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ABSTRACT

If a one or two-port network, N, has q, (po) < 0, synthesis
methods are given for passive embedding networks, NP' which yield
a natural frequency at P, The synthesis is based on the Y matrix.
However, the synthesis is general, since N's with Z are treated
dually, and a procedure is given for converting those N without
Y or Z to ones which have a Y or Z while leaving q, unchanged. A
synthesis for some n-ports is also given which uses the one or
two-port synthesis after shorting appropriate ports.

- iii -



TABLE OF CONTENTS

Page

1. Introduction . . . .« « « + + « » ¢ o o & e = e e e 0w 1
A. Problem andresults . . . . . « < - - s o . - H

B. Review of q, and conventions . . . « + + &+ + . = 2

C. Method . . . . « « « « o o o s & o o o = o e 4
1I. Synthesis of NP; n=1 s e e e e e e e e e e e e 6
III. Synthesis of NP; n=2, YISS =0 e e e e e e e e e 1
IV. Synthesis of Npin=2, Yigqg 40 . 4 v e s e s e . . 23
V. Synthesis of Np;n= 2, degenerate cagses . . . . . . - 28
VI. Synthesis of NP; n> 2, YISS = 0, most cases . e . . . 32
Conclusions R T A 35

Open problems . . o « o « = = » « + = e e e s 0 36
Appendixes

1. Invariance of q, for the cascade gyrator connection . 37
2. Determination 5 Y for the cascade gyrator

connection . . . . e 4 s e e e e e e s s e e 38
3. Q for various cases . . . . ¢ + o+ - . ¢ 5 g
4. Clnonical forms for two indefinite matrices . . . . . 42
5. Alternative synthesis methods . . . . . . . « + « - 44

References . . . « o« « o « « s o o & o o o o s s 00 49

- v -




Figure

[
.

*

@ N m W

— =
;’ ?’ N =~ O
N o= . b

LIST OF FIGURES

Gyrator notation . . .
Construction of Nc and NP
Gyrator connection to obtain Yc
Tllustration of Case Zc syntheasis
Networks for Example E-2 .
Example realization .
Networks for E-4 .
Networks for E-5 . .
Networks for E-6

Networks for E-7 5

Derivation of Y' for an NIC .

n-port synthesis ., . .

Cascade connection

General cascade connection .

Page

10
11
14
21
22
23
25
30
35
37
38



I. INTRODUCTION

A. PROBLEM AND RESULTS

Until recently the design of active circuits has been a semi-
haphazard process. One usually followed the designs of previous
workers, incorporating small improvements which mainly resulted
from trial and error. However in 1957, Thornton, 1* initiated a study
of the limitations of the natural frequencies of such devices. This was
followed in early 1960 by the work of Desoer and Kuh, & Theornton's
paper is concerned with determining the possible natural frequencies
of an active resistive device with parasitic capacitance which is
embedded in a transformer network. Although some special results
are presented, a general treatment is only touched upon. In contrast
Desoer and Kuh develop a criterion for an arbitrary active device,
embedded in a passive network, to possess a natural frequency.
Their cirtierion is that q+(p°) < 0 at the required frequency, Py
(Ref. 2, p. 15). Thus one now knows a restriction on the switching
speed of a flip-flop, say, whereas previously this was determined
experimentally.

However, more i8 desired. We would like to be able to
synthesize a passive network such that, when a given active device
is embedded in it, a desired natural frequency results, This is the
subject of this report. In particular, we wish to investigate the
following question.

"Given an {active)} network for which q +.(p°) X0 for Py in
Re p > 0 does there exist a finite passive embedding network such
that the two networks combined support a natural frequency at po?

If so, how is the passive network obtained 7"

By supporting a natural frequency at P, we will understand
that a mode is supported at the frequency Pg in the sense of Desoer
and Kuh '(p. 4). A difficuity with this concept will later be discussed,

*R.efers to the bibliography.



{i. INTRODUCTION)

but using it,the following results are obtained. In Sections o, W,

IV and V the above guestion js answered in the affirmative when the
active netwark is a one ‘or. two port by actually synthesizing the
desired passive network. {in Section V several pathological cases

are excluded which appear to have no physical significance). Section

V1 gives a partial solution for the n-port,
B. REVIEW OF q_ AND CONVENTIONS

Consider an n-port N which at firstis assumed to possess an
admittance matrix Y({p}. Now et N be excited by the voltage vector
vit) = Vept where V is a vector of complex constants and p= o + jw.
Let a superscript tilde, 7, dencte matzix transposition, a super-
script asterisk, * denote complex conjugation and YHGP} denote
the Hermitian part of Y.

We now define, for o > S,

VHY (P} V + (/| pl )| Vo) Vi fe#
Q, (VeP) =y .. (L 1)
V! VY P} V fw=0

here | | denotes the absolute value of a cemplex pumber. FPhysi-

caily, if ¢ £0, U-lez‘rtQ_‘_ represents the upper limit on energy
into N for a given v{t) at a given instaut. Desner and Kuh work

with, (Ref. 2, P- 15),
q,(p) = min Q,(V, P} (L 2)
vl =1

where for V = [(Viseees Vv, ] we bave qvi© =21 V‘{F;. From the

meaning of Q_we see that w“J'e*'e"f;%_ represents the smaliest of the

upper limits on the energy into N at a givep instact for all normalized
nop-zero V. From the meaning attached to o it should be physically
clear that q, should depend only upon the device and not the mode of
description, In other words we should be able to define g e
though a Y {or Z} matrix doesw’t exist, Such a quantily 18 clearly

obtained from
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(172)[V*I+ T*V] + (o /| P} } | VE| ifw#0

2,(V,1,p) = { (1)

(1/2)[V*1 + T*V] ifw=0
By the nature of our problem we must base our work on q +
but it is important to note that if we find some non-zero V for which
Q+ < 0 then q, <0, Thus, if in a specific instance, we are only
interested in the fact that q + is non-positive and not in its exact value,
we may profit by using Q+ and avoid the tedious job of finding a minimum.
Now consider an n~port N which is connected in parallel to a
passive n-port NP’ The combined networks from a new n-port No
whose terminal pairs are taken as the common terminal pairs ‘of N
and NP' We say that N supports a mode v(t) = VepOt, T, 0, if the
voltage v(t) can appear across No when the terminal currents of No
are zero., Such an N has been called active at Py (Ref. 2, p.4)¥
If N and Ny have admittance matrices Y and YP then the following
results have been established.
1. (Ref, 2, p. 15). If N is active at P, then necessarily
q,(p,) <0.
2. (Ref. 2, p. 7). N is active at P, if and only if there exists
some N, such that det [Y(pO) + Yp(p )] = 0.
The second of these results is the key to the synthesis methods,
since it gives an analytical way of determining if we have solved our
problem. It should be pointed out that the definition of natural fre-
quency used here differs from the usual one which rests upon initial
conditions in energy storage elements, (Ref. 3, p.7), since a net-
work for which the determinant is zero for all p, such as an open
circuit, can support any mode. This introduces a subtlety which is

expanded upon in Example E-1 of Section IL

3‘In Ref. 2, 0¢_ = 0 was omitted from the definition of active to ex-
clude L.-C resonant circuits, however the results of Ref, 2 remain
valid for o, = 0. Certainly we desire a synthesis of Ny for T, = 0.

-3 -



(. INTRODUCTION)

For transforming one network into another we will have use
for ideal transformer networks and gyrators. Consider two networks

Nc and N whose admittance matrices are related by

Y, = TYT (L 3)

where T is a real matrix. Then N_ is obtained by connecting a
transformer network to N, (Ref. 4, p.233 and Ref. 5, p.301 or
Ref. 6, p. 85).

The notation for the gyrator must be clarified. Let

0 1
E= [ ] (1. 4)
-1 0

Then the polarities for the gyrator are made clear by Fig. 1 for
which

Z=vyE y = gyration resistance (1. 5)
Y=-y''E
Y
——
O —O
{port 1) _ )( (port 2)
o —0

FIG. l.--Gyrator aotation.

We will also adhere to the following notation. ln will denote
the unit matrix of order n, On the corresponding zero matrix and
%+ will mean the direct sum of two matrices, Further we will assumeg,
as in Ref. 2, that Y(p) has rational elements with real coefficients.

C. METHOD

We will assume that a network N is given which possesses axn
admittance matrix Y at Ps and for which g + tpo} <90 Clearly a dual
gituation holds if only an impedance matrix Z exists. In Section

Vv, for n = 2, we will show how to obtain a Z or Y if neither exists,
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Consequently, for n = 2, the assumption on Y is no restriction. At

Pys Y is a matrix of complex numbers and we write

Y=Y +Y + jY

rs ¥ Yrss t I¥ig t i¥gg (L 6)

where the subscripts R and I refer to real and imaginary parts and
S and SS refer to symmetric and skew-symmetric matrices.

The synthesis of the passive network N, will begin by
assuming that Y,og=0- Then for ¥, #0 we will transform N such
that YISS = 0, when possible, By the use of transformers and
gyrators we will transform N into a canonical network Nc. A passive
network NPc will be obtained for Nc; the passive network for N will
then consist of NPc and the transforming network as illustrated in

Fig. 2.

|

|

transformers : {
and . N }
| |

I

I |

|

Q

o gyrators

FI1G. 2, «--Construction of Nc and NP'

From the physical interpretation of q, it should be clear that
if N can be obtained from Nc then N and Nc have the same q,- This
will be justified analytically for the actual transformations that we
will use.

As a consequence of the canonical forms actually used, we
will have many cases to consider. For some of the cases several
Pc’ In the body of the report
we will present only the simplest synthesis methods, reserving some

synthesis methods are available for N

of the alternates for the appendix. At the very beginning we can
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assume Y = 0, since it can be absorbed in N_. We will usually

do this, bﬁtsil cases where fewer gyrators will be used, YRSS terms
will appear in the canonical forms.

By glancing at Eq. (1.1}, it can readily be appreciated that we
must consider two regions in w_. I o # 0, there is no loss in

generality in assuming w, > 0 since Y(p) has real coefficients.

I. SYNTHESIS OF Np; n = 1
Here Y is a scalar which at p, can be written as
Y(p,) =g+ jb (L. 1)
Region 1: o = 0
As Y is real at P, b = 0. The condition q, (po}_<_ 0 gives
g <0. We then let YP(p) = -g.

Region 2: w, > 0

The condition q+(p°) < 0 now requires

g<0 (1L 2)

2 2
(e b)* < (w g)
If o, = 0 we cancel b by an inducatance or a capacitance and g by

a positive resistance. If Ty 0 we form

Y o(p) =(1/2)[(-g/w ) - (bhe )] p +(1/)(-g/o )+ (b/(oo)](o“i-}m:)/p
(I1. 3)

YP is positive real as a result of the constraints of Eq, {IL.I). It

,should be noticed that the second of Eq. {IL.2} is equivalent to the

angle constraints for positive real functions, (Ref. 7, p.114).
Alternative YP are easily found, but they may not hold far all
allowed g and b as this one does.

We can now appreciate a difficulty which can occur. It may
happen that two different active networks have the same admittance
matrix at Py When NP is connected to these, the resulting deter-

minant may be identically zero for all p for one while merely
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n =2, YISS =9)

P;
falling to zero at p for the other. The latter situation is the one
actually desired, but, since we can only assume Y(po) known, we can
not tell which situation occurs in general. Of course if the properties
of a device are known for all p we can actually check to see what
happens. This is illustrated by the following example.

E-1: Let Nhave Y(p) = -1 and consider p_ = (1/2) + j(N3/2). If we
choose NP to have Yl(p) =+]1 then Y + Y1 = 0 for all p. Then N

supportis ePot even though no energy storagé elements need to be

phave Y,(p) = p + 1/p then Y(p )+ ¥,(p_}=0

but this is not true for all p. Now consider another active network N'

congidered., In contrast let N

described by Y' = —Yz(p). Then at P, N' and N are indistinguishable.

However, Y'+ Y. has only an isolated zero at Por

1

II. SYNTHESIS OF NP; n=2, YISS =0

We recall that we will generally assume YRSS =0as YRSS can
be lumped in N_. Clearly q, remains the same before and after YRSS
ig deleted, since Q+ is independent of YRSS' With. this assumption,
we will generally transform Y(p ) to a canonical form Yc(po) through
the use of Eq. (1.3}, with T non-singular. This operation also leaves
q, invariant since V in Q+ is replaced by TV which assumes all values
with V, In two cases the canonical form will require a cascade connec-
tion of gyrators in addition to the transformers, For these situations
the invariance of q, is proven in Appendix 1.

Region 1: w, = 0

Here- Y(po) = YRS‘

Yc(po) =g, + g, The conditiong < 0 requires that at least one of

We then diagonalize this to obtain

g) or g, be < 0; through our diagonalization process we can assume it

to be g, We then form, for all p, YPc = (-gl) + 0.

Region 2: w > 0

If ¢ =0 we diagonalize Y . to get Yc(po) = (YRS) et ,][131 + b, 1.
bl and bz are then cancelled by inductances and capacitances. (YRS)C
is then diagonalized to g + g5 where we can assume g = 0 by
q, <0 g, is then cancelled and the construction of the passive
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(IIl. SYNTHESIS OF Ny;
n=2, Yigg=0)

network in the form of Fig. 2 should be clear.

If c, > 0 we are apparently forced to consider the following
mutually exclusive cases. Unfortunately there are many subcases,
each leading to a different canonical form. We first note that YRS

cannot be positive definite since q, <0

Case 1: YRS positive semi-definite (rank 0 or 1)

Case 2: Ypg negative definite (rank 2)
Case 3: YRS negative semi-definite (rank 1)
Case 4: YRS indefinite (rank 2)

Case 1: YRS positive semi-definite (rank 0 or 1)

Clearly q, = 0. I YRS has rank zero we can diag.‘onalize YIS
to get Y _(p,) = iy ¥ b, ] q, = 0 then requires that at least one of
be zero, and Yc then has a zero determinant,

I.fYR

1* "2

s has rank one, we can first diagonalize YRS to 1+ 0.

" The requirement q,_ = 0 then requires that the (2,2} term of the trans-

formed YIS is zero. If the (1,2) term of the new YIS is also zero we

have Y _(p_) = [(1 + jb) ¥+ 0] which has a zero determinant. If the
(1,2) term is not zero, we further transform by adding the second row
and column to the first to have the (1, 1) term zero in the new YIS'

Thus we have arrived at

1 jb
Y'(p,) = [ - 0]
j

We now connect a gyrator as shown in Fig. 3 to obtain (see Appendix

2)
[1 jb
Y (p )=
c''o S5 b?.]

which has a zero determinant.
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n=2, YISS=0)

P —— e e ———— = — -t

; :

|1 |
—l = i
P . 1® !
F: ' o N I
o— — @ :

|

l N, |

frmr e, ———————— ]

FIG. 3. --QGyrator connection to obtain Y '

Case 2: YRS negative definite (rank 2)

In this case we will save some gyrators by considering YRSS
to be present. We simultaneocusly dizgonalime YRS “d‘YIS to get,
(Ref, 8, p. 107),

Y (Pg) == 15+ gE +§[b + b,] (IIL 1)
where E is as defined in Eq. (L4} Such an admittance always has
q, < 0 since we can find & nen-zero V such that | VYCVI = 0, Appendix

3, Consequently there are no constraints on 'i:1 and bz. We have
three subcases to consider,

Case 2': blbz =0

There is no loss in generality in assuming bl = 0, Then we
let, for all p,

Yo = [140]-3%E
to obtain a gero determinant,

b.b, >0



{Ill. SYNTHESIS OF Ng;
n=2, YISS = 0)

We let, for all p,

i/2

Yp, = {1+ (b, /b,)] + 0} + {[(bllbz)(bg + 117" - g)E

which yields a zero determinant.
Case 2 : blbz <0

We derive a new canonical form from Eq. (111,1) by normalizing

the imaginary (2,2) term to -bl'
Yl (p,) = [-1% (by/by}] + g'E+ ilby + (-]
1/2 .
where g' = (-b; /bz) g. We first add, for all p,

1
YPc

=1+ (-bl jbz)
We then add rows and columns of the resulting matrix to obtain a zero
input admittance. This corresponds to cannecting port one to port two

and is illustrated in Fig. 4.

== === — ==y i
e O} [, |

] | 1
1 |
o . : | |1:_(-b1/b2) Nc :
wo oo ¥ |
T e |
& : N : i N' |
A (L I s~ s S A

FIG. 4. --Illustration of Case ZC synthesis.

It should be noted that if, in Eq. (L1}, g=0and 0< |b,] <
(molu‘o) for i = 1 or 2 then we can add a passive network to port i to
get a zero determinant. This would then avoid the gyrator in Case Zb.

The following will exhibit a simpie Case 2 synthesis while

clarifying the general procedure to be used.

E-2: Let N be the network so denoted in Fig. 5, for which

- 10 =



(Iil. SYNTHESIS OF N

p

n=2, YISS = 0)
-14p 1
Y(p) = [
1 -4+pH1/p)
Let p_ = (1/2) + iN3/2), then
(-1/2)+j(N3/2) 1
Y(p) = ]
1 -3
We find, using
0 NG
T= [
L/NT  NZT3
and Eq. (L 3), that
Y (p )= TY(p )T = =1, + [0 + 3WF]
The Case Za synthesis then gives Fig, 5.
1
i 1/NF _1
R AWWWA ©
. 1
2 =1 - 1=
\ . 1 " J; N Q@ 1 - 15 @
\ 7
v
NPc
- — S\ — y)
Np

FIG, 5. --Networks for Example E-2,

0 b



(III. SYNTHESIS OF N

P;
n=2, Yg5=0)
Case 3: YRS negative semi-definite (rank 1)
We first diagonalize Yp o to obtain

by Py

Y'p,) = [(-1) +0] + g'E + ] (111 2)
© b b
12 22

From this we obtain three canonical forms depending upon the vanishing

or non-vanishing of b-zz and b12'

Case 3a: b?.2 40

In Eq. (III. 2) we can add the second row and column to the
first to eliminate the (1,2) term. If the (1, 1) term of the new
imaginary part is non-zero, we can normalize the (2,2) term to equal

the (1, 1), except possibly for sign. We have then

Yc(po) = ((-1})+0] + gE + j[I:n1 +b2] where b, = + bZ or 0
Here g = g' if b1 =0org-= \l-{_- 51752 g' otherwise., Because we can
find a V with V, # 0 such that | VYC V| = 0, this case always has

q, < 0. Thus there is no restriction on bl' However, we have two

further cases to consider as far as synthesis is concerned.
Case 3a1: bll:.\2 >0

We here add, for all p,
Yoo = [1+ 0]+ (b - g)E
to obtain a zero determinant.
Case 3a2: ble <0
We here add, for all p,

Y' =1+0

Pc
and then apply feedback by connecting port one to port two to obtain

a zero input admittance (compare with Case Zc).

N 1



(IIL SYNTHESIS OF Np;
n=2, Yigg=0)

Case 3,: b,, =0 [in Eq. (IIL. 2)]

b* 22
Here we again have two further subcases, this time depending

on blZ'
Case 3bl: b12 =0
Assuming that g' = 0, Eq. (IIL. 2) then takes the form

Yc(po) = [(~1 + jb) +0] where b = by

Herxe Yc already has a zero determinant which corresponds to Q+ =
with V1 = 0. Consequently b is not constra.:.ned if q, = 0. However,
if q, < 0 Eq. (IL.2) shows that bz < (m /o ) and synthesis of N

results from Eq. (11 3).

Pc

Case 3bz: 1‘.1!‘2 #0

We now add the second row and column of Eq. (IIl. 2) to the
first and then normalize the (1, 2) term to obtain

0 1
Y (p,) = [(1)+0]+EE+J[1 0}

where g =g /b12 Apain q, < 0, since there is a non-zero V such
that | vy Vl = 0. We force the determinant to zero by adding, for
all p,
. 2
Ypo = [0+ (1+g")]

The following example will serve to illustrate a Case 3

synthesis.

E-3: Let N be as illustrated in Fig. 6. Then

-24p l-p
Y(p) = .
-l-p =3+42p

Letp =1+ jl, then
1 1 1 -1
Y( po) = - + +E
1 1 -1 2

-13 -
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n=2, Yis5 = 0)

A Case 3 synthesis is required. Using Eq. (L 3) with
1

3 ~1
T=(1/5)[ ]
2 1

we obtain
A

Y (p,) = [(-1) 4 0] + j(1/5) 1, + (/28)E

The final network is shown in Fig, 6. It should be noted that

i Y(_r 1-'{'"* va‘i. 3t ?'-:j/d."cﬂ r ac-rf { f ; 1 LA,
r‘”} b J A o Pateyfs q+3r adf f s wdas Yo WM L
ot e 342, A = ] J i
e d
25/3 1 v .
! 3 |
=1 ol
—— £
)C 1 < a4t

D] o

Z<

Pc

0 _J
ﬁ’l; YN

FI1G. 6. --Example realization.

we could replace the gyrator-resistor network by a gyrator-L~C
network in this case.

Case 4: YRS indefinite (rank 2)
Depending upon the rank of YIS we now have several cases.
Case 4_: Y. . of rank zero
a IS

We can diagonalize Y o to obtain

Y (p) = [+ (-1)] + gE

o
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- P’
n=2, YISS = 0)
We then add rows and columns (connect port one to port two) to get a
zero input admittance. It should be noted that here we always have
q, < 0.
Case 4,: YIS of rank one
We begin by diagonalizing YIS
8i1  B12 .
Y'(p,) = +j[b;+0]+g'E (111, 3)
Biz  B22
11, §.5 From this will be derived three canonical forms depending upon the
value of g,,.
: Lidg] 22
the Case 4, : g5, >0
ag. Y.z 1 _
oL emit After assuming g' = 0 we now use elementary transformations
/
i!( £y to add the second row and column of Eq. (IIl. 3) to the first and
. . .
Zon t R normalize to obtain
prado g Y (p )= [(-1) 4 1] + j[b + O]
- _-\;{;\.lc

The requirement q, < 0 yields bZ < (molu'o)z, as is seen by choosing
v

L)

= 0. Using Eq. (IL. 3) we add a passive network to port one of Nc

2
to obtain a zero determinant.
Case 4b DBy < 0

2
Using the same procedure as in the previous case we obtain

Y (p) = [14 (-1)]+ j[b+0]
This clearly has q, < 0 (choose Vl = 0), and we add, for all p,

Y c=-0+1

P

to obtain a zero determinant,

Case 4b3: gz =0

Since Y g is indefinite we have g , # 0. Using the trans-
formation method of the previous two cases we can arrive at

- 15 -
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(III. SYNTHESIS OF N;

i _ P
n=2, YISS'_ 0)

o 1 ]
Yc(po)=[1 OJ +j[b+ 0]+ gE

Here we always have q, < 0 as is shown in Appendix 3. This is
substantiated by the fact that we can normalize any non-zero b to
+1. We here add, for all p,

Y =-(g+ 1)E

Pc

to obtain a zero determinant.

Case 4c: Y._. of rank two

IS
We must divide this case into two further cases depending
upon whether YIS is definite or indefinite. The second of these calls

for rather elaborate synthesis methods.

Case 4_: Y_. definite
< IS
To obtain a cancnical form we simultaneously diagonalize YRS

and Y.. and then normalize YRS to obtain

IS
Yc(po) =[1+ (-1)] + j[l:»1 + bZ] + gE (IIL. 4)

We have two regions for b, which are of interest.

r 2
Case 401 2 by < (molco)
a
Here we always have q, «< 0, as is seen by choosing V1=0.
After cancelling gE by a gyrator we synthesize a passive network by

Eq. (IL 3).
Case 4_ hz2 > (woltro)z
1
i 2
Ikq= 0, Appendix 3 shows that we require b = (o, /o o) - As
a consequence, a synthesis for q, =0 follows that of the precedmg case,
i q, < 0, Appendix 3 shows that we require bl2 >b (Appendix 3
also shows that o [(1 + bz)llz+ (1+b2)1/2]>2] P, | and that there
exists a non-zero V such that | VY V| 0). Because YIS is definite
we have ”’1“’2) > 0 and we can force the determinant to zero by
adding, for all p,

Yo = [@/by) (b, - by} 0] + {[(by/by) (b + 12

-glE

=16 -
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P;
n=2, YISS = 0)
Case 4 : Y.. indefinite

<, IS
We begin by diagonalizing YRS to get

. Pir Ppp
Y'p) = [1+ (-1}] +j + gE (I1L. 5)

b b
12 22

Let B = [bij] be the second matrix on the right. We have three cases
depending upon the form into which B can be brought by the congruency
transformations of Theorem 1 of Appendix 4 (the subscripts on the

following B's refer to the corresponding matrices in Appendix 4),

Case 4_ B = BI = [b11 +b

]
2 22
a

Letting b11 = bl' bzz = bZ’ Eq. (I 5) is identical to Eq. (III. 4)
except that instead of (bllbz) > 0 we now have (bllbz) < 0. The same

subcases occur that were present in Case 4c .
1

2 2
Case 4c2 by < (molcro)
|
The properties and the synthesis method are identical to that

of Case 4c1

> (wD/cr 0)2

We have the same properties as in Case 4.:1 except that
(b;/by) € 0. We now revert to that case, after firstpassuming g=0
in Eq. (III. 5). To obtain this result we connect a gyrator in cascade
with port one (as we did in Fig, 3). The new Y matrix is obtained by
using the results of Appendix 2, and then multiplying the first row and
column by 1 + blz; we get

Y (e =[14 (-1)] +3[(-b)  by]

which now is of the form required for Case 4c1 . It should be noticed
that in general this method uses three gyrators. However, the final

-17 -



(. SYNTHESIS OF Ny;
n=2, Ygq=0)

two of these are in cascade and can be replaced by a transformer.
This replacement shows that N, has an impedance matrix but no
admittance matrix; the natural frequency results from a zero of the
determinant of Z + Z . This procedure is illustrated by example E-4

which follows the remaining cases.

Case 462 : : bll_bzz N Ay
B B:BH.-.- H Ab=det. B
N -8y 0
Appendix 4 shows that there is a non-singular real T such that
Y(p ) = TY'(p ) T=[14 (-1)]+;Byy +g"E (IIL. 6)
From Eq. (III. 6} we will obtain two canonical forms, depending upon
l:b11 - bZZ' by elementary transformations.
Case 4, by - byy £0
2
p1

We first add -~ -Ab/(b11 - b,,) times the first row and column
of Eq. (IIL. 6) to the second. We then normalize by multiplying the
second row and column by [(b - bzz)/'J'x}:] to get

1 -1
Y(p)=[ ]+j(b ~b,,) [1+(-1)]+g_E
c'‘o -1 1-{(b11 . bzz)zl("Ab)} 11 22 o ;)

Recalling that Ab < 0 by assumption, we now add, for all p,

2 .
Y‘PC = [{(bll - bzz) /("Ab)} + 0]
and then add rows and columns {connect port one to port two) to

obtain a zero input admittance.

Case 41:2 3 bll - bzz =0
P2

We first add 1/2 of the second row and column of Eq. (IIL 6}

to the first. Following this we subtract the first row and column

from the second to get

T



(IlI, SYNTHESIS OF N_;

. _ P
n=2, Yioo=0)
(:3/4 ~5/4 . '
Y (p.) = +iN=A _[1+ (-1)] + g E (111, 8)
ol | 574 3/4] e ¢
We now add, for all p,
YL, =[1%0]

and then add rows and columns (connect port one to port two) to
obtain a zero input admittance,

It should be noticed that the b11 -
taken care of by a single case. This results from adding
[(IIZ'JTKD) (by, - by, + 'qu )] times the second row and column of
Eq. (I 6} to the first and then subtracting the first row and column

b?_2 = 0 and #0 cases can be

from the second. However the canonical form is much messier
than those of Eqs. (III. 7) and (III. 8), Further, since we have always
found an Npwhen B = BII’ Result 1 of Section I-B shows that q,
is always < 0 here. In fact choosing V1 = Vz shows that q, < 0. An
example of Case 462 will be given as part of E-7, which is worked

in Section IV,
Case 4
c

0 ~N=A

v B =B =[
LK

2
b

]z Ab =det. B
11

22 = b

This is the final and worst case of this section. By Appendix

4 we find a real, non-singular T such that Eq. (Il 5) becomes

Y"(p) = TY'(p )T = [1 4 (-1)] +,Byy; + g"E (. 9) =

it
Here we can assume that b22 - 1:»11 # 0, as otherwise this is covered

by the treatment for B We then have two subcases,

II.
A
Case 4c2 : (b22 - bll)

Y1
We follow the procedure used to obtain Eq. (III. 7). Thus we
first add ~= & /(bzz - b“) times the second row and column to the
first and then normalize by multiplying the first row and column by
[(b22 - bll)N -Zb]. This gives

< -4 Ab {recall A.b< 0 by assumption)

o TG =



(I SYNTHESIS OF N;
n=2, Yig5=0)

“14[(b,,-b, )P/ (-A,)

1
YC(PO) = _‘1:|+j(b22 e bll)[("l) ';'1] + gk

-1
We now add, for all p,
2 .
Y5, = [{4 - [(byy - b )7 /(-A)1} +0]

and then add rows and columns to obtain a zero input admittance.

Note that again we always have a, < 0, since we have found an Np.

2
- b ) > -4 Ay

Case 4c : (b22

2
Y2
We will reduce this to Case 4c2a. We apply Theorem 2 of
Appendix 4, which shows that there is a real, non~singular Tc such
that Eq. (IIl. 9) takes the form
Y (p,) = TCY"(pO) T, =[14 (-1)]+j[b + b,] +g.E (I11. 10)

In fact we have

2
b, (or by} = -2tN=A&_ + t°(by, = b))

b, (or b)) = (b, - b, ) —-Zt'J:_A_g (1L 11)

t =(1/2)[(b,, - b, ) £ N(b,, - b )% + 44, [INTE,

Eq. (III. 10) now falls under the description of Case 4czu. Thus if
q, < 0 that case applies and gives a synthesis. However, it has not
yet been determined under what constraints on the bij’ satisfying

(byp -
and E-5 shows that q, < 0 can also occur.

b“)z > -4Ab, q, < 0. Example E+6 shows that q, may be > 0,

The following instructive examples illustrate that Case 4

synthesis.
E-4: Let N be as shown in Fig. 7. Then
Y(p) = [(5 - 4p) + (-3 + 2p)]

Let P, = 1 + jl then

Y(pg) = [(1 - j4) 4 (-1 +j2)]

- 20 -



(III. SYNTHESIS OF N

P;
n=2_, YISS—O)
mlh AL SRR 1:- NTOTT?

D( |€ MRS %%-4

-]

FIG. 7. --Networks for E-4.
which requires a Case 4c2 synthesis, Connecting a gyrator in
cascade and multiplying the first row and column of the resulting
matrix by NI7 we get
Y (p) = [(1+j4) + (-1 +j2)]
Connecting

Yp.=[1+0]+NIOE

-

in parallel yields a zero determinant, Figure 7 shows the final
realization. Here the transformer and the two gyrators in cascade .‘,‘;1,,&,‘:_ f“j

have been replaced by their transformer equivalent, Also Np has P._mei
10/17 -NTO7TT o
Zp(p) =
N ~NTO717. 1

which is singular.

E-5: Let N be the network shown in Fig. 8, Then

s Tha



(III. SYNTHESIS OF N

P
n=2a, YISS = 0)
5
1 Zz
) 2
5
. i1
] -
= B 2 2 3
1 ¢ 31
. T35 3T 3t 0
2 = 1 o
10 10
\ S )
I g
N N

P

FI1G. 8. --Networks for E-5,

[wﬁf (2/5)+(ZP/5)]

Y(p) =
(2/5)+(2p/5) -2+p

and for Py = 1 + j5 we have

0 -2
Y(p )= [1% (-1)]+j[ , 5] (IIL. 12)

We have Case 4% with t = 2 or 1/2. Lett =2 then with
2

2 1
T=(l/m|: ]

i 2
we pget
Y= TYT =[(1 - j1) + (-1 + j4)] (I11. 13)
which is treated by Case 4¢, - The final network is shown in

a
Fig. 8. Consequently N is active at Pq and Case 4C2Y2 actually exists.

- 22 =



(IV. SYNTHESIS OF N

. P’
n=2, Yoo #0)

E-6: Consider the network of Fig. 9. Then

1 2-2p
Y(p) =
2-2p -6+5p

Let p = 1+ jl then Y(po) is the same as given in E-5, Eq. (IIL 12).
Using the same transformation, Eq. (IIL 13} is valid. However, now

4="> >m°/o'o =1 and bz =1<16= bz. Consequently q+> 0 at Py

2 1
and no passive network exists.

-1/2
—AAAA—
2
i
G Il -]
D S i3 — . T -1/40Q)
[ —_0

FIG. 9, ~-Network for E-6.

IV, SYNTHESIS OF N 2, Y £0

pRE 1SS

In the previous section we have shown how to {ind NP if
q_+(p°) <0and YISS = 0. Although the synthesis procedures were
simple enough, we had to consider many different situations. Here
we actually have even more situations, owing to the fact that YRS
may be positive definite even when q, < 0. However, most of these
won't have to be investigated completely because the general philo-
sophy will be to convert to the situation of YISS = 0 when possible.
If this isn't possible the synthesis methods of the last section will
normally be extended to encompass Y g # 0.

At first glance one might think that the situation ¥ ¢ # 0 is
of only theoretical importance. However a recollection of the fact
that the a of a transistor varies with frequency should convince the

reader of the practical importance.

.23 .



(Iv. SYNTHESIS OF N
n=2, YISS # 0)

P;
By our assumption that Y(p) is rational with real coeificients
it is seen that YISS = 0 for w = 0, and hence we are only interested
in o > 0. Althgugh we could give a separate synthesis for e =0,
all of the following methods are valid for all 0o 0. In those
situations where we reduce to YISS = 0 the separation in terms of ¢'s
is only necessary in applying the methods of Section IIL
We again have many cases to consider. The most convenient
separation of cases seems to be the following.
Case 5: YRS or YIS definite (rank 2) or Y
semi~definite (rank 0 or 1)
Case 6: Y. indefinite (rank 2} and Y

and YI

RS S

semi-definite (rank

RS IS
0 or 1)
Case T: YIS indefinite (rank 2) and YRS semi-definite (rank
0 or 1)
Case 8: YRS and YIS indefinite (rank 2)
Case 5: YRS or YI.S definite (rank 2) or YRS and YIS

semi-definite (rank 0 or 1)

We begin by simultaneously diagonalizing Y ¢ and YIS' If
one of these is definite this is done by known methods, {Ref, 8, p. 10);
if both are semi-definite this is done by using a theorem of a companion

report. 9 We then have

Y'p, ) =[g + gy +ilb +Db,]+ (g+jb) E (IV.1)
We have two cases to consider
Case 5_: gi+1bi=0f0ri=1&2

Here g, < 0 since (Ypo)' = 0 and | ¥Y'V| = 0 for all V. The
passive network connects port one to port two to get a zero input
admittance.

Case 5.: g, + jbiqé Ofori=1or2

Assuming, without loss of generality, that g, + jb # 0 we
connect a gyrator in cascade with port one, as shown in Fig. 3, From

Appendix 2 we find

- 24 -



(IV. SYNTHESIS OF NP;
n=2, YISS # 0)

o ] 1 g+jb
Y (p ) =[1/(g, + jb,)
c‘\Po ] J1 [g+jb A‘J

where A' is the determinant of Y' of Eq. (IV.1). Here q+(Yc) = q+(Y')
as is shown in Appendix 1, and since we have (YISS)c = 0, we can use
the procedures of Section III.

The following example illustrates a complete Case 5 synthesis.

E-7: Consider the network N of Fig. 10. This has

~2+p 1+p
Y(p) =
l-p -1

-Lo_ Wv
—JEMI || b sl oA e
-l - i
jm I L_EH -~k LT3 @

W "2
Np

FIG. 10. -~Networks for E-17.
Let Py = 1+ jl, then

|
Y(po)=[1 1]+j[13ro]+(1+_u)E

Using

we find

- 25 -



{(IV. SYNTHESIS OF N
n=2, YISS # 0)

P;
[ - . r -
Y'(po) =TYT = [} + (-1}] + (1 + JLE
A= -]l
Using the connection of Fig. 3 gives
('0 17 [0 17

-J
1 - 1 0]

— — -

(1 17 {ﬁ 0] [z 1Br o]
= -j

L 0 1] ] -1 1 0J)-1 1
which fits Case 4c . Thus we obtain

Zpl

S I ' A R S N

=[4 + 0] and connect the two ports together as

Y. (py)

We then add YPC
shown in Fig. 10, In Fig. 10 all but the -1:1 transformer windings

can actually be eliminated.

semi~definite (rank 0 or 1)

Case 6: Y_ . indefinite (rank 2) and YI

RS S
We must treat YIS of different ranks separately.

Case 6a: YIS of rank zero

We diagonalize YRS to get
Y (p)=[1% (-] + (g+ib)E

The method of Case 5b now applies, However, a simple solution

consists of connecting port one to port two. This latter shows that

such a Y always has q+§ 0.
Case 6,b: YIS of rank one

We first diagonalize YIS to get

1l E12
Y'(p,) =[ +j[b, +0]+ (g+ JD}E (Iv. 2)
€12 822

- 26 ~



(IV. SYNTHESIS OF Npi
n=2, YISS # 0)

Two further subcases must be considered,
Case 6b1: g2 =0orifg,, # 0 then €52 #0
If g2 = 0 we immediately get, with g; = 811 B =By

Y (p) = [g + g1 +ilb + 0]+ (g +jb)E {1v. 3)
it 2 and g, are non-zero Eq. (IV. 3) is obtained by adding
- / times the second row and column of Eq. (IV. 2} to the first
127822 B
and then letting g,, = g,, (g, - 8,,/85,) = g;- Since b # 0, the
method of Case 5b applies.

Case 6b2: g12#0, g8, =0
We add —gll/Zglz times the second row and column of Eq.
(IV. 1) to the first to obtain

0

:4 s
Y'(p,) -_-,: 12] +j[b +0] + (g + jb}E (IV. 4)

€12

Using Eq. (IV. 4) we add 1/2 of the second row and column to the first
and follow this by subtracting the first row and column from the

second. This gives

i

-1
Y (p,) = g, [14(-1)] + jbl[ 1]+ (g + Jb) E (IV. 5)

Using Eq. (IV.5) we add rows and columns to obtain a zero input
admittance. Since we have found an N, we know that all Y satisfying
the conditions of Case 6b2 have q = 0. Note that this same method
can be applied to Case 3b2-

semi-definite (rank 0 or 1)

Case 7: Y.. indefinite (rank 2) and Y

1S RS
The methods and results are identical to those for Case 6
except that real symmetric matrices are replaced by imaginary

gsyymetric matrices and vice versa,

Case 8: Y_ . and Y__. indefinite (rank 2)

RS IS
As in Section III, we begin by diagonalizing YRS to obtain
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{V. SYNTHESIS OF Noin = 2_,;
DEGENERATE GASES)

b

_ by 12
Y'p ) =14 (-D]+] + {g+ Jb)}E (IV. 6)
b, Pa2

We have the same three cases depending upon which form B = l-bij]

can be brought to by Theorem 1 of Appendix 4.
Case 8_: B=DB;= [b, + by,

Here the method of Case 5b can be applied to obtain YISS =0,

Case Bb: ; I:all--b22 'J-Ab
B:BII ;Ab-.:det.B
J -&b 0

Here the methods of Case 452 in Section III can be taken

over word for word to obtain NP‘ Since NP exists we also know that

q+<0.

Case Bc: 0 -y -Kb
B =B =
ni S
NEEY bypePyy

if (bzz - bll)z < -4A weuse the method of Section III to
obtain an Np,. 1If (bz'2 - b“) > =4 Ay We apply Theorem 2 of A ppendix
4 to get

Y _{p ) = (14 (-] +ilby # b1 4 g + b=

The method of Case 5b then applies to reduce this to the YISS =0

situation.

V. SYNTHESIS OF NP; n = 2, DEGENERATE CASES

In the last two sections we have shown how to find NP if an
N is given which possesses a Y matrix and has q,_ <0. Clearly a
dual process holds for N which have Z matrices. However, there
are devices which have no Z or Y matrices but for which we would
still like to find an Np. An active network of this type which is of

practical importance is the negative impedance converter (NIC).

- AR



(V. SYNTHESIS OF N_; n = 2,
DEGENERATE CASES)

Except for a couple of strange networks, any linear two-port
network can be described by, {Ref.5, p.304),

AV = BI (V.1)

where A and B are 2 x 2 matrices. Further, If Eq. (V.1) is multi-
plied by a non-singular matrix C on the left, the new equations
describe the same two-port, For our purposes we will assume A and
B to both be singular, since otherwise a Z or Y matrix exists. We
will then premultiply by a non-singular C to put Eq. (V.1) in canonical
form. By connecting a gyrator to such a network we will obtain a Z
or Y matrix in all except some trivial cases, If q, < 0 for the new
network, Sections IIl and IV apply. Considering the physical meaning
of q, we know that Q+ of Eq. (I.1') is invariant under the connections
to be given. Consequently we can realize a natural frequency with the
given device.

Because of the assumed singularity of A and B, we easily find

a C to bring Eq. {V.1) into one of the two following forms.

e

I [ a a, .| FVl_ 0 0 I

11 12 1
0 0 JL V2l P2 Praiih
— - - (v.2)
IL: ['a“ a1 v, Py bl )

I_o o {Lv,] o o JLr,|

We will only treat the form I. Form Il has three of Vl’ VZ’ Il' I2
arbitrary and isn't of much practical interest. We have three basic

connections,
Case a: Cascade Gyrator

Here we connect a gyrator, of gyration resistance y, in
cascade with port one (this is Fig. 3). Letting primed variables

refer to the resulting network, we find

] )
0 a5 Vl a, 0 I1
bZl 0 VZ'. 0 bZ I'2 (V. 3)



(V. SYNTHESIS OF Ny; n = 2,
DEGENERATE CASES)

Thus if one of the pairs (alz, b,,l}; or (all bzz) has both members
non-zero a Z or Y matrix exists. Such is the case for the NIC as

shown by the following.

E~8: An NIC is described by

I TR I
| = . , n# 0 but real
0 0 VZ, 1 -1/n .'.2

The connection of Fig. 11 then gives

IR R S B [

Thus we have for N' of Fig. 1l

0 -1t
Y'(p) = [ ]
-T 0

Clearly q, < 0 for all u,

O e — ] NT-C

{, :

FIG. 1. --Derivation of Y' for an NIC.

Case h: Series Gvrarn:

Connectirg a gvsator, of grration resistance v, in series

witk N gives

- 3 -



(V. SYNTHESIS OF No; n = 2,
DEGENERATE CASES)

I -
a2zl W a2 Y3

1}

(V.4)

0 0 V'z h21 bZZ I'z

Thus if aleZZ + alleI # 0 a Y matrix exists., As shown by the NIC
both Case a and b may lead to a Y matrix. However, the following

gives an example of a network covered by Case b but not Case a.

E-8: Let N be the basic active network discovered by Tellegen,
(Ref. 10, p. 143), and described by

i 0 v, 0 0 Il

0 0 v 1 0 I

2 2

Connecting a gyrator in series with N yields

] L]
1 0 Vl 0 Y Il
1 \J
0 0 VZ 1 0 IZ

This is represented also by

0 0
Y'(p)=[ 0 ]
Y 0

which describes an ideal current amplifier (pentode).
Besides these two important connections the parallel one is

sometimes useful,
Case c: Parallel Gyrator

Connecting a gyrator, of gyration resistance y, in parallel

with N gives

LA 0 0 I

& i

a

11 12

N

by /Yy by /Y| | V3 Pay Py 1

If a;.“b22 + .‘:112bz1 # 0, a Z matrix exists.

W Y



(V1. SYNTHESIS OoF }EI:E; n> 2,

YISS = 0, MOST CASEDS)

Gases a and b are sufficient to cover every network described
by Eq. (V. 1) except those for which three or more of V), Vo Iy L
are arbitrary. Besides not being able to cover those N for which
three or more of the variables are arbitrary, we can't cover those
for which three or more of the variables are constrained to be zero.
This is a result of the fact that Eq. (V. 1) can't be written for such
networks, as pointed out by Carlin, 11 (we can extend Eq. (V.1) to
cover these cases by letting A and B be rectangular however).
When these latter situations occur there is apparently no way of
obtaining a Z or Y through (non-degenerate} gyrator-transformer
embedding, but these networks appear to be of no practical

importance.

VL SYNTHESIS OF Npgin > 2, YISS = 0, MOST CASES

In the last four sections we have completely solved the
problem of synthesizing NP for one or two-ports. These methods
will be extended to cover most n-ports, essentially by reducing
the n-port to a one or two-port.

We assume that a givennxn ¥ matrix is written in the form
of Eq. (L6)at p=Pp, with Yiog = 0 and q+(po) <0, Also we will
assume YRSS = 0, since it can be cancelled by gyrators, The two

previous regions occur.

Region 1: w, = 0
Here Y(po) . YRS' YRS is then diagonalized; the condition
q, =< 0 showing that at least one of the diagonalized elements is € 0.

This element is then cancelled by a non-negative element,
Region 2: w, > 0

o =0we diagonalize Y;g and cancel all ite terms by
inductances and capacitances {note that this doe gn't alter q, a8 YIS
doesn't enter into q ato = 0). The new Ypg is then diagonalized
and one of its non-positive elements cancelled by a non-negative one,

o, >0we begin by diagonalizing Ypgto

- 32 -




(VI. SYNTHESIS OF N.;n > 2,
Y o = 0, MOST CASEE

Y! }o (VL 1)

Rg= [(-1}+1

k n- k-r]

We will have to consider three different values for r: r =0, r = 1,
r >1, The case r = 0 will first be disposed of as the others are
much harder, If r = 0, then only q, = 0 can occur and thenk < n
with at least one of the last n-k diagonal terms of the transformed

Y
IS
thru n-l terminal pairs (this gives part of NP) and then just consider

zero. Agsuming this to be the nth element we short out the 2nd

the 15¢ and nth terminal pairs. This reduces the problem to that of
a two-port described by
1+jb1 jb

¥'=
jb 0

and this is covered in Case 1 of Section IIL
If r >0, we diagonalize the upper left r x r submatrix of the

transformed YIS to get

Yc(Po) = [(-lr) + 1k + 0n-r-k] + -bl ) OW
_

The constraints imposed by q, < 0 are in general quite

(V1. 2)

complicated as is seen by reviewing Section III. However, if r > 1

we choose V3 =V, =...=V_ =0 (the voltages refer to Y _ of Eq.

(V1. 2)} to obtain q, < 0. For this we find a V,; and V, such that

| vy V] =0 (accordmg to Appendix 3a) and in fact get q, = -1

independently of the values of b1 and b2 Further, if r =1 and

blz < (mo/o' 0)2 then we know, by choosing VZ = .= Vn = 0, that

q, <0
= 2 2

Ifr =1and b > (molcr o] the constraints imposed by q, <0

are still unknown and we are also unable to give a general synthesis,

-



(VL SYNTHESIS OF N_; n > 2,
Y. . =0, MOST CASES)

jSs
This is the only unsolved case for n > 2 and YISS = 0.

Having established these farts the synthesis of NP is quite
simple. If r =1 and bZ < (m /e ) we short out ports 2 through n and
then, ignoring these ports, conner't a passive network to port one
through theuse of Eq.(IL 3). Y r >1 we short out ports 3 through n and,
ignoring these ports, apply Case 2 of Section Il to get a passive

network. The fo'lowing example illustrates this procedure.

E-9: Let N be described by

-3/2 =2 -2 1/2 2 2
Y{p) = -2 0 -1 t+p 2 1 1
-2 -1 0 = 1 1

with P, = i1 + j1 we have

-1 1/2 A 2
Y(po) = 0 +] 2 1 1
i 2 1 1

Shortirg ports 2 and I gives {as V, = V 0)
L= {1+ §1/ZY v
i

-

1

G2) v,

!

3 = 20V
Ignoxing 1. and 13, we coxnect 1-3i(1/2}npte port one to obtain a
natural frequency. The process is sicwn in Fig, 12,

From these methods iz should be noted that, if r =1 and
bz >{w, /e )2' and there is some principal 2 x 2 submatrix of Y _
whu,h contains tke (1,1} element and alse Las q, <0, then we can
obtairn an N, using the metbods of Section JIL. L1kew1se, if
Yo # 0 we can obtain Eq. (VL 2) with 2 Y,oc term. If this has
some principal 1 x1 or 2 x & submatvrix for which q, « 0, then,
after shorting all but these one or two ports, Section 1V can be

applied.



(CONCLUSIONS)

e " N
_ l 1 !

yin(po)_o {: é2/3 T 1/4: (:D
f |,
| | @ N
| | |
===
foo - _

FIG. 12, --n~port synthesis,

CONCLUSIONS

In Sections II-V the problem posed in the introduction was
completely solved for the one and two-port. That is, given a one
or two-port for which q+(po) < 0 we have shown how to find a passive
embedding network NP to give a natural frequency at P, even when
the active network is highly degenerate. By reducing the n-port to
the one or two-port case we have also shown how to find Np for many
active n-ports. Although the problem is still unsolved for the general
n-port, it may turn out that, after connection of transformers, there
is a subnetwork of one or two ports which has q, < 0. In this case

# 0.

Section VI would give a general solution even when YISS
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{OPEN PROBLEMS)

OPEN PROBLEMS

The primary unscived prokieras are:

1. Under what conditions do matrices for Case 4C2Y2 have
2 2
2. For the n-pert, i{ b = {{-‘;Gfrr o) in Eq. (V1.2), when is

3. How do we Landle &ISS 4 0 for the n-port?

4. 1s there a betier synthesis that avoids ail the cases we had
to consider?

5. Can the degenerate Z-ports with three arbitrary variables
be forced to give a natural trequency?

6. How do we handle degens=ate n-ports?

7. If a network bas q-_r_(pn}-, b and q+(pl‘; 21, does one Np
exist which will give a natural frequercy at both p and Py ?

8. Under what conditions can an active network be put in
parallel with a passive neiwso rk qus ™ tha. the resulf is passive for all

p? The networks with Y(p} = p wr P L show that this may not
be possible. [ :\

w p



APPENDIX 1: INVARIANCE OF q,
FOR THE CASCADE GYRATOR CONNECTION

Let a gyrator be connected in cascade with port one of an

n-port N as shown in Fig. A.l.

' - - - - - -
I | o o o — Il
1 '—-I-: H _‘y._ | —
+ 7 + '

Q

?

'
In—)--{ In—-

'+r'® oF |
'V"n s Vi.s

FIG. A.l. --Cascade connection.

For Eq. (L 1') we find

2,(V', I',p) = Z(V,1,p) (4,.1)
gince V}'lI"1 = (-yll)(-Vlly) = Vlll. Assuming N to have a Y matrix,
Appendix 2 shows that N' also has a Y' matrix (if Y11 #0), Asa
consgequence Q+ is the same for both N and N' and hence the q+'s are
identical.

It should also be noted that Eq. (I.1') shows that if a network
has Z, Y or S (scattering matrix) then the q+'s, defined analogously
to Eq. (L 2), are all identical (for Z we minimize over currents, for

S we minimize over incident waves).

A b



APPENDIX 2: DETERMINATION OF Y
FOR THE CASCADE GYRATOR CONNECTION

We wish to find Y' for N' of Fig. A.l. For this first consider

the more general situation of Fig. A. 2.

2 L
‘4‘.’_ A B —F

v B n [ ] n|V N
-z | cC D ' -

FIG. A.2.--General cascade connection.

Here we can write

[v'] [A 'ﬁ] [v] -

= ’ I= v ( . l)
I C DJLI AZ
where A, B, C, D are n x n matrices. Solving this we can obtain

¥ = [C+DY] [A+BY]™ (4. 2)

Applying this to Fig. A.1l we find
A=D=0%1_,
B=y+ 0_, (A;.3)
C=(1/v)%0_

¥y, # 0, Eq. (A,. 2) is easily evaluated to give

_l/(vzv“) S VYA  Z2SUREE y o/ yp)

Yl

1
1
S
™
P
e
-
-l
L
| ol
-
et

vi; =0 'VnYJ.j”Yu

for i,j >2

(Ay-4)

[ ~Yal Jtery

Note that if y;; = ¥;; for all 1, j then yj; = yj; for &, j2 2.
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APPENDIX 3: Q+ FOR VARIOUS CASES

Here we will prove some of the statements made about Q+ and

q, in the body of the report.
a) Case 2

We have Y_=-1, +j[b +b,] + gE or
2 2 2 , 2, ...
Q = - | Vi|" = [ V517 + (o /I Py 1) V(-1 + 3by) + V(=14 jb,) |

Choosing
(vllvz)2 = - (-1 + jb,) /(-1 + jb))

gives [VYCVI =0, As a consequence q = -1, no matter what values

b1 and bz assume,

b) Case 4b3

0 1
We have Y =,: }-bj[b-i- 0] + gE or
€ Lt o

o
]

L2
2Re(VIV,y) + (e /| o, )] jbVg + 2V, |

2 s . .
| V51" {2Re (Ve/Va)™ + (e /| Py )] b + 3“’1"{2”} if \*rgg. 0
We now choose
(;/5/ \(’a) = u-j{b/2) with u arbitrary but < 0
Then

Q =(-2u) [-1+(c_/]p |)]<0

As a consequence we know q, < 0, independently of b,

c) Case 4c1

We have Y_= [14 (-1)] + jlb; + b, ] + gE. We wish to find the
constraints put on l:v1 and l:o2 by q + <0.

Q, = 1 Vi1% - 1V,1% + o o/ 5, ) V2L + jby) + VE(-1 + jb,)]

=30 -



G (APPENDIX 3)

a Let

i il
i | 1°

2
i |

='e|V2
il ¢, = phase of Vo (L +jby), i=1&2

| = qf —> ¥ ™(3b,) ] 6?,_.—;-\/‘( bty b
Since we wmh ‘to minimize Q we require

qdli 0< € <1
| fe= v
1 Ve . 2 2
et T, Then, restricting Q+ to |V1| + |Vz| = 1, we have
i 1 2.1/2 _ 2.1/2
il Q+=ﬁ—€{-l+e+(co/|po|)|(1+b ) e(l+b; 212y

We have two cases to consider.

2 2
Case I: bl 5bz

Then

=1i+-e{[-1+(cr0/|p°|)(1+b 221 14 (o 1B )@+ b 2)1/2

1/2]

Q

> [ -e)/(+e)][-1+ (o /] py | )L + By)

Consequently for q, <0 we clearly require
| 2 2
i bz < (molo'o)

Further, this inequality on I:2 is sufficient to insure q+f_ 0 as is seen
il by taking ¢ = 0.
il 2 2

i Case II: b1 > bZ
i Letting
ik . [+ b2/ + B)]H2
then 2.1/2 2,1/2
{[-1+(c /| Po | }1+b,) J+e [1-(o /| P | )(1+b ]} for e <e
(1+e)Q+ =
{[-1-(o /| p,| )(1+b2)1/z]+e li+(e /] P, | )(1+bz 1/2 ]} fore >

Ll =




(APPENDIX 3)

On differentiating we find

2-(o /| py | M (1405 112+(1+b2)1lz] for ¢ <e_
2
(1+€)°[dQ, /de ]=
+ 2+ /| p, | N+ ”2+(1+b2)”7‘] for ¢ >¢_
Two situations can occur.
Casem : o [0+ b2 /2 4 w422 <2p |

In this case (dQ+/de) > 0 for all ¢ and hence the minimum occurs

ate = 0. This requires

2
s(wo/cr )y~ for q+50

2
b,

Case I3 : o [(1+b, )1/2+(1+b )1/2]>2|P°|

g
Here dQ+/de changes firom nepgative to positive (as ¢ increases)

ate = ¢ o The minimum is then at e o This always has q, < 0, since

at € =¢ ,(1+e )Q —-1+e < 0.
Fromthese resulta we conclude that1fq+<0a.nd b2>(m /cr)
1:.h¢3n.bf>]:>‘._,.Z

. by



APPENDIX 4: CANONICAL FORMS
FOR TWO INDEFINITE MATRICES

Theorem 1: Let G=[14+ (-1)] and let B = [bij] be a real, symmetric,
indefinite matrix, Then there exists a real, non-singular matrix T
such that TGT = G and TBT is one of the following matrices

bi=bay  N=5y 0 -8,
B,=[b,+ b,,], B = s, B .=
- e 0 T [ NTE, by,-b);

where Ab = det. B

Proof: Consider the two matrices

1t
T, = a1 - 8 if t% <1
1 (A1)
rt -
T, = an -1 it >1
1t
where t will later be defined. Then we have ".i:'lc;'r1 = T,GT, = G and
2 2
by +2tby, +t%b, by, (L+ 7 M (b, by, )t
-4 %,BT, =
2 )
by, (L% )4{by +b, )t b, ,+2tby, +t°b
5 5 (A,.2)
b, +2tby, +t7by, by, (14t} (b +by ) )t
* - 1) T,BT, =
s 2
B (145} (b by )t b +2tb ,+t b,
Now if b12 =0, B= BI already and if bZZ. = 0 then B = BII

already. Thus assume that blz # 0 and 1:22 #0, then we choose t such that one

of the diagonal members in Eq.(A4. 2} is zero, i.e., choose ,

t=-(1/b,,) [by, + -J'Z"q ]

12 # 0 and A, < 0, we can choose the + sign in t such that
t% 4 1. We then choose the T of the theorem to be one of T, T,

Since b




at one

{APPENDIX 4)

depending upon the value of tz. BI_I or BHI then results as a short
calculation shows, after perhaps normalizing the (1,2) elements by

-1, QE.D.
Theorem 2: LetGand B=B

(by2
T such that TGT = G and TB (T is diagonal.

I be given, as in Theorem 1, and let

- b“)2 >-44,. Then there exists a real, non-singular matrix

Proof: Consider Eqs. (A,.1) and (A4. 2) where in this latter we

malke the replacement

b11=> 0
b12 == -'\J-Ab
b,, = b

22 22 = P11

We then choose t in Eq. (A4. 2} to make the (l,2) term zero, Sucha

t is

t =(1/2)[(by, - by,) £ N(by, - b )° + 44, IINTE,

t is real and # 1 by the assumption made on b,, - l:u1 1+ QE.D.

o I



APPENDIX 5: ALTERNATIVE SYNTHESIS METHODS

As is illustrated by E-1, it is advantageous to have more
than one synthesis method available for NP for eack case. For the
one-poxt some alternate methods are contained in Ref. 9. In many
cases some alternate methods are obvious, however, we will give

three which are not very easy to come by,

Case 4c : Ignoring the skew-symmetric term, we have

bu’bzz "I‘—Eb

¥iip b= [T+ (-1)] + ] )
'J‘-‘Z;) 0

We add

b, =AY

)
'o
-N "El' bz.
Here b1 and bz are chosen to make Y, realizable and Y1 + Y" Lave
q+_<_ 0. For this let

¥,(p} = (p/w

bZ 3 QOIZG'O

bl =-Zu'0 Ab/(-.‘to i. e,, det. Y] =0

At P, We then have

Z 2 amengurr TR
1.. H 4 - i B _', . \"oh_
1-{Zo, Abluo r e N =dpla, =8 oAb/mo L
Yl-i- Y= +j
I
-T N -Ablmo -1/2 G mOIZch

We now cancel the (2,2} term by a passive network, Eq. (1. 3), and

cancel the {2,1} term by a gyrator o get a zero determinart,

Case 7,: The situation YT irdefinite and ¥ S of rank one will be

b IS R.
treated, We begin by diagonalizing YRS to get
, Pir Pr2
Y= [g+0]+] + {g + jb)E (A1)
| 12 Paz




(APPENDIX 5)

This leads to several cases,

Case 7b1: b1z = 0 or if blZ # 0 then bzz #0

We either have directly, or obtain by adding -b,,/b,, times
the second row and column of Eq. (AS' 1) to the first,

Y_=lg + 0]+ilb +b,]+ (g+jb)E
The method of Case Sb can now be applied.

Case 7 blZ #0and b

22:0

b,

After perhaps adding the second row and column to the first

and normalizing we get for Eq. (A5. 1) (after dropping the gE term)
) 0 1
Y. =[g . +0]+] - + jb_E ; g.=t1 (Ag.2)

There are then three synthesis methods depending upon the value of

b *
c

Case 'i'b : b‘2 =1
z c

a
In this case either the last row or column of Eq, (As. 2) is
already zero.

Case 7b . bz>1
> c

B
We add, for all p,

. “ 2
Yp. = [2+0]+[0% (b. - 1}]

where the matrix [2 4 0] is omitted if g. = tl, to obtain a zero

determinant,
Case 7, : b <1
c
2
Y

If g = -1 we add, for all p,

: 2
Yo = [04(-05)]

WAk E
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to obtair a zero determinant.
g, =+1we force the Y o term to zero in the following way.

We first add a gyrator of gyration resistance

v = -1 - b’

in parallel and then follow this by adding a gyrator of gyration

resistance
[ 2
YZ :(1/2.)/& 1 - bC
in series. The resultant network, No’ has an admittance matrix

3 e | -
Y with (¥Y1g¢) = (Ypgsle = O

Case Bb: We have

b, 1-Pa2 -8y,
Y_=[1F (-B]+]) +(g+ Jb) E
We then consider two situations.
. 2 2
Case 8b : -{l+b + Ab) + ([b11 - bzz]/ab) <0

1
We add, for all p,
Yo = lg + gl
and choose g;, §; and g suck that the new determinant is zevo. The

new determinant is

2 Z - '
A=|-1-b "Ab - g1+ 8182"’8 1+ J[(bll'bzz}‘.'l"'gz) + 2gb] (A5- 3)
Setting the imaginary term equal to zero gives
g = {1 - g;) by - byy}/2b

Plugging this into the real part set equal to zero yields

2

2 i 2 2
gl-gz-g1g2+(2g2-gz:l‘[bu-bzzll?_b) =-(l+b +Ab)+([b1]-b22]/2b)

(Ag. 4})
Arbitrarily setting this equal to -g, we get

’ 2 \ 2
g = l+b” + 40 - ([bll - bzz]/Zb)
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This results from the right of Eq, (A5. 4). From the left side we
find

Zg1/(1+g1) if bll = bZZ
g =

L-(L+g)2b% /(b | -b,,)2+(1/2)

2 V212 2 z
J[-2+(1+g 485 /(b -by )7 | +32g)b% /(b -by,)° £ by dby,
The values for the passive network are then determined.

, 2 2
Case Bbz. -(1+ b7+ 4)+ ([b11 - zz]/2?::) >0

Here we add, for all p,

YPc = [g1 + 0]
and choose g and g such that A= 0. Here Eq. (AS' 3) remains valid
with g = 0 and we find

g= (bll - bzz)/Zb

g = -0+ b2+ &) + ([ - by, 1/2b)

Case BC: We have

0 -4‘-’5’1;
i Y = [+ (-D]+j]| _ + (g + jb)E

e i - b..=b

g( b 22 11

] :‘F Almost the same two situations that were treated in Case Sb occur
1 :é,? here.
. Ij ....*.r L 2 z

2 Case 8c1' L+b7 + A} + ([by, - b 1/2b)" <0

g We add, for all p,

YPc = [gl i 0]
and choose g and g to force the new determinant to zero. This gives
g = -(b22 - bll)IZb

g = (L+ b+ A) - ([by, - by, 1/2b)
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L e e ]

(APPENDIX 5)

2

2
Case 8_ : -L+b"+A)+ ([b‘._,'z - bn]IZb) >0

2
Here we put a gyrator, of gyration resistance y, in series
and then adjust y and g such that the new Y, is zero. The values

required are
g=- [(bzz - ll)lzb] + IIZ‘Y

- |
¥ =2 [0+ 62 + AL} + ([by, - by, 17262 T
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