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ABSTRACT
There are situations in medical diagnostics where conventional
clustering and pattern recognition techniques are impractical or all togeth-
er they fail to apply. For these cases the concept of "minimal ellipsoids"
is introduced together with an approach for its utlization in disease classi-

fication and illness identification in a given patient.

I. Introduction

The use of information proces sing machines in medicine to process
patient data, to recognize patterns and to screen and diagnose disease(l’ 2)
is increasing. Generally it is based on two broad approaches(B):

a) pattern recognition using probabilistic models and statistical analysis,
b) automatic classification schemes emphasizing accuracy. However,
there are situations in clinical diagnosis where no collection of statistical
data can provide the diagnostic precision needed to correctly identify the
illness for therapeutic purposes(4). The reasons why in these situations
statistical techniques are unsatisfactory can be well understood >’ 6). A
deterministic approach is outline here for separating clinical and para-
clinical data of patients into classes appropriate for diagnostic and thera-
peutic purposes. The heart of the approach is a novel use of quadratic

surfaces”’ 8)

for "fine classification" of diseases and their subsequent
use to identify "specific illness' of a given "host'",

We show that the approach is: (a) well formulateable mathematically
(in terms of well posed problems for which solutions do exist) and (b)
analytically numerically and computationally tractable,

The following is a problem which arises in medical (differential)
diagnosis., From confirmed clinical past cases it is known that certain
physiological measurements (symptom, observations, laboratory tests,
etc.) receive particular sets of values for an identified "disease A"
(abnormal state of the physiological system) and a different set of values
for another distinct '"disease B''. Given that these data are available, how

does a physician go about deciding whether a given patient whose phys-
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iological measurements he just obtained is 'thost'" to ''disease A" or to
"disease B'" or he is facing a new case that can not be decided upon by the
present measurements and the past data?

The motivation and fundamental theoretical considerations which led
to our mathematical formulation of this problemn are best visualized geo-
metrically in two dimensions. Thus our discussion is initially made with
reference to the x-y plane, however it should perhaps be amphasized from
the beginning that the practical cases of interest (for medical diagnosis)
involve situations whose representations requires much higher dimen-
sionality, of the order 20 to 200.

Thus, given N cases of known ''disease A' they may be viewed as N

points (x‘i", y'g) on the x-y plane forming the set A while M cases of known

"disease B'' cases may be viewed as points (x?,y?) of a second set B,
That is

(x‘;,yg’)eA i=1,2,...N . (l.a)
and
(x?,y?)eB j=1,2,...M (1.Db)
under the assumption that sets A and B cluster near points
o o b b
(x .y, ) and (x .y )

respectfully, for convenience.
A simple and frequently mentioned technique is to enclose sets A and
B each with a circle C, and C_, defined by the radii r, and r

A B A B
tively. Then to decide whether a new case - a point (x*, yt) - is: 1) inside

respec-

2) inside CB’ or 3) outside CA and of CB.

Mathematically this amounts to the use of the quatratic form:

CA'

2 .
" 2 £ 2 ¢>r; outside C
(x -x )" +(y - Y,) { ;‘ A (2.a)
= rA inside CA
where
2 _ o 2 o 2
T, = max [ (x; - x )"+ (y; - ¥,) ] (2. b)

LA

to decide wheter the given point (xt,yt) is inside or outside the circle of
radius r A This simple approach is sueful {affording much computational
convenience) when the circles CA and C]3 do not intersect on the plane,

Figure 1. Clearly the approach is of limited applicability if the two

circles happen to intersect while the given data do not; Figure 2. While it
is possible to pre-stretch the axis through a linear transformation, and
then define the circles CA and CB this (eigenvalue scheme) does not always

work for the same basic reason.



A much better appraoch is to enclose, if possible, the given data points
(sets A and B) with non-intersecting ellipses, E and E B’ Figure 3, and
then use these quadratic forms to test the point ( Y. The question then
in two dimensions is: given a set of points N23, is it possible to find an
ellipse E, containing all points and enclosing minimum area (points on K
are considered as contained by the ellipse)?

It is not hard to show that this is equivalent to using the quadratic form

(in the z-w plane, a transformation of the x-y plane):

2 w 2 . > 1 outside E
() * g { <1 inside £ (3)
where d, and d, are the minimum values possible and defined by three
suitable points of the given set.
In the next two sections we outline the much harder problems of-
1. establishing that this basic approach can be extended to n-dimen-
sions, and
2. formulating practical algorithms (for computer implementations)
for finding the "minimal ellipsoid" from given sets od data and then
utilizing it for diagnosing a particular case under question.
There are still several other aspects that must be considered before the
effectiveness of the approach can be taken full advantage of for general
medical diagnosis purposes, such as updating the data, modification by
learning, etc. However these problems, under active considerations are

not taken up in this paper.

II. Mathematical Formulation

(7,8)

The data to be classified are considered, in the usual fashion as
n-vectors in the real domain R®., If the scalar product of two vectors
x,y is written as (¢x,y) and K is an nxn positive definite (real symmetric)
matrix, the equation

{(x,Kx) < 1 xe R® (4)

defines an n-dimensional ellipsoid. The main idea is, given a set of data
vectors:
o«'eR®  i=1,2,3,...,N2n (5)

there exists a "minimal ellipsoid" which contains the data and which has a
maximum number of data points on its boundary. In fact it can be shown(g)
that the minimal ellipsoid is completely determined by n+l data points
which must lie on its surface.

The situation is somewhat simplified by finding an orthongonal matrix



A which diagonalizes K so that equation (5) becomes:

-1

(y,D¥) =1l {6.a)
where

akat® =p! (6. b)
and

D= diag. [d,] i=1,2,...,n (6. ¢)

That is we need to find suitable orthogonal coordinates in R® (with reference
to the data) to identify di' This is accomplished by an original axis trans-
lation and successive axis rotation (about the origin) ensuring that all given
data vectors fall within the volume defined by the ellipsoid.

Thus given a set of a»i a new set is generated

¢i=ai-co : (7. 2)

and it is reordered from

|{o* ] = n, (7.b)

to satisfy n, 2 n. i=1,2,3,...,N, where ||¢i| | denotes the usual norm.,
C is also chosen as to minimize the max n, for all i. Next rotation of
the axis takes place to align the first axis along ¢1 Then through suitable
rotation and the Gram-Schmidt procedure a square matrix R is found such
that

RRY = 1 and (8. 2)
.y
) 0
R¢ =y, = 0 (8.b)
0

we choose dl =n12' and proceed in the same mannor to find the other
coordinates. However, we must be careful to rotate all remaining compo-
nents (after we extract the vector components along the selected axis) about
the just selected axis and test using the sub ellipsoid (quadratic surface)

for the coordinates selected. This is accomplished through the equation:

} (9)

This process repeats itself by successive rotations and gives explicit

9)

expression for the overall transformation and the matrix D'’’. The notation

2
(n,'?)
d

z=m§‘x{ 2).2

1-[¢‘ /4]

does get a bit complicated but the problem is straightforward.



IITI. Algorithmic Aspects

In this section an algorithm for constructing '""minimal ellipsoids' from
a given set of data is outlined in much simplified from in order to illuminate
the basic features of the approach. Some other desirable features are also
present, such as provisions for identifying possible multi-ellipsoidal
surfaces and/or learning capability (perception like), but they are not
discussed here.

The first part of the algorithm sets up suitable notation, Figure 4,
where:

ui represent confirmed patients as vectors with reference to measure-

ment axis xj, j=1,2,...(N+1)and i=1,2,... M>N+1

Y represent unit vectors coordinate axis defining with reference to

the minimal ellipsoid, k=1,1,...N
ﬁ; represent the confirmed patient vector data projected on the y,
defined axis i=1,2,...N+landk=1,2,...N.

Remark: The equation for the interior of the minimal ellipsoid is selected

so as to satisfy:

N , By \2
> (—k—) <1  forallj (10)

"k=1" %

with d’k having the smallest possible values. The procedure is to select one

Yy test all ai (i=1,2,...N+1) and choose dk to satisfy the above inequality,
then go back and select another Yict1 (orthogonal to Yk)' This process is
repeated until all Vi have been found.

The first axis (the major axis) of the ellipsoid is found by constructing
the difference vectors

v o -o r=l,2.,...,1\]‘—(-"|'1I-:l':-H

The vector v& is given by:

2
[v®]]° = @ap®= || vT ]| for all x

establishes y, = LE VR and of course d,.
i Zdl 1
The second part of the algorithm, Figure 5, has two branches. One

branch performs the expansion



i_ 2
C E’13’1 |

z = B +zJ

1 P2y, T %2 (11)
24 )

e =BATN 2N
where (yk- ﬁi) = 0. The other branches main subroutine is the SHRINK

TEST where each ziic-l

k-1 i)z ”zk 1” { > 1 outside )
d. (1 pA)de) < 1 J.n51de

is tested via the inequality:

i=1

and p is increased one step at a time p=1,2,...,R.
The 2{{_1 which ensures the maximum value of Prx and all data points

inside the ellipsoid determines Vi and dy . That is:

e = T Fkel (13)
25, 11
and
dk ={1- pmxm dk-l (14)
4
Remark: A = =y is a predetermined unit of axis "shrinkage'", and R the

total number of "'shrinkage steps',

IV. Concluding Remarks

Various parts and slightly different versions of the above algorithm
have been successfully tested computationally, The computer implement-
ation and actual medical use of this approach involves additional consider-
ations (computational efficiency, storage, accuracy, etc.) beyond the scope

of this paper.
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