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Abstract

The background develapment needed for the factorization synthesis of
M 5 Liviic for J-lossless matrices is recast and codified in the language
of electrical enginerrs,

" The boat was coming in the dead of night "The oars shook the starry sky,
Clusters of bamboo, rising tide. ' [1] A stray bird circled above,
Noiselessly the boat came in the dark, " {1l
1. INTRODUCTION
2, MAIN RESULTS
In his 1966 book [ 2] which was recently

. i . 2
(1973) translated into English {3], M. S, Liv§ic The main results we wish to show are |3, p. 25]

presents a theory for the factorization of J_toss- ¥ =[ T-pI] -lI'q-.‘ = Ry {2a)
leas {square) matrices. The theory is general

o vy asp” (2b)
and unified in that it holds for chain, scattering, or PRECt -
transfer scattering matrices {or various romb. T+T- _l_r[v —I+Y-al1ra (2¢)

inations of these), any one of which is called a
where @ = input (m-vector) [3,p. 25)

tranemission operator and denoted by S in Liviic n

[3, p. B]. For any lossless network, S, norm- ® = output {m-vector) [ 3, p. 25]
alized at infinity to the identity, S (=)=, can be ¥ = interior {state, possibly infinite-
represented ag dimensional} [ 3, p. 25]
R = input to interior operator [ 3, p, 42]
S(p) = 1+ Jra[ T-pl] -lr (1)) § = transmission operator [ 3, p. 8]
a form of considerable promise for network syn- T =interior operator [ 3, p. 26]
thesis since factorization results upon triangular- ' =aninput to state ®Pace operator .

ization of the atate matrix T. [3,p. 25)

and p = g +jw, superscripta is the adjoint, and

In the following we recast the ideas of Liviic which Y =BJ with J=Ja' Jz -1 (with I the identity) and

¢ . tat S, S - _
lead to this representation of S, In doing this we B0 (that is, positive definite). The choice

adhere closely to the notation of Liv§ic while . . -
B=I i possible giving
Vel (3

which on substitution into (2a), (2b) yields {1}, We

presenting the time-invariant situation in the

complex p-plane,
next turn to a derivation of (2).
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" The boat went out into the darkness

As the tide kept rising.

The oars again shook heaven and stars. " | 1]

3. DERIVATION

We begin by considering a lossless time-invariant
system with no input (hence called closed). Then

for an appropriate choice of {state) variables f,

df

a
TS Q=-Q

=Qf , (4}

a .
Here Q = -Q" can be obtained from the losslessness
if we take the definition of the latter to mean the

instantaneous power is zero as expressed by

Pi=2Q%=1/21*(Q+QY)1=0. Next consider this
systern as composed of an open system at x:z0
closed upon coupling channels upon which inputs,
9, converge on the open system for x<{tand out-
puts,cp+, leave for x>0; the situation is illustrated in

Figurel. The open system is that for which we

B

Je

fem state,

where & is the impulse functional,

where v is the unit-step function,

sav. 06 5 s the scattering matrix then

.
n

the choice of e{x, 1) as an incident voltage for

#<0 and a reflected voltage for x>0, along with

« B is appropriate | 3, p.14]
m m

Heturning to (4) we partition faccording to the

coupling channels, via @(x,t), and the open sysa

¥ix,t) as

{ {6

%, 1)
F{1}8 (x)

From (5a)

we ser that the time-space dependence for @ can

be taken as Ix-Vt, that is we can write

wix, 1) = #{Ix- V1) (7a)
Thus we take

©(x, 1) % (Ix-VOu(-x)+o(0, t16 {x)

v xe voyugx) (7h)

Using this to

wigh the description 5, while we assume that the logs-cvaluate both sides of (5a) we obtain

less coupling channels are described by | 3, p. U]

do(x,t) dg(x,t)

——t e Y 1 ;
Tt T , x40 (5a)

Y=BI, B=B>0, 1232, 1% (5b)

For example if the coupling channels arc tossless
transmission lines of capacitance matrices  and

inductance matrices L we have [ 4, p, 64]

{5¢)

A1 - -

B=|C 0k J Ok lk , @(x, 1) V(x,l1
=1 )

Ok L lk 0 I(X.l)i

k
where the subscript k=m/2 denotes kxk matrices
ard v(xt)and i(x,t) are voltage and current at time t
and position x on the transmission lines, When §
is the chain or transfer scattering malrices,(5c)

is appropriate and one has the freedom of choosing
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3e A (Ix-V1) Bcp(O,t}a
FY kv ul-x}+ =57 {x)
a +
-V . (Ix-¥ tu( x) {8a)
ox
Vag d3é =
S T ox)- Y
— [ax (Ix-¥t)u(-x)-& (Ix-V1)6 (x)

$ Y ix.ve

+o (0, )6 '{x)+a Eyn u{x)

+3 Ve ree (x)] {8h)
which gives the correction factor for (Sa) to be

valid at x-0, that is

A D S + .
— v 2 Ty - s
T Vax;[m (Ix-Yt) 4V & (Ix-¥1)

3 (0, t)
5 (#e)

] S (x)+V (0, 1)6 *(x)

We wish to equate (Ho) with the first of (4} when

partitioned as for { at ()



do .
— ¥ 3
3t Q“ @+le ()8 {x) (9]

For this we make the choice (which fixes the

S(= ) normalizatian)

Q) (X)Y (1) {x)= [v ¢ Mrxavy

-M'ux-vuJ 5 (x) (10a)
so that Q“{x]m

(Bc).

is the remainder of the right of

Thus we have, on using {7a) in (10),

Q00 = e Py - ¢7-vn] o
On taking Laplace transforms, 1], ], with

ot =Ll4 P vy), ooy £V, y

we have from (10b)

=LY ()

+ - -1
P =@ +V¥ Q,(0)¢ {11a)
which is the desired tquation (2b) when
a

' = QIZ(O) (1)
is identified. Since Q- --C.)a we have
r-=q° = .

Q, (0) Q,,0 {llc)

Then we turn to the second terms of (4) when

partitioned according to (6). Using (7b)

Q, () [ #7(1x-¥ t)u(-x)

40,68 (x) + ¢ ¥ (1x-¥ )
+Q,,(x)¥ ()6 (x) (12a)

or, on identi[ying $(x) terms and using (llc),

2 Y (1)

3t {t2b)

= T o(0,t) + Q,,(0)Y¥ 1)

if we again make the reasonable choice

®(0,0) = 3[4 v + 87 vy) (13)
Wwe get on taking Laplace transforms

[pf - Q,, 0]y = -aL.rfm* + o) (142)
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or on using (lla) and {llc),
-l_a

l -
- 0+ =TV T z.T 14b
[ pl Q,,(0)+ 1¥ ® {14b)
which is (2a) with
: Lory-lpa
T QZZ(O) 5 r (l4c)
. N - a a
Since Q is shew-adjoint, QZZ_ -Q22 and

(l4c) yields {2¢) immctlialely.

"The boal was now safely moored to a tree. "[1]

4. DISCUSSION

We have given derivation of the represcentation

(1) of the transmission operator S of a lassless
network, losslegsness being incorporated from
the beginning at (4). The derivation has pointed
out two chaices at our disposal, that for

leal (10a) which fixes the normalization of

S{=) = I and that at {13} for which other choices

would merely transform the state.

The definition of losslessness is that given by
P'r-o which in terms of S becomes [ 3, p.30]

J - $Mje) TSGw) - 0_ (15)

along with analyticity and conjugacy constraints

InRep> 0 for Passivity and reality, Any §
satisfying (15) is called T-lossless and,
consequently, the theory developed here is for

J-lossless matrices,
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