj' in the binary representation,

is replaced by the triplet 110, then the possibility
of di=-1 is eliminared and the k-digit quaternary-

Fibonacecl representation is reduced fnto a k-digit
ternary~Fibonacci representation

k
£ CjF2i — (clcz...ck) {12a)
i=}
where
€%y s 17 P2441 (12b)

now takes only the values 0,1 and 2.

111. Observations and Discussion

The binary-Fibonaccl number representation,
m
I b,F,, is complete in the range of the firsc F_, -1
j=2 4 w2
nonnegative integers, i.e. in the representation of the
integers 0.1,2,...,Fm+9—2. The representation uses

(n=1) bivary ceefficients (weights) hi. Since Zm-]

binary combinations {codey) are available for the
representation of the Fm+7_1 integers, the redundancy



galned by this representation has an "average multi-
plicity factor", Q, equal to
2m—l
=7

(13)
w21

This multiplicity is dependent on m and its normalized
rate of change may be computed as follows:

2" 271 2m_1[2Fm+2°Fm+3'11
& = — - — = = = :
Foba~l  Foup~l (FLo-D) (F L 5-D)
2™ -1 F -1
= B 0 -0
(Fm+2—1)(Fm+3-1) Fiql (14)
Therefore
F -1 3 F
%? = Fm T Fm =7 2F in large m. (15)
w3 mtd mbl mi2

In the binary to quatenary transformation some of
the multiplicity, therefore also redundancy, 1s absor-
bed, as demonstrated from Table 1. We observe that
more than one bit-combination for the triplet

b21—1b21b21+1 may correspond to the same value for di'

The same is true for the binary to ternary transforma-
tion, which is again represented in Table 1 if we
delete the second row.

The elimination of the second row of Table 1 in
the binary to ternary transformation implies that a
number of binary combinations are discarded as "out
of code" in the transfermation, which therefore
reduces the available multiplicity in the representa-
tion of the natural numbers.

Here we have primarily treated number system

ideas. Hardware and fault tolerant system ideas are
discusged in part, for binary implementations,in
tloang. We will later treat ternary and quaternary

implementatlions and extensions in terms of hardware
and fault tolerance.

In summary we have shown useful equivalences
valid for F¥ibenacci computers which can be realized
by hardware. For example in the ternary case the
cireults of [B] can be readily adapted to Fibonacci
computers. Thus the fault tolerant computing
possibilities of Fibonacci computers may be rcalized
by implementing the representations treated ahbove.
We point out that a very readable paperback on the
properties of Fibonacci numbers is that of Hoggatrt”,
it being a book which makes the topie area available
to engineers and scientists at all levels.
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