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method. The value of K, was obtained to
be 11.5 and the value of &y agreed to within
10 per cent of the dc value,

1t may be noted that the proposed meth-
od requires comparatively simple experi-
mental arrangement, namely a SWR de-
tector and a variable-frequency signal source
only. The temperature control may also be
conveniently introduced by enclosing the
sample holder inside a bath. A detailed
description of the method for measuring the
conductivity and dielectric constant at dif-
ferent temperatures and the experimental
results will be published Iater.

The authors wish to express their appre-
ciation of the constant encouragement re-
ceived from Profl. J. N. Bhar and their
thanks to other colleagues of the laboratory
for their kind cooperation,

B. R. Nac

5. K. Roy

Inst. of Radiophysics and Electronics
University of Calcutta

Calcutta, India

Reciprocal Ferrite Phase-Shifter
Measurements*

The results of high-power (spin-wave)
experiments on microwave ferrites are
generally published in the form of y=f(4),
where y is the loss component of permeabil-
ity or susceptibility and & is the microwave
magnetic field. Similar results for the real
component of the complex permeability can
also be plotted but are rarely published.
These graphs represent important intrinsic
characteristics of the ferrites but unfortu-
nately mean little to the general microwave
practitioner who prefers to see graphs of
phase shift and attenuation in a given ge-
ometry. It must be realized, however, that
phase shilt cannot be entirely ascribed to the
real, and loss to the imaginary component
of the complex permeability.

In the course of some experiments on
reciprocal phase shifters it was found con-
venient to plot their behavior in the form of
Smith charts, in which the two components
mentioned above can easily be recognized.
The experiments were performed at 9 Ge in
rectangular large X-band waveguide. The
testcircuits for low- and high-power measure-
ments are shown in Figs. 1 and 2, respec-
tively, In the latter case the incident power
was determined by replacing the ferrite
phase shifter with a solid short.

The difference in behavior between the
MgMn ferrite “Ferramic R1™ and the Ni
ferrite “Airtron C3P50” ig striking. The
former exhibits an obvious increase of its
loss component in higher microwave fields,
while the reactive component remains al-
most constant, as shown in Fig. 3. The mag-
nitude of the RF field was calculated at
about 30 oersteds for the maximum power

* Received May 16, 1962,
} Indiang General Co., Keasby, N. J.
% }Alrmm Div. of Litton Industries, Morris Plains,
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Fig. 3—Phase.shifter characteristics with Ferramic R1.

Fig. 4—Phase.shilter characteristica
with Airtron C3P50.
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the complex permeability seem 1q iy y

switched roles. Fig. 4 shows that qt 12
oersteds the loss component experieng,
little change with increasing power, whils

the phase-shilting ability is noticeably F&¢

duced. At 700 oersteds neither COMponeny
exhibits a significant change. Because of thi
unexpected behavior the phase shifter Wag
cold-tested again after the high-power ex.
periments; no significant deviation from the |
original results were observed.

Although the graphs of Figs. 3 and 4 g5
not represent intrinsic material charactpr,
istics it is felt that such a presentation cop.
veys more information to the microways |
engineer than the usual susceptibility plots, 1\

Il some standard configuration could he

agreed upon, the Smith-chart presentation |

should be quite sufficient for most power
applications of ferrites.
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Electron Tube Diy,
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Hilbert Transforms and Positive-
Real Functions*

In a recent communication! Papoulis
has given a proof of the angle constraint
for positive-real functions along the lines
of that which Bayard attributes to Leroy.?
The method is based upon the Hilbert
translform and consequently bypasses the
lengthy arguments based upon Schwarz's
lemmma.

Since the proof based upon the Hilbert
transform is less general than that using
Schwarz's lemma, it is of interest to know
the limitations of the first method. For
instance, the Hilbert transform method
cannot be directly applied to the positive-
real functions

F(p) = p,
F(p) = + /3,

Fp) = ): [p/ub)/[5% + (/.

In contrast, the Schwarz's lemma proof
holds for all positive-real functions.

To sec the limitations, we realize that
the Hilbert transform proofl rests upon equa-
tions (5} and (6) of Papoulis

Re) = [ RoMw-iy  ©

1 r* R
F(p) = — —dy. (i)
w=—f nd O

* Received June 11, 1962; revised manuscript re-
ceived, June 25, 1962,

' A, Papoulls, “Hilbert transforma aml positive-
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“Editions de ta Revue d'Optique,” Parls, France, p.
259; 1954,
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For (3) to be valid we require R(y)tobea
distribution, and for (6) to be valid we re-
quire that R(y) and X(y) be distributions
which can be convoluted with 1/w and

Rlw) = Jl_[g ReF(p), X = Jﬂ Im F(p)
e>0 o0

where the limit is taken in the distributional
sense.! For this we assume, aleng with
Papoulis, that Re #2>0 and that the
imaginary constant at infinity, which
generally occurs in (6), is zerg, since we are
interested in positive-real Fip),

The limitations placed upon the Hilbert
transform proof are then

1} R{w) and X{w) be distributions de-
fined by the above limit, and
2) R(w) and X(w) be convolutable with

1/w.,

If these restrictions are satisfied, the prool
given by Papoulis is valid. (F need not be
rational.) Note that the three functions
given above doa't satisfy these restrictions,
The beauty of the proof of Papoulis lies in
the interpretation of (6) as a convolution,
to which engincering concepts such as the
impulse response can be applied.

It should be emphasized that the real
part of F(p)=F/(p—jw) is undefined. If
in this latter expression one approaches
Juu by letting 0<e—0, then one gets R(w)
=Kx8{w—wy) for the “real part.” How-
ever, il one approaches Jws by letting
0>0—10, then one gets =Kré(w—wo) as
the “real part.” If one lets g—+0 through both
positive and wegative o, then an indetermi-
tiate expression results,?

By using Schwarz's lemma, one easily
shows that, . =angle of,

| %F(p)] < |%p] inRep>o0

if F(p) is any positive-real function; con-
versely if F(p) is analytic in Re p>0 and
satisfies this constraint, it is positive-real.s
We wish to point out that if F(p)is a sym-
metrie, positive-real, #Xn matrix,® then
IF(p)x is a positive-real scalar for every
real n vector x; tilde =transpose, Conse-
quently an u#Xn, symmetric matrix, F(p),
is positive-real if and only if

1} F(p) is analytic in Re p>0
2 |4z Fpxl<IAp] in Re p>0 for

every real #-vector x,

We also wish to point out that, as Prof.
Kuh has suggested, the angle constraint for
nonreciprocal networks is still unknown, In
this latter connection, Belevitch has some
interesting results which are soon to appear.®
R. W. Newcomn

Dept. of Elec. Engrg,

Stanford University

Stanford, Calif,
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Selectivity and Sensitivity in
Functional Blocks*

The problem of obtaining a narrow baml-
pass (ie., selective) frequency response
without inductance has long been of interest.
The main area of application of such selec-
tive networks has been at low frequencies
where the inductors that would be required

dsp, x - (dop + jd‘l’p). x_ (opllop + wpthiay) + Hoptwy — wpde,) x
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component which causes the poles to move
to the left of their desired location cattses
loss of selectivity, while a small error to the
right causes Joss of bandwidth. Of course
the network becomes sell-oscillatory if the
poles touch the jw axis.

It is not difficult to show quantitatively
how sensitive Q is. The sensitivity of the
dominant pole is given by

Sytp = —L.

sp dx (op + jup) dx

are undesirably large. Presently a selective
network is being sought that can be buile
into a solid functional block where appreci-
able inductance is not obtainable, The pur-
pose of this communication is to point out
the seriousness of the sensitivity to com-
ponent variations which is inherent and un-
avaidable in most of the solutions that are
being proposed. Although this sensitivity
has been known for years,'™ it is often
cither ignored or else treated as something
which can be overcome by some slight re-
{inement.

This discussion pertains to all linear net-
works which achieve selectivity by using an
active element to counterbalance losses in
the remainder of a feedback loop. Included
are all amplifiers using an RC null circuit
or phase shifter in the feedback path and all
of the various forms of simulated induct-
ance in negative resistance devices where
feedback is inherent in the bilateral negative
resistance.*® The resonant response of such
networks is dominated by a conjugate pair
of simple poles of the transfer function lying
very close to the jw axis, If 2 @ of 10 is arbi.
trarily accepted as the lower boundary for
“selective” response, the Q resulting from a
pair of poles at s, = e, + - farp is

Q=_ﬂ_. (1)

20,

The selective region of the s plane for which
Q210 then extends only tan™! —g,/w,= 30
to the left of the fu axis. Any error in a

* Received May 14, 1962,
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This sensitivity may be evaluated from the
characteristic equation of the network and
is equal to the percentage variation in the
pole caused by a 1 per cent error in some
element, x. The @ sensitivity is then

aQ x - wpllay — o duw, x

S‘° T — b —

dx -ty dx
- wpdap — opdu, =
—2op tp? dx

= =20TmS.% for wp 2> =g, (3)

The real part of the pole sensitivity results
in a radial motion of the pole which changes
the resonant frequency but does not affect
Q. On the other hand, the @ sensitivity is the
imaginary part of the dominant pole sensi-
tivity magnified by a factor of 2Q.

If (2) amd (3) are evaluated for any
passive selective network {which must be
absolutely stable) such as an LC tank
tircuit, the imaginary part of the pole sen-
sitivity is found to be inversely proportional
to Q. Thercfore, the @ sensitivity is inde-
pendent of Q and is not excessive.

However, it can be shown that the
imaginary part of the pole sensitivity of an
active feedback network which achieves
selectivity by approaching the verge of
oscillation does not change appreciably
across the narrow selective region. Therefore,
the higher the Q that js achieved, the more
sensitive @ is to element variations, As an
example, if a standard parallel-T nali circuit
is used in the feedback path of a high-gain
amptlifier to obtain selectivity, the imaginary
parts of the pole sensitivities for the varipus
elements range from } to t. To attain a Q
of 50 within +10 per cent would then re-
quire that the components in the nulf cireuit
maintain tolerances of about *0.1 per cent
over the entire range of operating condi-
tions. Similar conclusions apply to all other
ways of achieving selectivity by using either
an active feedback loop or negative resist-
ance.

Although these concepts are not new to
circuit theorists, they do not seem to have
been fully appreciated by those who are seel:-
ing solutions to the solid-state tuning prob-
lem. A realistic approach to selectivity re-
quires an understanding of the related prob-
lems of sensitivity, The desired selectivity
must not only be atiained, but aiso main-
fained within reasonable lmits, On this
basis a proposed solution is worthy of con-
tinued investigation only il the associated
tolerances are likely to be achievable.

W. E. NeweLL

Research and Development Ctr,
Westinghouse Electric Corp.
Pittsburgh, Pa.




