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Abstract
The Drazin inverse is reviewed and it is shown that linear time -‘invariant semj-
state equations can always be solved by its use whenever a solution exists {which
is the case when proper initial semi - states are specified). Thus, a techniqua
is given for setting up the semi - state equations for all finite linear time - in-
variant circuits. The concepts are illustrated by a simple circuit example.

l. INTRODUCTION

At this stage in the development of network and
systems theory state - variable descriptions have
become well recognized, playing a dominant role
because of their convenient first order form. In
the case uf linear time - invariant systemas, once
the state - variable equations are obtained analysis
proceeds simply through the use of the resuiting
exponential {of the A - matrix) impulse response.
And perhaps more importantly convenient designs
pruceed through creation of the state - variable
equations, as for example in the very practical
design of active filters.

However, the state - variable equations of a cir-
cuit do not always result from a straight forward
analysis of the circuit, Indeed because of pos-
8ibly hidden dependencies between dynamic ele-
ment variables, such as result from capacitor
loups or inductor cut - sets, it may be trouble-
some tu chuuse an independent set of state - var-
tables or to find the transformation which takes a
cvircuit description into state - variable form. To
be sure a good portion of the early literature was
devoted to the problem of "degrees of freedom' for
whivh the theories eventually led tu state - var-
iable equations.

Here we show that some of these "problems” with
state - variables can be avoided by considering a
niure basic set uf equativns, equations which we

call semi - state equations. Basically semi - state
equations are state - type equations with a possaibly
singular operator on the derivatives of the {semi -}
state, As will be seen in Section III, every finite
circuit has a semi - state description which is di-
rectly, and very simply, obtained through use of
the circuit graph,

Now, what has led us to consider the semi - state
equations is the existence of the Drazin inverseand
its use in solving semi - state equations. In part-
icular if the semi - state equations have a solution
this solution cau be found, and in an explicit and
constructive manner, through the use of the Drazin
inverse. In short, every finite time - invariant

' circuit can be solved through the use of the Drazin

inverse on the semi - state equations, the latter
being simply set up and the former being readily
calculable.

In Section [l we review the Drazin inverse while in
Section Ul we introduce the semi - state squations.
In Section IV we illustrate the concepts upon a
simple example. We asaume a standard knowledge
of the graph theory of circuits and similarly of state
variable theory, such as inf1J or [2].

1I. THE DRAZIN INVERSE

At this point we define the Drazin inverse, this
being the unique generalized inverse which satis-
fies equations {II-la-c), Its nature is exhibitedin
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terma of matrices by decomposition of a matrix
into a nonsingular and a nilpotent part at equa-
tione (II.3a,b). Finally the eection ends bygiv-
ing at equation (I[-10) the general solution of lin-
ear time - invariant differential equatione in
terms of Drazin inverses,

Given any associative ring R, as the ring of nxn
matrices with real entries, Drazin[3, p.507 ]
calls an element a, acR, "pseudo - invertible' if
there exists another element aD, aDeR, now cal-
led the Drazin inverse, such that all three of the
following equations hold

N P (LL-1a)

2™ ‘l+m‘D for some positive integer m
{II-ib}

aD = (aD)za {Il-1l¢)

In the case where the ring R is the set of realnxn
matrices the Drazin lnverse exists, and is u-
nique, for every matrix acR [3, p. 510774, p. 411].
And the least integer I for which (II-ib) holds

{(for m=1) ia called the index of a. We have

1+I)

rank (aI) = rank (a (I1-2)

while if 1= 0 then aD= a1l g the standard inverse
of a nonsingular matrix,

If ay is the Jordan form for a, then

-1 5

a=T "ajT, aJ=aNS+ aNP
where T is nonsingular, 3ng 18 nonsingular [of
rank = rank (aI) 1. + denotesahe matrix direct sum,
and anpis nilpotent (here this being a’NP= 0). Then
the Drazin inverse is given by {4, p. 412 )

Pl foar (1-3b)
That is, the Drazin inverse of a matrix a can be
found by inverting the non-singular part of the
Jordan form ay transformed through the similar-
ity traneformation defined by T which brings the
matrix a into this Jordan form.,

(I1-3a}

Turning to the use of the Drazin inverse in solv-
ing differential equations we follow the notationof
{5)in order to be able to quote results directly,
Thus, consider the vector differential equation

Ax + Bx=f, x(0.) = Xge f(t) = 0 for t < 0 (I-4)

where A and B are constant nxn matrices {as-
sumed real for physical systems' applications), x
is an n - vector, and x_, is ita initially specified
value. By definition, [%, P. 757], x_ constitutes
consistent initial conditions if a solution x(t} ex-
ists for (II-4) (for t>0, say],

It is known|[ 4, p. 418, Thm. 6] that Akt Bx = 0 has a

unique solution for consistent initial conditions x
if and only if there exists some constant ¢ for
which cA + B is nonsingular, Consequently, if
Ax+ Bx= 0 has unique solutions for consistent x
then there is some constant ¢ for which the fol-
lowing exist

As(ca+ B)'lA, Bz (cA+ a)'ls, T=(ca+B) {I-5)

To get a {feeling for why the solution to (II-4) has
the form it has at ([1-10) we take Laplace trans-
forms, denoted by the operator £0[*]. to get (where

8 is the Laplace transform variable) ]
(sA+BpLx] = Ax,+ 27(] (I1-6a)

Now, since (sA + B)-! exists for s=c it also exinta

, for all s with laf large enough in a half plane; as-

suming such a region intersects the region of con-
vergence of £ { f] we can salve ([I-6a) to get

2 [xit) ] :(sA+B)'1(Axo+-£|'f]l {If-6b)

This latter is evaluated through the Drazin inverse
in terms of the expansion [5,p. 753 )

(sA +B)"!= f'XDan'D 8)" 14 "éDun-KKD)
I ~—

x F (-0 @BP)* (1-7)
where | is the nxn matrix identity and, recalling
from__abovg_, Iis the index of A, Using the facts
that A and B commute, as well ag their Drazin in-

verses [by (ll-la} ], application of {II-7} to the Xq
portion of {I[-6b) yields

5} (ca+ By

-1 ~ D ~De o1
(sA+B) Axo-.AA (sln+A B) X

(11-8)
I Lo lada'l Lol
HT (-l)k(ABD)ksk)ABD(l -AAD)x
k=0 n 0

which, as the left side vanishes at s ==, gives [ 5,
p. 756, Eq. (28} ]

(11-9)

ag the condition for xqg to be consistent. Convert-
ing (II-6b} to the time - domain, using (II-5}, {I1-7),
and (II-8), we finally get (with *» denoting the con-
volution, and 1(+)= unit step function [ used to guar-
antee the causal impulse response )

~ Du
x{t) ='X\AD3‘A =

~~D
(ln-AA )xo- 0

x0+B (In-AA }k)':‘o(-l) X
"AD”

ABDY T yee™® Bl WA ey

({AB) {I1-10)

It should be noted that A A is nonsingular, that is
of index [ = 0, then ln zAA~andno ™~ 'sare needed,
Inthis nonsingular case the middle term on the right
of {II-10)ie absent, the solution (I[-10) agrees with
classical results, and any xg is consistent [ by
(I1-93 1. Further, {I£-10) shows that x exists for
any distributional f for which the convelution ex-
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ists, in particular this is the case if?(t) has sup-
port bounded on the left {that is, is zero until a
finite t) [6,p. 367 ). It should be observed, as is
clasaical, that if f{t) # 0 {or t< @ then ingeneral
{x(0) X0 but if f{it}= 0 for t <0 then x(0-)= xge

III., THE SEMI - STATE EQUATIONS

In this section we use the general descriptionfor
circuit elements 76, p. 48 ]in conjunction with a
graph theoretical technique introduced for ad-
joint networks [ 7] to set up the semi - state
equations,

Coansider a finite linear time - invariant circuit,
that is, a connection of a finite number of linear
time - invariant capacitors, voltage controlled
current sources (VCCS's), and elements which
have equivalent circuits finitely represented by
these (as resistors, inducturs, transistors, gyr=-
rators,transformers, etc. [8]}, as well a5 in-
dependent voltage and current sources exciting
the linear circuit, If we denote graph branches
as in Fipg, | {where independent sources embed
1i
e

i,

. vl u
+ l 1 + ] :
v ! " V‘ ] i /L\
bi - e B O Vb
i 4+ Y
| 7O J| )

o

4

Fip. I, General Circuit Graph Branch with
Variables and Polarities

the terminals of linear circuit elements of vari-
ables v and i}, let there be b individual hranches
in the graph of the circuit. Let vand i betheb -
vecturs of voltages across and currents through
the linear circuit elements and vy, and iy, the total
(graph} branch voltage and current b - vecturs
with v and i the corresponding independent
source vectors, Proceeding in the time - domain
with p the derivative operator and assuming bxb
matrices M{p) and N(p) for the general description
we write the peneral descriptivon of the line.r cir-
cuit elements, branch by branch, as

M{pjv+ Nip)i = O - (1II-1)

Next we chouse a tree for the praph (the tree hav-
ing t branches) and let vy be the resulting t - vect-
or of tree branch voltages, iy the resulting £ -
vector of the L link branch currents and C and 7
the corresponding cut - set and tie - set matrices,
Then Kirchoff's laws for the branches and graph
are T

i i+i o= Ji {IlI-2a}

¥] -3 )

T
vb=v+vn =C v (LUI-2h

where the superscript T denotes matrix trana-
position. Solving for v and i through the right
sides of ([II-2a, b) and substituting the results in-
to ({ILI-1) yields

[MEIeT, Np) 7T x=Miplv, + Nipit_  (II-3a)

where

X = v
. t} (Il1-3b)

In terms of the unknown b - vector x ([I-3a) is a
set of b equations to be solved. We next putthese
into semi - state form.

In formulating the general description (Iil-1) letus
assume for convenience that equivalences have
been used such that only capacitors and VCCS's
are present in which case the only elements which
yield actual p dependence of M and N are the cap-
acitors {which may have come from inductor equi-
valences). Consequently, we inaure that the en-
tries of M(p) are polynomial of at most degreeone
in p by ueing an admittance description which sim-
ilarly guarantees that N(p) ie to be the hxb identity.
The left - hand bxb coefficient matrix in (HI-3a)can
thus be written

Gp+8 = TMip)c”, N(IFT]  (tlI-4)

where (G and @ are bxb constant matrices. The
describing equations (III-3a) are then

Gx +Ax=f, f=M(p)v +N(p)i_  (UI-5)

Note that in actual fact we did not need to use the

capacitor and source replacements made in order
to achieve these equations; the replacements were
merely a convenience (more theoretical than pra-
ctical} and (III-5) would have resulied even had we
not used this convenience.

Usually the actual input u is only a subset of the

possible independent source variables vg and ig,

in which case there is a projection matrix P such
that simultaneously

u= P [v ] {II1-ba)
8
i
a

and
- T
= P
l Vai E (LI-6b)
ls actual
This gives -
f= [ M(p), Nip}] PTu= {£+ P plu {LIL-T}

Likewise, there are matrices J and 4 which give
the output y as a linear combination of the semi -
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state variables x and the input u since any vol-
tage and current in the circuit can be expressed
as & linear combination of the tree branch vol-
tagea, the link currents and the source inputs {by
(Ol -2a,b)); y =3 x + Su

Surnmarizing:
Gx+ Ax=Ffu+8y (II1-Ba)
y=3x+Jdu (UI-8b)

where G, B, £, 8,5 ,J are real constant ma-
trices. These equations we will call a set of semi
gtate oquationa, with x the semi - state va riables,
for the circuit with input u and output y. Equa-
tion (I1-10) gives a complete solution in terms of
the Drazin inverse, withA =G, B=0, f=8u +
€4, for any consisteat initial conditions. Be-
cause there are many possible trees it is clear
that the serni - state equations are not unique for

» given circuit.

Note that if there are no capacitor loops, the
last & rows of G are zero in which case ip canbe
expressed, through the (2,1) entry of A {and
source entries) in terms of Ve (N(p) being the
identity). Further, if the output is dependent
only upon v, then the dimension of the gemi - state
can be reduced to the number of trae branches, t,
with x being replaced by v¢ with final semi - state
equations still being of the form of (III-8). This
reduction witl clearly show up in the following
example, Note further that by replacing voltage
sources by gyrator loaded current sources & = 0
can be guaranteed. Also, by using separate
braaches for the excitation sources, 4 = 0 canbe
assured. Finally if u is actually any aonsingular
linear transformation of actual voltage or cur.
rents of sources, as for example for scattering
variables, then (HI-6h) will hold (though P can
no longer be considered as solely a projection
matrix ). Thus we have our main result:

If the input u is a linear combination of

independent source voltages and currents

and the output y is a linear combination

of any voltages and currents in the cir-

cuit, then for any linear, finite, time-

invariant circuit there exists a semi -

state vector x and constant matrices

G,B,d, ¥ auchthat
Gx + Bx= fu (II1-9a)
y = 3){ (II-9b)
Subject to
x{0-) = x, (LII-9¢)
ult) = 0 fort< O (IlI-94)

then for any consistent initial conditions xgthere
exists for any distributional input u a unique semj-

state x, this being found via the Drazin inverse
via (II-10),

iV. EXAMPLE

Most of the important points from the previous
sections can be illustrated by the following simple
example.
Consider the circuit of Fig. 2a} where the input is
chosen as i, = u, the output is y= v, and thecir-
cuit graph ia taken as in part b} of the figurewhere
branches 1 and 2 are the tree {thus, b=4,t=£=2),
v

+ 0, «
PV c]+
i g E_v v
sl 1 m' 1 T 2
-
a) Circuit 4
1 3 2
b) Graph
Fig. 2. Example Circuit

The equations i, - -TTi and v, = CTv are written
as, with the subscript {J on a vector denoting its
entries are from vy ot i, (as opposed to v or i),

Ll ={o Bl My s oy
i a1 Lu o by, RN IEAN
i 1 o v, 0 1
i f, Lo Lv4 1 -l

(IV-1}

and the gene:al description M(p)v= Nipli= -Y(p)v
+ l4i= 0is

r-gl 0 0 vl +
0 -pC 0 0 v,
"B 0 0 0 £}
0 0 o -g4 V4J
(1 0 o o [4,1 = [o (IV-2)
1 0 0 iz 0
0 01 o ! 13 0
0 0 0 1f.i, 0

By simple multiplication,  using (IV-1} & (IV-2),
(McT, NTT]x = Mv, + Ni_, (Ill-3a}, becomes
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£y .
-8, 0 0 -t|{v ;51'1
0 -pC -1 Lf|v, 0
e {Iv-3a)
..grn 0 1 0-]'13‘ 0
-g4 g.‘ L] 1 L14Jb _0
while
usi_=P[v ] =[00001000]f+v] (IV-3b)
Bl ! 8
lE Lls

On writing the left coefficient matrix as Gp+ 8
and the right source term as P "y we have onmul-
tiplying by -1

[0 0 0 0 vl +
0 pC 0 0O vz
0 0 0 0 i3
_0 0 0D 0 14 b
g O Olvl=[-lu;
0 0 1 -1 \.'z 0
(3 0 -1 0 i, 0
|8y "By O -y, L0
x = vl R u-isl {IV-4a}
v')
3
Y Y
which is (IIl-B8a). Also we see
1 _ -
yv-[000g4] vy = (1-100] v
V2 Y2
'3 13
‘alb 40b
(IV=-4b)

We note that the last two rows of (IV-4a) can be

solved for iy in terms of Ver thus,
g =iy = le, 0 ["1 (TV-5}
i g -g v
4 b 4 4 2 b

Substituting into the firsttwo rows of (IV-4a) gives

[D 0] il (&t By gl (| T [“al]
0 Cilv; Bt By ByllY2 0

g b (Iv-6a)

v =[1 -1] v

2

{(IV-6b)

b
This m another set ot’ semi - state equations,
with x T =[vuv ] , obtainable directly as
the node - datumbequathons of the circuit.

To illustrate the use of the Drazin inverse we
apply it to this last set of semi - state equations.
We note that A= O + C hae index 1= 1 and that

= 0+ (1/C)., We have
-1 -1
+ = -
(cAtBY =T g+ g B4 =
{Bm™84 °CYBy (Iv.7)
-1,
[eCleyt g )t g lat g )] TeChg, 8y
I

which exists for ¢= 0 for example; choosingc=0
and assuming B nonsingular

5|

-

A= (ear )t azcigre )t To 1
' -1
10 lete,le,
N {IV-Ba)
B= {cAt B)'l B= {IV-8b)
= S -1
[=(cA+ B} °f 1'l(gl+ gm) B 1 {IV-8c)

l(s‘,-gmis;l

By writing A= [0 I} witha= (g 3413;1,
0 aJ
b= Cigt gm)“l, we find T = (’o t

12
| "2z f22

T)ab ¥ 0] T in which case 2= [0 (alpy?

0 (ab)'l

for A=

for any nonzero t Thus

12* 22
= 1

D, -1 -
A7= galgte )C g, X

-1

0 g4tgl+ 34} {Iv-9)

0 1

D

Note that ;D# AD[(u\+ B)'I}D =A"B=
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C 0 0 | counter to what one might
Em™8y By
expect. Then, since AAD = [0 1/a |
0 1|
D _ -17
AA“ =10 g,lgte,) {IV-10a}
0 1
D -17
1, - AA" = [ 1 -8 gt 8y ! {IV-10b)
L0 0
~
e-A 0 1 a-l[ e-tlab_ 1]-I =
0 e-tia.b E

ot
1 g, gt 34)-l[e-[g4(gl+ B t/Clet e )] ),

0 e-[g4(gl+ gm)tIC(g1+ 54)1

{(Iv-10c)
~D~

AaD A Bt _

L]

e-[g4(gl-f sm)t/c(gl+ g4ﬂ

(IV-10d)

{(Iv-10e)

from which x{(t) can be evaluated using (II-10),
For example if isl = 0 then

—— ~D~
x(t) = - AAD-A Bt

1] 0
2|

2 -1
vy0) o~ (B4 B I/Clapr g1 T, (gt 1)

1
(IVv-1la)
which ie readily checked directly from the

{single time - constant) circuit in this case.
Note that

Xg = [34(gl+ 34}“1J v, (0) {IV-11b)

1
in the consistentinitial condition vector in this case,
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V. DISCUSSION

In Section 1II we have shown that eve ry finite
linear time - invariant circuit has a semi - state
description, equations (III-8), which according to
Section II can be uniquely solved for consistent
initial conditions through the use of the Drazin in-
verse, as per equation (1I-10).

The semi - state equations have the distinct ad-
vantage of resulting directly from the circuit
element laws through the application of Kicchholfts
laws to the topological configuration, Thus, the
manipulations to reduce the equations to state
variable form are avoided. Since these elinin-
ations to obtain state variables cssentially reduce
the coelficient matrix G of the semi - state dece
rivative, x, to be nonsingular, our theory takes
them into account through the Drazin inverse
which in essence really just inverts the nonsin-
gular part of a matrix, according to equation
{(II-3b). To be sure there are a number of other
generalized inverses which one may wish to con-
sider [9}{10], but as illustrated here the Drazin
inverse is particularly effective, and, by virtue
of iis uniqueness, most convenient.

By way of generalization, it is clear that the semi-
state equations {I{II-8 or 9) hold for finite time -
varying linear circuits since the general descrip-
tion M{p, t)v+ N(p,tli= 0 holds with M and N poly-
ntomial jnthe derivative operatorp of degree one,
However, a gencralization of the solution (II-10)
needs to be developed. Similarly, by going to an
infinite dimensional semi - state, {I11-9) will hold
for distributed gircuitsa. A similar quantity to
the semi - state, called the pseudostate, has been
previously introduced in [ 11} for proving the
stability of finite passive time - variable ei rcuits,

In short we believe the semi - state description
gives a powerful tocl of circuit analysis which
when coupled with the Drazin inverse opens up
new possibilities, not the least of which is im-
proved computational techniques,

VI. ACKNOWLEDGMENTS
The authors wish to acknowledge the opportunity
for this cooperative research opened up to them
through the joint Polish - American Program on
Active Microelectronic Systems and the 258is-
tance of Dr. M. Bialko in realizing this cooper-~
ation. This research was supported in partunder
the US NSF Grant GF - 42178.

REFERENCES

(1. W, KimandH, E. Meadows, "Modern Net-
work Analysis,"] ohnWiley &Sons, N. Y., 1971,



[2].

[3].

[+4].

{5].

[6].
7]

[8]

| 9].

110},

{nj.

R, W. Newcomb, '"Network Theory the
State - Space Approach, " Librairie
Universitaire, Louvain, 1968,

M. P. Drazin, "Pseudo - Inverses in As-
sociative Rings and Semigroups, " The
American Mathematical Monthly, Vol. 65,
No. 7, September 1958, pp. 506-514.

§. L. Campbell, C. D, Meyer, jr., and
N. ). Rose, "Applications of the Drazin
Inverse to Lincar Systems of Differential
Equations with Singular Constant Coef-
ficients, " SIAM Journal on Applied Mathe-
matics, Vol, 31, No. 3, November 1976,
pp. 411-425,

N. J. Rose, "The Laurent Expansion of a
Generalized Resolvent with Some Applic-
ations, "SIAM Journal on Mathematical
Analysis, Vol. 9, No. 4, August 1978,
pp. 751-758.

R, W, Newcomb, "Linear Multiport Syn-
thesis, " McGraw-Hill, New York, 1966.
C. A. Desoer, "On the Description of Ad-
joint Networks, " IEEE Transactions on
Circuits and Systemis, Vol. CAS-22, No.
7, July 1975, pp. 585-587.

M. Hialko and R. W, Newcomb, "Gener-
ation of All Finite Linear Circuits Using
the Integrated DVCCS, " IEEE Trans-
actions on Circuit Theory, Vol. CT - 18,

No. 6, November 1971, pp. 733-736.

R, E. Cline, “Inverses of Rank Invariant
Powers of a Matrix, '"SIAM Journal on
Numerical Analysis, Vol. 5, No. 1, March
1968, pp. 182-197.

N. Bose and 5. K. Mitra, "Generalized
Inverse of Polynomial Matrices, " [EEE
Transactions on Automatic Control, Vol.
AC-23, Na. 3, Junc 1978, pp. 491-493,

C. F. Klamm, Jr., B,D,0Q., Anderson,
and R. W, Newcomb, 'Stability of Passive
Time - Variable Circuits, " Proceedings
of the [EE, Vol. 114, No. I, January 1967,
pp. 71-75.

k.

289

BIOGRAPHIES

Barbara Dziurla was born in Gdansk,Poland,
on June 3, 1948, She received the M.Sc. degree
in electrical engineering from the Technical Uni-
versaity of Gdafisk in197]. From November 1971
until September 1974 she was engaged at the
Electrical Engineering Department Laboratories
of the Technical University of Gdafisk in various
aspects of computer research. Her work involved
diagnostic aystems, simulation as a diagnostic
tool, fault-tolerant systemns, systems programe-
ming and languages for automation and control,
From Qctober 1974 she has been working as a
Superior Assistant at Politechnika Gdanska in the
Institute of Informatics. Since August 1978 she
hae been pursuing her doctor's degree in the com-
puter aided dewmign area.

Robert W, Newcomb was born in Glendale,
California on June 27, 1933, He received the
B.S¢. from Purdue University in 1955, the M.5Sc.
from Stanford University in 1957, and the Ph.D.
from the University of California, Berkeley, in
1960, all in Electrical Engineering, From 1960 -
1970 he taught at Stanford University and aincel970
at the University of Maryland. He has held
Fulbright Fellowships to Australia {University of
New South Wales) and Malaysia (Universiti
Teknologi Malayeia) and an additional visiting
professorship in Belgium (Universite Catholique
de Louvain). He is the author of four bocks in
the networks-systems area and directs the Micro-
systems and Generatized Networks Program with
students and activities throughout the world.



INTERNATIONAL SYMPOSIUM

ON
MATHEMATICAL THEORY OF NETWORKS
AND SYSTEMS

Volume 3

EDITOR:
P. Dewilde

SPONSORED BY
Delft University of Technology
Department of Electrical Engineering

CO-SPONSORS
IEEE Region 8
Nederlands Elektronica—En Radiogenootschap
|EEE Benelux Section

Jty 171

Delft University of Technology « The Netherlands



