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The Foundations of Network Theory

By R. W. NEwcomB
(non-member)*

Prologue.
Beware of the pase;
Within it lie
Dark haunted pools
That lure the eve.
James McAuvrey (Ref. 1),

1.—Introduction.

During the last ten years considerable interest has been shown
in deciding just what networks are and what are their properties.
This appears to have been prompted somewhat by the fact, as in
my own case, that teachers have been bothered by fundamental
questions concerning the types of networks being discussed. Thus,
for instance, one is often pressed to determine if a network is linear
in deciding if linear theories can be applied.

Previous work in giving precise formulation of network questions
seems to begin with the 1952 work of McMillan (Ref. 2) who gave a
formulation for linear, passive, time-invariant resistor-capacitor-
inductor-transformer networks through an allowed pair formulation,
This was followed by a Fourier transform approach to linear passive-
time-invariant networks by Raisbeck (Ref, 3) in 1954. Following
this Kopig and Meixner in 1958 (Ref. 4) and Youla, Carlin apd
Castriota (Ref. 3) in 1959 gave theories based upon linear operators
transforming inputs into outputs, again for time-invariant and
passive networks. The theory of Youla er al., which was extremely
rigorous, being based on Hilbert space concepts, was then extended
to distributional inputs and outputs by Zemanian in 1963 (Ref. 6).
There are, however, devices which one would customarily con-
sider as networks which fall outside the considerations of these
theories, For instance the configuration of Fig. 1 defines two
strange networks, for the choices y = - 1, which were essentially
introduced by Tellegen in 1953 (Ref. 7).
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Fig. 1—y = 1 = nullator.
y = =1 = norator.

If the gyrator in the middle is defined by the impedance

0

matrix Z= [ ?] » with port two at the right, then y =1
=y 0J

defines the nullator which has v = { = 0 while if y = — 1 we have
the norator where v and 7 are completely independent and arbitrary.
By observing Fig. 1, most people would call the configuration a
network for these values of the gyration resistance y, especially
since the norator and nullator have been successfully used for

synthesis by Carlin and Youla (Ref, 8).
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As a consequence of this circuit and because of the limited
nature of the above theories we will present here a theory which is
based upon the ideas of McMillan (Ref. 2) but which will hold for
more general networks, as well as non-linear and time-varying
ones. Included in this will be definitions of the main ideas that
occur in network theory. As a background we will assume familia-
rity with the common notions of circuit theory, say as contained in
Newstead (Ref. 9). For conciseness, some results, such as those
of the examples, will simply be stated. For many of these, through
Section 3, a reader finding difficulty filling in the gaps may wish
to refer to Ref, 10, but generally the steps should be clear. In
several places we refer to the results and notation of Laurent
Schwartz’s theory of distributions (Ref. 11). The reader un-
familiar with this theory can probably still catch the physical
significance of the results by ignoring the unfamiliar words.

The purpose of the paper is then to give a strengthened theory
of networks on a rigorous basis. We, however, take this oppor-
tunity to announce the time-varying scattering matrix, giving con-
ditions for existence and showing its apparent significance for
synthesis in Section 4.

2.—Mathematical Model of Networks.

Consider a device as shown in Fig. 2 which is perhaps a con-
nection of sub-devices to which there are connected 2 access points
associated in pairs, each pair of which we will call a port.

bt
Fig. 2.—An n-Port System.

With the 7th port we will associate two variables f; and g,
which are formed into column s-vectors f, g. For example,

with the superscript tilde, - , denoting matrix transposition
f={fi.. fz]- We will place the physical restriction that each

entry in fand g is a real valued, infinitely (continuously) differen-
tiable function of time 7 which is zero until a finite time z, such as
is illustrated in Fig. 3(a).

We denote this by fe@h ge@.,. where we will customarily
drop the boldface in the l-dimensional case. That is %D, is the
space of real valued n-vectors which are infinitely differentiable and
zero until g finite time, If an n-vector f in GDJ, 15 also zero afier
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a finite time, as illustrated for n = 1 in Fig. 3(5), we say it belongs to
@, written fe@. We also denote the set of all real n-vector distri-
butions, that is, impulses, doublets, ordinary functions, etc. by @',
that is, £ if £ has all its eneries as distributions. Then

DcD,cD:
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Fig. 3.—(a) Typical fD,
(b) Typical <),

By the conjugate relation we will mean that we will require

tf and g to be chosen such that the total power input p(z) is given
y:

() = e

The given device places constraints G, on the variables f, g

These constraints essentially define a system S A system can then

be mathemarically represented as a set of allowed pairs [f, g] of
variables satisfying the system constraints C,, which we will take

to include the @.,. as well as the conjugate relation.
This can be precisely formulated by Eq. (2):
8= {f, gilfC.g)

which states: a system S is the set of pairs of variables [f, g]
such that f and g satisfy the defining constraints C,. If [f, g] is
a member of this set, [f, g]eos, it is called an allowed pair. For a

control system some of f and g are inputs, some are outputs, and
a transformation maps inputs into outputs. However, for a net-
work some variables might be considered as inputs in one context
but not in another. We are then led to:

if
! f = v [vOltages] ...covvvvvnniireiiiiinierereneeraeees (3a)
B = ifourrents] ..ocoovierriiiiiiiiiiceier s (3b)
then S= N (network (n-port)]  evvrvverrrerrern (o)
That is, an n-port network N is defined by :
N = {[V,i]lVCai}  vevrrrveeeeeeerernnn, ad)

The n-port is conveniently represented by the symbolism of Fig, 4.
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1

Fig. 4.—n-Port Representation.

We remark that general networks can be defined for which
access s at terminals which need not be associated in pairs (Ref. 10),
but for our purposes here this is unnecessary. A similar situation
holds for the creation of networks at some finite time instead of
t ¢ = — co as is implicit in the atove (Ref. 10).

As an example consider a resistor N, of resistance r. If the
current is prescribed the voltage is given by v = ir thus:

Ny= {[v,i]|v = ir}
"The allowed pairs for the resistor are of the form [ir, ] for any § e@+.
Another example is the (/ + m)-port transformer N, defined by

Nr= {{v,i]lv = ‘:VI:Is i= ‘:il]n vi=Tv, iy= — Ti;}
AL! i,
Here the mx! turns ratio matrix T() = [z,(2)] is assumed inde-
pendent of the variables, and the variables are partitioned into
l-vectors v,, i, and m-vectors vy, i3, ‘The transformer is illustrated
in Fig. 5, where Belevitch’s representation is given in (g) and a
compact symbolism is given in (}). We note that for the trans-
former the i’s are completely independent of the v’'s; thus there
is no transformation which maps the i's into the v’s or vice versa.
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Fig. 5.—( + m)-Port Transformer Representation,

As can be seen by observing these examples this definition of
a network is somewhat cumbersome to work with but it is extremely
general, allowing almost anything which can be described through
voltages and currents to be a network, The advantage of such
a description lies in the fact that the most general properties of any
conceivable network can be investigated on a theoretical basis.
This allows the conditions for validity of various descriptions to
be determined at first glance.

3.—Defined Properties of Networks.
The most important property of a network appears to be that
of linearity. This is rigorously defined by Definition 1.
Definition 1:
N is linear if for all [v,, i,] and [v,, i,]eN and for all real con-
stants o
alvy, 1,] == [avy, of,]eN
Vi hi] + [Va 1y) = [v,+ vy i, + 1,]eN
Physically linearity corresponds to the notion of superposition,
As examples the transformer given above and the norator and
nullator are linear networks.

An important class of linear networks are those described
by an n x n impedance matrix z(r, t) through

crremrenesennni(4a)

v(e) = f °_°mz(:, Di()dr

where z must be such that ieGD+ implies v:GD+.

Linearity appears to be an jdealization but only recently have
a(ﬁyfkinc; of general results been obrained without assuming linearity
ef. 19),
The second notion of importance is related to that of continuity
and is here called by the name of solvability.

Definition 2 :
N is solvable if for all ee"’D+

e=v +1
is satisfied by a unique [v, i]eN.
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Here the voltage e can be considered as that applied to the
augmented network N, as shown in Fig. 6, where 1, denotes the
unit martrix of order » and represents » uncoupled unit resistors.

|
— VWV \———
e&o— 0 I

|

Fig. 6.—The Augmented Network N,.

Physically the concept of solvability corresponds to the notion
that a given e applied to the augmented network gives rise to a
unique current i flowing into the network. As examples the trans-
former and the gyrator are solvable while the nullator and norator
gre not, Further, the negarive resistor of resistance — 1 is not
solvable, nor is the ideal diode. However, almost all physical
networks are solvable. Another concept of interest is that of time
invariance which is precisely defined in the following manner.

Definition 3 :

N is time-invariant if for all [v, i]eN there exists a [vg, igJeN
such that for all real, finite 1

[v() i()] = vl + ), 1oz + X))

Physically this states that a shift in the time scale for the
currents results in a similar shift for the time scale of the voltages.
As an example the transformer is time-invariant if and only if the
turns ratio T is independent of time 7z, Likewise 2(z, ), below
Definition 1, defines a time-invariant N if and only if the argument
is t — T, that is z(t,7) = Z(t — 1).

The next definition has raised many controversies (Ref. 5).
We state what seems to us the most physically satisfying by taking
a passive network to be one for which the total energy input is
non-negative for all time,

Definition 4:
N is passive if for all [v, i)eN and for all finite ¢

g =["_V@igds >0

As examples the transformer is passive even if the tumms ratio
actually varies with time. The norator is not passive but the
nullator and gyrator are.

Closely related to the concept of passivity is that of losslessness.
Physically we can consider the augmented network, seeing that if
e{r) tends to 0 at £ = co for a lossless N then all the energy flowing
into N will eventually be dissipated in the unit resistors at the
input. Consequently, at infinity the energy into N will also be
zero, This is the content of Definition 5, where for convenience
we require solvability as well as passivity.

Definition 5:
N is lossless if

(P) N is passive and
(S) N is solvable and

(L) For every eeGD, e=v+1,
o) = [~ Vimicarap = o

As examples, the transformer for any time varying turns ratio
is lossless as is a linear time-invariant capacitor whose capacitance
is non-negative. The nullator is passive but not solvable, hence
not lossless.

Physically reciprocity means that responses to excitations are
invariant to an interchange of response and excitation points. In
terms of the pairs which we are using, this is phrased in the follow-
ing way.

Definition 6:
N is reciprocal if for all [vy, i;], [Ve, ig]eN

F;l.'ii _';‘!'il.

Here * denotes convolution, As examples, the transformer is
reciprocal while the gyrator is not. The norator is non-reci-
procal as is the ideal diode which is also non-linear,

The next definition has philosophical content but, as we will
see, for linear passive networks the property is a consequence of
solvability. Antecedance is closely related to the concept of
causality, the latter of which means that no responses can occur
before an excitation. However, no mathematics is capable of
stating what is a response or what is an excitation, at least in our
opinion, and consequently we follow the ideas of Bunge (Ref. 12)
and refer to the conceprt as antecedance.

Definition 7 :
N is antecedal if for all fixed ¢, there exists [0, i(2)], [v(£), 0}eN
for — oo < £ < 1y and for all such pairs

[0, i(¢)] eN implies i(r) = 0 forallz < ¢,
[v(z), 0]«N implies v{z) = 0 forall ¢ < ¢,

4.—Derived Properties of Networks.

Having defined and used the allowed pair formulation to
formulate precisely the properties of networks, we can specialize
to certain classes of metworks. In the linear and solvable case
we can obtain descriptions which are much simpler to work with.
These will be somewhat familiar, but more general than customarily
met.

The first result is that every linear and solvable network N
defines, through the augmented network, a linear continuous

mapping 'y,,[ Jof eintoi. That is, when N is linear and solvable,
there exists a transformation 6y.,[ ] having the following three
properties, which hold for all real constants « and 8 and all e,
ey, ege@Jr and convergent sequences {e}, eke@+

i=Yle] .. vereerereerenns(11G)

ayfe;] + pY lea] = Yiluwes+ fead  cerereeneennn (115)

lim Yle] = Vi lim ed coeecreerrrenen (119
k—oco k=ro0

The first of these results from the fact that i is uniquely deter-
mined by e. Thus there is some mapping, called y,,[ ] which
transforms a given ee@.,. into i, the Jatter of which is in @.,. by our

network assumptions, Eq. (115) merely states that the augmented
network is linear with N. Eg. (11¢) follows from the fact that
[0, 0]¢eN, if the network is linear. Thus if we choose a sequence

such that lim e,= 0, then since 0D, lim v,= — lim ;= 0 by
the uniqueness incorporated in the solvability constraint, here
e,= v+ 1. Then, iflime,= e # 0 we have yu[lim {er— )] =
=0 =1lim Y fe,~ ] =lim Y, [e,] — ¥,[e] which is Eq. (11c).
The augmented network then defines a linear continuous map
of eeGDCGD_; into ig +CGD' in which case a result of L. Schwartz
(Ref. 13) shows that there exists an n x » matrix y.{z, 7) such that:

i) .—J'T'my,(r, wJe(s)dr
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for all eeD. Here ¥i(t, T) is a matrix of distributions in two

variables called the time-varying augmented admittance matrix
and the integral is a familiar short-hand notation for an unfamiliar
distributional mapping precisely defined by Schwartz (Ref. 14,

p- 221). Since GD is dense in @', for any ee@’ there exists a
sequence {e,} with e =lime,. By taking:

19 = tim [7_yole, et = [7_ 3.2, e(dr
k=roo

we can extend N to those ee@'for which this limit exists in the

distributional sense. In particular this will always be possible
when e consists of impulses, in which case we see that the {, §
component of y,(z, 7) is physically the current entering port i
of N, at time ¢ when an impulse of voltage is applied at port § at
time 7, all other ports of N, being unexcited, that is short circuited.
Since v =e — i, Eq. (12a) shows that:

...... (12b)

i) = f “w[a(z — = Valty e errerreeerenn. (120)
where 8 is the unit impulse,

Before proceeding it is convenient to introduce some more
notation. We define a = A<b and C = A:B for n x n matrices
A, B, C and n-vectors a and b by

a(t) = J' fmA(r, $b(r)dr = Acb

ci, 1 =f°° A(t, NB(A, 7)dA == AcB ............(135)
—00

The second of these is often referred to as Volterra composition,
the first being commonly referred to as a superposition integral.
The operation of forming either of these we shall call composing.
The o in AcB can be treated as a multiplication with 61, acting as
a unit in the resulting algebra. Thus we call A-! an inverse of
A under compesition if :

A A = AcA'= 5t — )y e, (13¢)

In this notation :
Imyrce e (14a)
v=(Bli—= ¥uoe i (148)

Since any network possessing such a y, must be linear and solvable,
we comment that a necessary and sufficient condition for the exist-
ence of y,(t, 7) is that N be linear and solvable.

The augmented admittance, although containing the proper-
ties of N, is more characteristic of N, than N. We can thus pre-
compose Eq. (14a) by (61,— y,) and Eq. (145) by y,. After noting
that these are equal we see that:

Yao¥ = (Bla— ydob  coeeevrricieiienn, (15a)
which is a special case of the gemeral description :
asv=bel ., (155)

Here a and b are now square matrices.

Consequently any linear and solvable network possesses a general
description ; however, other networks such as the — 1 resistor
do too. This latter has v == — §oi = — i, It is convenient to
allow non-square matrices a and b in Eq. (15b), in which case the
nullator can be described by [0] op = [6] ot, The general de-

é 0
scription is extremely convenient for setting up network equations,
for instance the transformer has :

‘T wl ] s [

where 0, is the mth order zero matrix.

From the general description we can derive all the standard
descriptions. For instance we can pre-compose by a non-singular,
under =, matrix ¢ to write

(cea)ov = (ecb)=i

which in fact shows that a and b of Eq. (156) need not be unique,
since c-a serves as a new a. Choosing ¢ = a~1 yields the time-
variable impedance matrix z(z, 7)

v = zsf
z =a"tsb

Sim.ilarlly, the time-variable admittance matrix y{z, ) results from
c="b"

y=b"1ea

Because of its apparent importance for synthesis, we wish to
draw attention to the time-varying scattering matrix s(z, T). For
this we define the incident and reflected voltages for N by :

vi=vdime e (18a)
W=v =1 i, (18b)
or
V=V v (18¢)
Tmviev (184)

Inserting this last pair of equations into Eq. (15b) gives as(vi+ v*)=
=bs(v'— v") or

(b + a)ov'= (b — a)v

If by definition s(z, ¥) maps incident voltages into reflected ones,
that is if
V"= gov!
then clearly :
s=(b+a)"'eb —a) reeeerereenees(106)

If we further make the choice of a and b given in Eq. (152), direct

substitution into Eq. (19¢) yields :
8t 1) =2 8(¢ — Dly— 294(s ) vorerrrrrrerrenn.(19d)

From this we can conclude that N has a time variable scattering
matrix if and only if N is linear and solyable,

Eq. (194) usually gives an easier method of calculating s than
Eq. (19¢). As an important example consider the transformer
(! + m)-port, augmented as shown in Fig. 7.

B u
{O cw T e

g
Na

Fig, 7.—The Augmented Transformer,

This is described by e;=i;+ Tvy ey= — Ti,+ v, If the
second of these is solved for v, and inserted into the first we get
e =i+ :lu"l‘il-.-— $e._.. Inverting this yields i, as a function of
¢, and e,, and i, is found from i,= — Ti,. Thus

i

= (L+ TD)-te,— (I+ TT)-'Te,
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fi= = T4+ TN ley+ T+ T Te,

When the coefficient matrix in this, with T = T(¢), is multiplied

by d(t — 7) it is y.{t, t). Eq. (19d) then gives for the scattering

matrix of the transformer, using a superscript — 1 here for the
normal matrix inverse ;

8(t, 7) = 8(t — 7) [a,ﬁr)-lc"r'r -1

" 2L+ TT)“: 21a)
2T+ TT)?

(It TH(la— TD

where we have used T(1,-- ?’l‘)“= (1,+ Tﬁ-lT which can be
checked by cross-multiplication. A special case of interest is when
T is orthogonal, that is mx m and satisfying F'f(z)T(r) =1, In
this case :

S(ta 'l') = 8t — -r) 0, T(:)
[T(t) oﬂ ] .................... (Zlb)

The importance of these lies in their use for synthesis, as can
be seen through Fig. 8 where an (7 -+ m)-port of scattering matrix :

() = l:zu zu]
Za ZIin

partitioned as the ports, thatis X, ;= nxn, X .= nxm Loy=mxn
and X,0= m x m is loaded by an m-port N; of scattering matrix s,.

[ O

F.Ln Nn m ) Fm N‘!
s L/

Fig. B.—Terminated Network,

Since the reflected and incident voltages are interchanged
for the final m ports of Ny and N,, because voltages are equal but
currents are negatives, solving equations of the form of Eq, (195)
gives :

8= I+ Lipse(dln— Zyee8)1e Iy

Some special cases of interest are when X,,= 0, with ;= 0,,
when N is an orthogonal transformer, and when N; is a set of m
uncoupled +- 1 resistors :

8 = E];“s]" E“ if z“ = {},, E“,= ) T~ (240)
81, 7) = T(O8i(t, )T(x) if Nr= orthogonal transformer ...(245)
8 = zu if 8= 0,,‘ ..................... (240)

The first of these shows how we can “* multiply ” scattering matrices,
cither on the left, if ¥4,=1,, or on the right, if X,,=1,. Such
multiplication has been used to advantage by Belevitch (Ref. 15)
in the synthesis of time-invariant networks. Eq, (24b) shows how
‘ congruency ™ transformations on s can be realized in the time
domain. The last of these, Eq. (24¢), shows that if we wish to
synthesize a given s, we could border it such that ¥ of Eq. (22)
corresponds to a lossless network. Terminating in unit resistors,
for N, of Fig. 8, shows that s is realized at the input. This is
another method that has been used advantageously by Belevitch
(Ref. 16), as well as by Oono and Yasuura (Ref. 17), in the time-
invariant case. Although some general time-varying results obtain
from these ideas, as will be reported elsewhere, research is still
in progress. However, the ideas can be illustrated in the analysis
of the network of Fig. 9.

If we assume T(¢) = [:n(t) 1,4() ] orthogonal, that i8 .= 1,,,
tay(f) tan(r)

tyy= — Ity I13%+ 1),=1, then the capacitor loaded 2-port is
described by :

I, 1) = [‘11(3)

—‘u(‘):} [s.(r, 0 ] [ (7) ‘u{"’)j|
£4a(2) 1,0 0 s 7 —tyalt) 2y(7)

tlz(t) !
| E_ %

taalt) ¢

[

Fig. 9—Example Network.

4 (t)

3 ——

t2)(t)

A

Here, by the use of the Laplace transform for which S(p) =
= (1 + Y(p)-1(1 — ¥(p)) = (1 — p)/(1 + p), we obtain the scat-
tering coefficient for the capacitor as :

sty 1) = — 8t — ) + 2eThut — 7)

where # is the unit step function. When the unit resistor is con-
nected, Eq. (24c) applies and we have:

= [ 7) - Az,
) O P R 0 = )+

Finally for a linear solvable and passive network N we outline
the proof that N is antecedal. The idea follows that of Youla
(Ref. 5, p. 111). We have:

t ~ ' ~ 4 -~ )
f ' Eetarae =_[_°°v(f)v(f)df + f ' dengar +
+2 J' '__oc’iv'(r):(f)df ..(25)

When e, v, ieGD.,. all integrals exist for finite r and when N is pas-

sive the last term is non-negative. Since the other three terms
are always non-negative, if the left side is zero all terms are zero.
Thus, if we let e(t) = 0 for ¢ < 1, #, an arbitrary but fixed con~
stant, then letting ¢ < ¢, in Eq. (25) shows that i(z), as well as
v(?, is zero for r < #,. Intuitively then Eq. (124) shows that
Ya(t,7) =0, for ¢ < 7, a fact which can be proven rigorously
through the use of “ support ¥ and scalar product arguments from
the theory of distributions (which we however omit for concise-
ness). Consequently, by Eq. (19d):

s{t, 7) =0, for ¢ < ~ when N is passive  ............(26)

This shows that vi{t)=0 for ¢ < ¢, when v¥{(t)=2e(r) =0
for ¢ < ¢, in which case Eq. (18c) shows that v(f} =0 for ¢ < ¢,
when i() = 0 for ¢ < 7, and vice versa., Definition 7 then shows
that N is antecedal, if it is linear, solvable and passive.

Eq. (25) also shows that if e is square integrable, that is:

J = Snetdr < oo

then v and i are also square integrable if N is passive, and thus
also vf and v* by Eq. (18). Now if N is time-invariant, then s(z, v)
is a function only of the difference argument 1 — = (Ref. 13). In
this case we can take Laplace transforms of Eq. (195), which is
now a convolution, giving :

Vi(p) = S(p)Vi(p)

where p is the complex frequency variable and S(p) is the Laplace
transform of s(z,0). In the passive case then, choosing 2e = vi
square integrable, we see that every entry si;(p) in S(p) is the ratio
of Laplace transforms of square integrable functons. By a theorem
of Laplace transform theory, such transforms are analytic every-
where in the right-half plane, Re p >0, and almost everywhere
on the imaginary axis, Re p = 0, Re denoting the real part {Ref. 18,
p. 80). Consequently every lineag, solvable, time-invariant and
passive network has a transform scattering matrix S(p) which is

veeend(2D)
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analytic in Re p > 0. A simple consequence of this is the fact
that the linear, solvable, time-invariant network defined by:

o() = _[ ojme“—""u(x ~ e (r)dr

can not be passive, since &'%u(r) has no Laplace transform !

5.—Conclusions and Discussion.

This paper outlines a rigorous theory of networks, set up with
the synthesis of time-varying networks in mind. Although the
definitions of network properties given hold when considering any
type of network, they should not be looked upon as the only possible
ones or even the most appropriate. For instance it may be desir-
able to generalize the notion of solvability such that it is more mean-
ingful for nonlinear networks. Inany event, using the notions given,
very general results concerning time-variable networks can be ob-
tained. Here we merely introduce the scattering matrix, outlining
its apparent importance for synthesis. However, it is possible
to give more of the properties of s(t, v) for passive networks, this
being reserved for a more detailed treatment elsewhere.

The definition of a network and those of its properties are
open for many philosophical discussions, which space however does
not permit. Nevertheless we reiterate that we feel the emphasis
at the beginning of a theory of networks must be placed upon pairs
of variables {v, i, in place of upon input-output concepts. ‘Thus
the input to a resistor in one usage might be the current with the
voltage as a response, while in another context the voltage might
best be considercd an input. The symbolism [v, i] is intended
to place equal weight upon v and i, and all the definitions reflect
this. Consequently the principal of duality can be immediately
used in deriving results. We also point out the necessity of placing

a restriction on the domain of definition of the variables, our @J,

constraint. If we had asllowed arbitrary distributions from the
very beginning, then many of the familiar properties would no
longer be valid. For instance the linear time-invariant inductor
would not be reciprocal since {;= u gives v,= 8 while i,=J =
constant gives v, =0 and Ié+«J = II 3£ 0 = O*y. Further, im-
pulses can not be applied to the non-linear resistor r = i, nor step
functions physically to ideal differentiators.

Some other important concepts can also be introduced, such
as circuits as inter-connections of networks following Kirchhoff’s
laws, and equivalent circuits, that is circuits which yield the same
network. Since emphasis is placed upon terminal behavior, a
network can then be looked upon as an equivalence class of circuits.

Epilogue.

But build on the past:
Discard the bad,

Make use of good

In which it's clad.
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