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ABSTRACT

In most known generality

The positive-real property

Here reports, compiles, and deeds,
Qualities, as synthesis needs.
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I. INTRODUCTION

Positive-real scalars are familiar to most graduate
electrical engineers because of their use in the synthesis
of passive one-ports, [1]. It is alse recognized by most
such engineers that some sort of extension of this concept 1s
necessary, but except for special cases, [2, p. 263], there
appears to be only one place where positive-real matrices
are defined in their full generality, [3, p. 122], and no-

where can one locate thelr properties.

Because of the need of many of these properties in a
nonreciprocal Brune synthesis, it became necessary to assemble
many of these properties, {4]. Although this requires a theory
for rational matrices only, it 1s just as easy to give results
incorporating more general matrices. Consequently, it seems
worthwhile assembling the important properties which are
bresently available in a report separate from that containing

the synthesis method.

We will adhere to the following notation and conventions:
P =0+ Jw, J =-J:T, denotes the complex frequency variable; a
superscript asterisk,*, denotes complex conjugation; a sub-
script asterisk, ,, denotes Hurwitz conjugation (replacement of
p by -p); a superscript tilde,m, denotes matrix transposition;
a subscript y denotes the Hermitian part, i.e., Ay = %[A+K*];
+ denotes the direct sum of two matrices; 1, and O

denote, respectlvely, the n x n identity and zero matrices;
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| l denotes the absolute value; ¥ denotes "the angle of."

II. DEFINITION

We consider a passlve n-port network, N, which satisfies
sultable restrictions to have a Iaplace transform description.
N need not be reciprocal or contaln a finite number of
lumped elements, but, for our purposes we can assume it
possesses an impedance matrix Z(p). By exeiting with square
integrable currents we see that Z(p) 1s analytic in the open
right half plane g > 0, [5, Chapters 5, 10, 13]. By exciting
with exponentlial currents whose frequencies are on the
posltive ¢ axls and then using Schwarz's reflection principle
we see that Z (p) = Z(p") in ¢ > O, [5, Chapter 13]. By
exclting with currents of the form 1(t) = Re I exp[pot],

Op > 0, -®< t < =, we see that Q_(Z, I, p) > O for every

complex n-vector I and every p in ¢ > O where, [5, Chapter 13],

'f*zH(p)I -8 [ TZ)I | if @ # 0
Q_(z,1,p) = 2 (1)

I Zy(p)I if ® =0

Since a necessary condition for Q@ > 0 is that the Hermitian
part of Z be positive semi~definite in g > 0, the above
considerations lead us naturally to the following definition,
{3, p. 122].
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Definition:

An n x n matrix A(p) is called positive-real if it
gatisfles all of the following conditions:

a) A(p) is analytic in g > 0

b) A'(p) = A(p*) 1n g > ©

c) AH(p) 1s positive semi-definite in ¢ > O.

In contrast to what one finds in the literature,
[6, p.2], or even in recent textbooks, [2, p. 244], 0 = O
must be excluded from 3), since the Hermitian part of a
matrix 1s not defined at singularities, [7, p. 2]. That
singularities can actually occur on g = O is shown by the
driving-point impedance Z(p) = 1/p, which one would of
course wish to call positive-real. That a) is not a con-
sequence of b) and c) 1s seen by A(p) = g - Jw. In the
case where A(p) is rational and positive-real, we will call
it PR. If further A(p) i1s PR and symmetric, that is A = K,
we will call 1t SPR. Finally, if A(p) is SPR and a scalar,
that is, n = 1, then we will call it pr. In the PR case, a)
is a consequence of b) and ¢) and can be rightfully omitted
from the definition. Further, in the PR case, b) merely

states that the coefficlents are real.

Before continuing we consider the following examples.
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Example 1:

a) Z(p) = |p+1 1 1s SPR since it is symmetric
1 1+1/p
and the impedance matrix of a tee network of unit

inductance, resistance and capacltance.

b) Z(p) = ([p+l 2 is PR since it is the
0 1+1/p
impedance matrix of the network of a) in series

with a unit gyrator. Z is not 2PR.

¢) Z(p) = fectnh p ecsch p] is positive-real since it
¢sch p ctnh p
is the impedance matrix of a lossless transmission

line. Z(p) is meromorphic but not PR.

d) Z(p) = Ji1wp 2 | is positive-real since it comes
0 p+1
from a tee consisting of an infinite R-L trans-
mission line, resistor, inductor put in series
wilth a gyrator. Z is not meromorphlec nor PR. 2Z
has a branch point at p=0 for which the positive

branch for P=g 1s taken.
e) None of a)-d) are pr while A(p)=p is pr.

f) None of A(p)= sinh p, A(p)= J1, Alp) = [b PJ

Q 0

are positive-real.
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III. PR TEST AND g=0 PQIES

Before turning to the properties of general positive-
real matrices we glve an alternate characterization of PR
matrices. This serves as a useful PR test, since the
definitlion of section II requires searching in the entire
(open) right half plane. The following theorem also allows
us to explicitly exhibit the factors for poles on g=0 and
consequently lends some insight into the structure of PR
matrices. An alternate, but in many cases less useful,

test is given in T-15 of section IV.

We first recall that the residue at infinity 1s defined
in network theory as the coefficient of p in a Taurent ex-

pansion about infinity (this differs from the mathematical
usage, [8, p. 227]).

T-1:

(PR Test) An nxn matrix A is PR if and only if it has

all of the following properties

1) A is rational with real coefficients

2) A has no poles for g > 0O

3) Poles of A for g = 0 are simple

4) The residue matrix of A for each pole on g = 0
(including infinity) is Hermitian with every
principal minor non-negative

5) All principal minors of Ay are non-negative for

egach p on g = 0 for which they are defined.
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Clearly 1) must hold for any PR matrix as it is part of
the definitlon. We will first show that irf A.satisfies the
remaining properties 1t is PR. Define, for any complex con-

stant vector x

£.(p) = X Ax (2)

We must show that Re £, > O for all p in ¢ > 0. By 2) £
is analytic in ¢ > 0. Further by 1), f, has only a finite
number of poles on g = 0, which by 3) are simple. Now
conslder Fig. 1 where the contour Cx is indented to avoid
every pole of fx on Re p = 0 (note that Cx may change with

x).

a. p Plane Contour C, for f b. Detail near a Re p=0 Pole at p,

FIG. 1. CONTOUR FOR f,.
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For p on Cx but near a finite pole Py of fx, Py = Ju%,
we can write, by 3) and 4) and Fig. 1b
k, = residue > 0
-1 -Je b
£ %k /(pp ) = k 3 with{ (3)
SO s -(1/2)< 8 < (w/2)

Because of the limits on 8, we see that Re fx > 0 on the
indentions of Cx for finite poles. An exactly similar
argument holds for p near infinity, except l/(p—po) is
replaced by p. By a known theorem of matrix theory,
[9,p.337],5) implies that Re fy 2 0 on the remainder of Cy -
Consequently, we have

Re fx(p) >0 for p on C. (4)

We now apply the principle of the maximum modulus,
[8, p. 133], to exp [-fx] for p inside and on C.- Thus

exp[-Re f ] = lexp[-fx]l (5)
obtains 1ts maximum on C.. exp[-f ] being analytic inside

and on C,.. Consequently, Re fx obtains its minimum on Cys

for which the indentations can be chosen arbitrarily small.

We then have

¥
Re fx = X AXx >0 forping>0 (6)
Since these arguments hold for every x, A is PR.

We begin to show the only if statement by assuming that
th
a PR A has an m order finite pole at P, with Re Po 2 0.

We wish to consider the coefficient matrix, K, of (p-po)-m
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in a Iaurent expansion of A about P, since, for p

arbitrarily close to Po? there exist x's such that
" m _'\-'*
£ ® k/(p-p )" with k= X'kx £ 0 (7)
We will then conslder p on a circle of radius p about Ps

(analogous to Fig. 1b) and look at

A o MKe M), = oM L (8)

which serves to define the Hermitian matrix L. We have

Ly; = [Re Ky4] cos (me) + [Im K;;] sin (me); i=1,‘.i’?
9

The assumption of A being PR, coupled with (8), shows that

Ly

Further, there must be at least one Iii which 1s not identi-

3 2 0 for all 1 and each p on the circle but in g 2 0.

cally zero, because we require LiiLJJ-LiJI;Jz 0, for each i
and j, and each p on the circle. If for all p on the circle
all I&i are zero, this shows that alil I&J are zero, glving
K=0, i.e., no pole would exlist. Thus let Ikk + 0 for

some p on the circle; then we require

-(m/2) < 8 < (7/2), m=1, Re Kee >0, Im Ky =0 (10)
The conditlon on 6 shows that only half of the circle about
P, lles in g > O, that is, there are no poles in g > 0.

The condition on m shows that the finite poles on Re p = O

are simple.
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We must show that K 1s Hermitian and has every
principal minor non-negative. We have from (7) through (10),

for p on the circle near Py
XA %p™ ([Re k] cos 6 + [Im k.] sin 8)  (11)

Because of the requirement on 6 and the non-negativeness of

(11), we require

Im k, =0 for all x (12a)
X'Kx = Re k,_ > O for all x (12b)

This shows that K 1s Hermitlian and applying the previously
used result from matrix theory, [9, p. 337], we know it has

every principal minor non-negative.

We have shown that 2), 3) and 4) hold for finite poles,
but they also hold for poles at infinity. To see this note
that a pole of A(p) at infinity is a pole at zero of A{1/p).
But A(1/p) is PR if A(p) is, since Re P > O implies
Re(1/p) > O and vice versa.

To show that 5) can't be violated we use the fact that
;*AHx, for an arbitrary x, is a continuous function of the
two real variables ¢ and w. Since it is non-negative for
P in ¢ > 0, 1t is non-negative for g = 0, when it is defined,
by continuity. Consequently every principal minor of Ay 1s

non-negative on ¢ = 0, when it is defined. Q.E.D.
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A similar test has been described for SPR matrices,
essentially without proof, by Tellegen, [6, p. 2]. The
proof given here is a modification of the test for scalars,
[1, p. 182]}. We can actually give a physical interpretation
to each condition of T-1. Thus 1) states that PR matrices
are concerned with lumped, finite networks whose elements
are real valued. 3) and 2) state that the network is
stable and perhaps asymptotically stable. 4) indicates that
poles on ¢ = O result from lossless networks. 5) means that
the average power input in the sinusoidal steady state is
non-negative when any set of terminals 1s excited. Taken
together, all four condlitions tell us that PR matrices are

linked to passive networks.

The following example illustrates the usefullness of

T-1.
Example 2: p 1 0
Let A= (p° +1)1 |1 p
0 -1

Here A satisfies conditions 1), 2), 3) and 5), but the

resldue matrix for p = j1 has a determinant of -1/8.

Hence A is not PR.

Using T-1 we can exhibit the required form for the
6 = 0 pole terms 1in a partial fraction expansion of a PR
matrix A. Let p, = Jo  be a finite, non-zero, pole of A;

*
then P, is also a pole. Iet K be the residue matrix at Pyi
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*
then K* is the residue matrix at P, - Combining these

conjugate poles, the partial fraction term of A is then

[10, p. 155],

*
K + K — [SA'FB% (133.)
(p-ju ) (p+ja ) p +w,
where
v *
A=K+K=K+K (13b)
B = Jug(K - K] = Ju,[K - k) (13¢)

Here, if a dlagonal member AJJ of A is zero, the corresponding
row and column of A and B are zero, since every 2 x 2 princi-
pal minor of K 1s non-negative. A is real, symmetric and
positive semi-definite, (since xAx = 2xKx) while B 1s real
and skew-symmetric. Since the residue matrices are real for
poles at zero and infinity, the Hermitian property shows that
they are symmetric. Thus, these poles contribute terms
pA(m) and p'lA(o) with A(m) and A(o) real, symmetric, posi-
tive semi-definite matrices.

Using these facts we gee that,for a PR A, A + K* has
no g = O poles. Since A + K* = A + K* on g = 0, we also
see that 1f properties 1) through 4) of T-1 are satisfied,
then by formling A + K* and setting p = Jjo, Ay can be defined
for all w. This is actually implicit in the work of many

engineers but should be done with caution.

Finally, we remark that if any positive-real matrix has

DPoles on the imaginary axls these poles satisfy conditions 3)
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and 4) of T-1 and are thus of the form of (13a) if @, + 0, =,
A test, such as T-1, should hold for meromorphic positive-
real matrices, however, some trouble seems to arise because
of the presence of essential singularities at infinity in
meromorphic functions. Further, one should be able to say
something about algebraic singularities on the imaginary
axls, by using the approprlate expansion about such a

singularity.

IV. FUNDAMENTAL PROPERTIES

We will 1ist here the most important properties of
positive-real matrices which are needed for synthesis.
Several of the more speclalized properties are important for
specif'ic synthesis methods, while some are needed for con-

verting to the scattering matrix.

T-2:
If A 1s positive-real,then K is also positive-real.
This 1s easlly seen by transposing ;*AHX. Physically it

means that the result of turning the gyrators around in a

passive network 1s still a passive network.

T-3:
If A and B are positive-real and of the same order,
then A + B is positive-real.
This is seen from ;*(A+B)Hx = Q*AHx + ;*BHX and physically
states that the seriles or paralilel connectlons of two
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passive networks 1is again passive.

T-4:

If T 1s a real constant n x r matrix and & 1s an n x n
[a¥)
positive-real matrix then TAT 1s an r x r positive-

real matrix.

We have ;*($AT)H =(5§)*AH(TX)- But ;*AHX assumes all

the values, if not more, that (fi)*AH(Tx) does, which proves
T-4. Physically this theorem states that the termination of
a transformer or gyrator (n+r)-port by a passive n-port
results in a passive r-port. By choosing T to isolate any
desired submatrix we obtain the following corollary. Physi-
cally this states that every subnetwork of a passive network,
which is obtained by ignoring terminal pairs, is again pas-

slve.

C-4:
Every principal submatrix of a positive-real matrix
1s positive-real.
The following theorem, T-5, is needed to prove many of the
remaining theorems. Before considering T-5 it i1s worth
defining reduced matrices. A positive-real matrix which

is analytic on Re p = 0 (including infinity) will be called

imaginary-reduced. A matrix A(p) for which det Ay = 0 at

a fixed P, on Re p = 0 will be called real-reduced at P, -

A matrix which is both imaginary and real reduced (at
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some po) will simply be called reduced, or sometimes
minimum.
T-5:
[a¥L 3
If A is positive-real and if xOAH;O = 0 for some flxed
L¥E 3

xo+()and some fixed Po in ¢ > 0, then xOAH;O = 0 for

all p In g > 0. If A is imaginary-reduced the last

g > 0 can be replaced by o > O.

Proof':

As in (2) let £ = X Ax_, then exp [-f. ] is an analytic
X 00 X,
function for p in ¢ > 0, or ¢ > 0 in case A is imaginary-
reduced. Considering (5) we see that Re fx can not have a
o
minimum in ¢ > 0, or ¢ > 0 if A 1s 1imaglnary reduced, unless
it is a constant. However, Re fx = 0 is clearly a minimum,

0
Q.E.D.

The followling result shows that 1f each inductance or
capacltance 1is replaced by a passive one-port, the resulting

network is again passive.
T-6:
If £(p) + 0 is a positive-real scalar and A(p) 1is

positive-real, then A(f(p)) is also positive-real.
This results from the fact that Re f(p) > O for Re p > O.

The following theorem, which has been stated for the
rational case by Oono, [10, p. 154], shows that synthesis
Methods valid for the impedance matrix are equally valid

for the admittance matrix. We first make the following
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conventlon. The 1lnverse of an n x n matrix function of p

is said to exist 1f it exists when p is interpreted as an
indeterminate p, [11, p. 60]. Consequently, in the rational
case the rank 1s n for all but a finite number of P, when p

1ls treated as a complex number.

T-7:
If A is positlve-real then so 1is its inverse B = A"l,

if 1t exists.

Proof:

At each point where B exists we have ;*AHx = (K;)*BH(Ax).
Thus the Hermitian forms for AH and BH are identical, Ax
assuming all values with x. We must show that this holds for
all pin ¢ > 0, 1.e., B exists everywhere in g > 0. Assume
the contrary. Then there is a p0 and an Xy such that ;:Axo
= 0= XAyx_.  But by T-5, this holds for all p in g > o
In other words B wouldn't exist, contrary to the hypothesis.
Q.E.D.

The following lemma is needed to prove T-8.

L-1:

[a.¥) ¥
If A=A ig pPositive-real and A~1 exlsts, then x AHx > 0
for all x + 0 and all P in g > 0.

Proof:

Assume the contrary. Thyg assume that at P, In o> 0

et 3
there 15 an X, such that xOAHxO = 0. By T-5 this is true
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for all p in ¢ > 0 and 1n particular for p = ¢ > 0. But
for p = g, A = Ay, and hence A would be singular, [11, p. 270],

counter to the hypothesis. Q.E.D.

It should be noted that L-1 would in general be false
if we deleted the symmetric requirement. This is illustrated
by A= Lg é] which has Ay = 0, even though A~ exists.
However, we can extend L-1 to other than symmetric matrices

in many cases of lmportance.

I-2:
If A has all of the following properties
1) A is positive-real
2) A is imagninary-reduced
3) A is not real-reduced at p = O
then E*AHK > 0 for all x + 0 and all p in ¢ > O.

This 1is easily seen by assuming that there 1s an X, such
that X Ax_ = O for some p in g > 0. T-5 then applies to
show that this holds for all p in ¢ > 0. However, investi-
gating p = O shows that assumption 3) 1s violated. Note
that in I-1 we assumed the existence of A'l while in L-2

we didn't. AL does exist for L-2 as is seen by a converse

for L-1 which holds for other than symmetric A.
I-3:

¥
If A 1s positive-real and if X Agx > O for all x 4 0
and all p in ¢ > 0, then a1 exists.
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To see thils we note that 1f A were singular at even one Py

in ¢ > O, then there would exist an x_ such that A(po)x0 = 0,
"ok

Using this x_ and p, contradicts xOAH(po)x0 > O and thus

proves the assertion.

We are now 1in a position to prove some of the more use-
ful results needed for synthesis. The first of these is
analogous to a theorem of McMillan for SPR matrices, [12,p. 5447,
Physically it states that the series connection of a passive
reciprocal n-port with no shorted terminal pairs and any
other passive n-port results in a passive n-port with no

shorted terminal pairs.

T-8:
If Band A = & are positive-real and if A~1 exists,
then the inverse of A + B exists.
Proof':
Assume A + B to be singular. Then there is an X + 0
such that for p in ¢ > 0, ;;AHXO + ;:BHXO = 0. Since A and
B are positive-real ;:Aon = 0. However, this contradicts

the fact that A™! exists, by I-1. Q.E.D.

Here A = & 1s essential, as 1s seen by the fact that
A=p= |01 has A + B = 0. However, replacing L-1 by
-1 0
L-2 in the proof of T-8 we immedlately get the following

Tesult, which is sometimes useful 1n the synthesis of non-

Teclproca] networks.
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T-9:
If B 1s posltive-real and A satisfies the hypothesis
of L-2, then the Inverse of A + B exists.

By analogy wilth Hurwitz polynomials and following Belevitch,

we willl call a rational matrix Hurwitzian if all matrix

elements are analytic in g > 0, [13, p. 304]. Physically
the following result states that the addition of unit
resistances to a passive network can never result in a loss-

Jess network or in shorted terminal pairs.

T-10:

-1
(A + ln)

1s Hurwitzian, 1f A is PR.

Proof':

Clearly A + 1 1s PR, T-3, (A + 1 )% exists, T-9, and
is PR, T-7. By properties 2) and 3) of T-1 we must show
that B = (A + ln)_l is imaginary reduced. Assume then that
there is a simple pole of B of residue K at Pog = me, where

at first W, is finite. Then form

2(8)"(a + X@x) = X - (1 - 2B)0, - 2B)1x  (14)
which, for p in o > O but near Py must be non-negative since
Bx assumes all values with x. The right side then gives

XT-Kk/|p - py[%1x > 0 (15)
Which can never hold for all x. For a pole at infinity

We replace (p - po)-1 by p to prove the theorem. Q.E.D.
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Note that if A is meromorphic a similar result holds,
that is, (A + ln)_l 1s analytic in ¢ > O, perhaps excluding
infinity, in such a case. This isn't true in the general

case as 1s seen by A(p) =+p for which {1 ++p) ! has a

branch point at p = 0.

The following theorem 1s a generaliéation of the result
for symmetric, rational matrices, [14, p. 152], and has been
stated in the rational case without proof by Oono, [10, p. 155].
Physically the theorem states that essentially the only way
of making the impedance matrix singular is to adjoin short
c¢ircuits through transformers to a network which possesses

an lmpedance and an admlttance matrix.

T-11:
If an n x n positive-real matrix has rank r < n then
there 1s a real, constant, n x n, matrix T, which may
be chosen orthogonal, such that A = ¥(Ao + On—r)T’

where AO 1s a non-singular positive-real matrix of rank r.

Proof':

Consider a real P, in ¢ > 0 where A has its normal rank.
Since A(po) 1s real, we can find a real constant non-gingular
T, such that T,A has its last n-r rows zero at Po- Multiplying
this on the right by Eo gives at Pgy»

Aé AiE H Aé of order r x r

T AT, = (16)

0 0 A{, of order r x (n-r)
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By T-4, TOA$O is positive-real and thus (TBA¥0)H has every
principal minor non-negative at Py Considering the 2 x 2
principal minors for the last n-r rows and columns shows that
Al, = 0. We can show thatm(16)~with Al, =0 holdsmfor all p.
Consider the 1 x n vector X = [xlxe] where ;l and X, are con-
stant row vectors of order 1 x r and 1 x (n-r) respectively.
First let x; = 0, X, = arbitrary and form z*(TOA$O)Hx. At
P =P, this 1s zero and thus by T-5 it is zero for all p in
g > O. This shows that the (n-r) x (n-r) submatrix of ToAﬁo
satisfies Aée = - Ké; in ¢ > 0. Now Aée is analytic in p, and,
hence, Aé; can't be analytlc unless it is a constant, by the
Cauchy-Riemann equations. Since it 1s zero at Py it is then
zero everywhere in ¢ > 0. Then, letting Xy be arbitrary we
obtain

E*(TOA$O)HX = KAL), + Re[;I(Aig + ALT)X,] (17)
with Aél defined in an obvious manner. By properly choosing
X, and X, Wwe can isolate any element in the right hand term
and varying X, we can make the right hand term as negative as
desired (if it is non-zero). Thus, we require Re[gf(ﬂig
N Ké;)xe] = 0 for all x; and x, in p in ¢ > 0. By choosing X1

and x ] + =
1 I
) real we requlre Re (A12 Agl) 0 and choosing xl real

and x £¥) = = -Byy
» lmaginary we require Im(A_lL2 + Aél) = 0. Thus Al, = -A5,
for aja P in ¢ > 0 and as for Aée we see that AiE and Aél are
Zero for all p. Consequently
bt 1 ]
T AT = Al 40 (18)
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To show that Tb can be replaced by an orthogonal matrix
we can multiply (18) on the left by a real, constant, non-
gingular matrlx Tl and on the right by %l' T, 1s determined
in the followlng manner. Consider the rows of T0 as basis
vectors and orthogonalize these vectors by the Gram-Schmidt
process, [15, p. 127], beginning with the last row and work-
ing toward the first. This process can be performed by the
matrix Tl which 1n turn can be thought of as a product of
elementary matrices. The first elementary matrix (on the
right) of T, multiplies the last row of T, by a constant, the

th

second adds the n”"' row of T, to the (n—l)th, ete. Since we

will always add higher numbered rows to lower numbered rows

through Tl’ the On~r 1s preserved and we arrive at
A= T(Ao + On_r)T (19a)
T = T;T, = orthogonal (19b)
Aot Opp = Ty(AY + On-r)Tl (19¢)

Ao is positive-real since A6 was, and 1t is of rank r by

inspection of (19), T beilng of rank n. Q.E.D.

The following result Justifies the resistance extraction
which is one of the crucial steps in the Brune synthesis. The
Tesult ig g generalization of that of MeMillan, [12, p. 5561,

and allows that quoted by Belevitch as an important special

tase,
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T-12:
If A(p) is an n x n PR matrix, which is not real-reduced

at any p_ = Jwb’ and if AO is any real, constant, posi-
tive semi-definite matrix, then there exists some con-

stant r > O such that A(p) - rA, i1s PR and real-reduced

at some Py-

Proof:

We form AH(Jm) - MA_ where A is a parameter and we
guarantee that the entries of Ap(Jjo) and A, are bounded by
L4 V]
setting p = jo in A + A,. Now A (jw) and A, are both posi-
tive semi-definite and can be simultaneously diagonalized,
[17]; that is, we can find, for each ®, a non-singular (but

perhaps complex) T(w) such that

@) lag(30) - MgIn) = {ag @) -2) + . . .

(20)
Hae @) = 0) ¥ a0 (@) .5 ey ()}
where k is the rank of AO. We then choose r as
r = min , min ajj(m) (21)

1<J<r  O<axm
Substituting this r for A in (20) shows that A(p) is PR by

T-1 and W, is the o at which the minimum occurs in (21).
Q.E.D.

Of especial interst 1s the choice of Ay =1[1+0 ,4].
This is most convenlent for the Brune synthesis, [16, p. 285],

and was finpgt suggested by Oono, [18, p. 168], and used by
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Tellegen, [6, p. 4]. By using the Gauss diagonalization on
AH(Jm) one sees that in this case, [9, p. 26],

r = min A(w)/B, 4 (o) where A is the determinant and A., the

11
Odux®
(1,1) minor, both of AH(Jw). By (20) we see that AH(Jwb)-rAO
has rank n - 1. DBecause of 1ts 1mportance we state this

explicitely.

c-2:
If A(p) is an n x n PR matrix which 1is not real-reduced

at any P, then

An(p) = A(p) - [r + 0, 4] (22a)
with
r = min A(m)/All(m) (22b)
O<axe

1s real-reduced, of rank n-1, at the w, for which r is

formed.

Physically, then, a finite n-port described by a non-
real-reduced impedance matrix can be described by a real-
reduced impedance matrix by extracting a series resistor
from any port. The above theorem, T-12, appears to remain
valid in the meromorphic case, but some trouble seems to
arise in the general case as one apparently isn't guaranteed

the minimum needed for (21).

We now turn to angle constraints and related concepts,
Which ape based upon Schwarz's lemma, [8, p. 136].

3
Chwarzig lemma:
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Ir £(z) is analytic in [z[<1 and satisfies the two
conditions
1) f(o) =0in0< |z| <1
2) |e(z)lcamo< Jz]l <
then either
a) f(z) = expliv], v = real constant
or
b) |£(z)| < |z| tn 0 < |z| < 1
and

b,) |£1(0)]| < 1 where f' = df/dz

First consider a scalar posltive-real function,
A(p) = a(p). By looking at real P,= 0,> O and forming the
reflection coefficient f(z) = [a(p) - a(po)]/[a(p) + a(po)]
with z = [p - po]/[p + p,] and applying part bl) of Schwarz's

lemma, one shows in the standard manner that, [1, pp. 114-121],
lxal®) < [xp] tno>o0 (20a)

Here equality holds if and only if either p = g or a = ¢/p
or a = ¢cp, ¢ > O, PFurther by expressing the angles in terms

of cosines (20a) is easily rewritten as

Re a(p) Z‘TgT |a(p)[ In ¢ > 0 (20v)

This clearly shows that (20a) is equivalent to b) and ¢),

Under the assumption of a), of the positive-real definition
(use Schwarz's reflection principle, [19, p. 89], with a) to
B2t b) ). Now consider a positive-real, symmetric matrix A(p)
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tad b “
and an arbitrary n-vector x = x; + Jx, with £1s X5 both

real. Then
LA ¥2
a (p) = x Ax (21)

is a positive-real scalar, since ax(p) = xlel + x2Ax2. In
this case (20b) 1s identical to Q_(A,x, P> 0 in ¢ > 0.

We have then proven,

T-12:
Necessary and sufficient conditions for an n x n
symmetric matrix to be positive-real are
1) A(p) 1s analytic in ¢ > O and either
2a) l{;*A(p)xI_(_ |<):p| In ¢ > 0 for every x or equivalently
2b) Q (A,x,p) > O in ¢ > O for every x.

Belevitch has given an ingenious extension of 2a) for
non-symmetric PR matrices, [20, p. 4]. For any p in ¢ > 0

he writes

Alp) = U(g,0) + JV(5,w) (22)

where U and V are Hermitian. Ietting subscripts r and i
denote real and imaginary parts, he concludes, by using

arguments on the scattering matrix, that in o > 0
2. % 2 -1
w "y (O‘,Cl)) - g [VI,(U:(D) + Ui(U,CD)]U (G,CD)[VI,(O',CD) = Ui(U,(D)]

1s positive gseml-definite (A is assumed non-singular by using

T-11 50 that U"! exists).
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1f A(p) is analytic and symmetric in o > O, then a simple
manipulation of (20b) shows that a necessary and sufficient
condition for-A(p) to be positive-real, using the notatilon
of (22), is that both of oU(o,®) ¥ oV(o,w) be positive semi-
definite in ¢ > 0, [21, p. 3]. If A(p) 1is positive-real
and analytic at Py = me, then the use of the maximum modulus
theorem, as in T-1, allows us to conclude that AH(po) = U(O,mb)
is positive semli-definite. 1In case A is symmetric and
AH(po) = 0, we can conclude Takahasi'stheorem, [22, p. 58],
(18, p. 167].
T-13 (Takahasi's theorem):
If A(p) is a gymmetric, positive-real matrix which is
analytic at p_ = Ju_, 0 < @, 1 ©, with Ay(do ) = o,

then

[dA(P) + A(P)]l
9 - b p=p,

1s positive semi-definite (for both signs). These are
positive definite if A(p) - pA(”) - A(°)/p is non-singlar,
where A(m) and A(o) are the residue matrices at any poles

of A at infinity or zero.

Proof:

By the analyticity at P,s We can write, using (22),

dA(p) dA(p)
dp Jo

Py

[BV(o,m) _ BU(O m) (23a

Po
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Now a Taylor series for U(o,w) is

dU(o, @ )
U(o,w) = Ulo, w, ) + "“55—-—- (w - wb) + ... (23b)

and since U(o,w ) = 0., the non-negativeness of U shows

that 3U(o0,w, )/3w = O_. A Taylor serles for A(p) then becomes

dA(p_)
A(p)=A(po)+-—d§—°-(p-p )+ e (23¢)
ov{o, W, ) oV (o, mb)
= JV(O,LDO) + GT“" J T((ﬂ - Cl) ) S

(234)

for p near Py Choosing w = wb we have only the first two

terms, to first order. Thus

A(O’ + Jmo) = U(O’,(Do) + JV(U:CDO)

av(0,a, )
"UT +jv(0, ®, ) + order (0’ ) (23e)
But w U ¥ oV 1s positive semi-definite and factoring out ¢
Wwe see that

av(0,a, ) . v(0,a)

ow @,

1s positive semi-definite. By noting the conditions under
which equality holds in (20b), we see that these are positive

Qefinite under the assumptions stated. Q.E.D.

By the use of L'Hospital's rule the same result is
©btained by Belevitch for SPR matrices, (20, p. 2]. Takahasi's

theoren i1 a generalization of the positive slope condition
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for lossless one-ports and 1s recognized as being useful in

the one-port Brune synthesis, [1, p. 517]. Note that in T-13

A need not be rational, in which case one must check the

o o] 1
p/n!
for instance A(p) = Z, 2 __;Z.
analyticity at P,» fO nZ1 =1 p2+( /n)

is analytic nowhere on the imaglnary axis.

Using part b2) of Schwarz's lemma another interesting
relationship can be obtained, which, however, we know of no
use for as yet. The result, for scalars, was first stated
by Richards', [23, p. 779], and again later by Reza,

[24, p. 40].

T-14:
If A(p) 1s positive-real, then, for every complex

constant n-vector x,

V2 4
~x dA(p) X ay(p)x

'X ap X' S—U_ in ¢ > © (24)

Proof:

Iet Py be fixed, but arbitrary, and with Og > 0 and
let A = A(po). Then form z = {p - po)/(p + po*),
£(z) = [;*A(p)x - ;*on]/[ﬁ'*A(p)x + ;E*?f:x]. For g > 0O
the conditions of Schwarz's lemma are gatisfied; note that

f(z) = 1atp=p_ ir k*AH(po)x = 0, by L'Hospital's rule.

But '\'*Al o B La¥E 3
£ (Z) ={[~*x xm*m* - [:*Ax i-):'?f] s if*‘q'x ®
X Ax + x A x] [X Ax + x A x]° e
© (25a)
¥ g
2(x AOHX)(x A'x) 2¢
= =¥ v o (Zfly (25b)
[x Ax + x on]
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¥
applying by) of Schwarz's lemma gives (24), when x Ajx + 0,
N~ ok
since 2 = 0 13 p =p,. If x Ay = O, then x AH(D)X = 0 in
g > 0, by T-5. By the Cauchy-Riemann equations x A'x
1s then zero in ¢>0, and (24) is satisfied with both sides

identically zero. Q.E.D.

In many cases 1t 1s sometimes convenilent to consider

the following transformation. Iet

s. =1, - 2(a+1 )2 (26a)
= (A-1)A+1)" (26b)
Sy = - 8. (26c)

If A is an impedance or an admittance matrix, then S_or S+
1s the respective scattering matrix (physically S, results
from the dual of the network for S_). From this definition
and the definition of a positive-real matrix, it is clear that
S_, as well as S, satisfy: I) S(p) is analytic in ¢ > O

(A + ln i1s positive-real and hence analytic in g > 0},

I1) $(p) = S(p*) 4n 0> 0, III) 1_- 3_*(p) S_(p) 1is
Positive semi-definite in ¢ > O (note that 1_ - §'s_ = 4(X*

+ ln)'1 AH(A + ln)"l] . Matrices satisfying conditions I),
IT), III) have been called bounded-real in the literature,
where an extensive treatment of their relation to passive
Networks exists, [3, p. 116]. We merely wish to point out
that Sometimes a simpler test than T-1 exists, if one wishes
to ctonvert to the scattering matrix. Consequently, we prove
T-15, which 1s of most use when A(p) has poles on the
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|

imaginary axls, since no apeclal consideration need be

given to this axis when using S_.

T-15:
An n x n matrix A is PR if and only if S has all of

the following properties:
1) s_(p) 1s rational with real coefficients
2) S {(p) is Hurwitzian
3) i, - gf(Jm)S_(Jm) has every principal minor
non-negative (including w = «},

The same results hold if S_ 1s replaced by Sye

Proof':

Clearly 1) can't be relaxed. For the only if part, we
see that a relaxation of 2) would contradict T-10, while a
relaxation of 3) counters (1%). To prove the if part, we
note that S_x 1s analytic in ¢ > O for x an arbitrary constant
vector. Thus, by the maximum modulus theorem, ;c‘*(ln - EfS_)pr
in g > 0. By (14) and (26) the validity of the theorem rests
upon the fact that s_ - 1. 1s non-singular at each p in g > O.
To see that this is indeed the case we assume the contrary,
1.., that there is an Xy such that 8 x = X, for some p, in
o> 0. Again applying the maximum modulus theorem to (14)
shows that S_xO = X, for all p in ¢ > 0 and hence (s_ - ln)_l

wouldn't exigt, Clearly the results are equally valid in

terms of s+ . Q.E.D.
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The second condltlon essentlally results from the stability
of a finite passive network, while the third states that the
average power input in the sinusoldal steady state is non-
negative. T-15 can be extended to cover any positive-real A,
[3, p. 116]. The essential change is that S_ need not be
analytic on g = 0, but must have sup {kexp[-lp[a])lls_(p)[,}(m
in ¢ > O where ||s|| = 1§i Jfllsijl- Condition 1) is also
replaced by S*(Jw) = S(-jo) for almost all w.

For completeness, we finally state the recent Richards!
theorem for matrices, [25, p. 3]. If A is positive-real and
k > 0, define

E(p) = Alp) - 3 [A(k) - K(k)] (27)
then
Ap(p) = [PE(k) - kE(p)1[pA(p) - KA(K)] " E(k)  (28)

is positive-real.

V. CONCLUSIONS

Here we have Presented the properties of positive-real
matrices which are of use in synthesis. In the cases where
1t 1s no harder to state the results in the general case of

Positive-real, in contrast to merely PR or SPR, this has been

d .
One Almost all of the properties are extenslons of those

which ap
© well-known for the sealar case, however, we have

been
Unable tqo Previously find these results compiled for
matrices,
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Several of the results can be perhaps modifled. For

instance Bayard, [26, p. 384], states that by varying AO of

T-12, any p, can be obtained. (28) can yield an extension

following the ldeas of Fialkow and Gerst, [27, p. 161],
[28, p. 197]. One would still like to generalize T-12 to
show that if A 1s positive-real then Q_ > 0. This must
be true in the PR case, as one sees indirectly by noting
that any PR impedance matrix, Z, has a passive network
realization, and hence by the arguments of section II,

Q_ 2 0. Of course Q_ 1s a generalization of q_ of Desoer

and Kuh, [29, p. 425], valid for distributed parameter

networks.
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