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ABSTRACT

This work sets forth n-port designs
Including gyrators, as one soon finds.

Minim in element number reactive,
Bypassing complex constituents resistive,

In two cases, McMillan's model revised

Yields the skew type Brune sections emphasized.
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I. INTRODUCTION

Presently several nonreciprocal synthesis methods exist; [1], [2],
[3]. The first of these, due to Oono, proceeds from the scattering
matrix and gives an indirect proof of the fact that an impedance matrix
can be realized by a number of reactive elements equal to the degree of
the matrix. The third of these gives a simpler synthesis method, but
no control is directly available over the number of reactive elements.
The second method, due to Belevitch, glves a Brune synthesis which uses
the minimum number of reactive elements. This synthesis relies heavily
upon imaginary resistors and transformers, which to us are aesthetically
unsatisfying. That such elements can be used is justified by Belevitch's
definition of passivity, [2, p. 284], which, however, is not the same
as the one due to Desoer and Kuh, [%, p. 417], which we would prefer to
use.

Because of our desire to have a direct synthesis based upon only
real-valued elements, but using the minimum number of inductors and
capacitors, we have developed the Brune synthesis of this report. Since
the essential step of the synthesis follows closely the ideas of McMillean,
[5], the method is best thought of as a generalization of that of
McMillan. One of the essential features of the synthesis is that it
allows the exhibition of the typical non-reciprocal Brune section; as yet
such has not been possible with the use of complex valued elements,

[2, p. 294].

The reader is assumed familiar with basic matrix theory operations
and n-port ideas. The properties of PR matrices, which are heavily
relied upon, are covered in detail in an accompanying report, [6].

We will adhere to the following conventions. The complex frequency
variable is taken as p = 0 + Jo, j = v/-1; a superscript asterisk, ¥,

denotes complex conjugation; a subscript asterisk denotes Hurwitz

r w2

conjugation, that is, replacement of p by -p; a superscript tilde, ™,

denotes matrix transposition; a subscript H denotes the Hermitian part,
N

that is, EAH = A + A; 0n and ln denote the n X n zero and identity

matrices, respectively, while
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e

E=[0 1 (1)
-1 0

+ denotes the direct sum of matrices and &(A) is McMillan's degree of
the matrix A, which is discussed in Appendix 1. Inductors and

capacitors are called reactive elements.
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II. PRELIMINARY STEPS

Consider a given n x n PR impedance matrix, Z(p). Z(p) then,
almost by definition, [6, def.], is rational in p with real coefficients
and has ZH(p) positive semi-definite in the open right half-plene ¢ > O;
Z need not be symmetric. The problem is then to synthesize a network,
N, consisting of a finite number of passive elements, having Z as its
terminal impedance matrix and using 5(Z) reactive elements.

The procedure 1s analogous to the one-port Brune process and can be
outliped as follows. All poles on the imaginery axis of Z and its
remainder are removed and realized by a lossless network; this is
e is obtalned for which neither
Zk nor its inverse Yk have any poles on the imaginary axis. A
resistance is then extracted from one of the ports to yield a reduced

matrix Zm which has its Hermitian part singular at some point on the

repeated until an impedance matrix 2

imeginary axis; Zﬂ1 is however, iltself not singular. A Brune section is
then extracted from Zm and the process repeated until the degree falls
to zero. The Brune extraction is the difficult part; the entire next
section is devoted to obtaining it.

By a partial fraction expansion, or any other suitzble method, we

write
2(p) = 2 () + 2,(p) (2a)

where Zl(p) is PR and analytic on ¢ = 0 with Zl(w) # -Ei(w), while

g2, = =jZ1x+ 4L, 15 lossless, FR, and cen be realized by B(BZl) reactive
elements; such a synthesis is given 1in [l, . 155], but simpler ones are

given in [8, p. 113]. This realization for ﬂzl is then connected in

series with a realization for Zl to obtain Z. If Z, is nonsingular,

1

ve form Y, = Zil and extract the poles of Y, on the imaginary axis

to get
Y,(p) = ;¥,(p) + Y (p) (2b)

where Y2 has all the properties of Zl’ and gYé has all the properties
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of ﬂzl. £Y2 is realized in a manner dusl to zzl, and the lossless
network so obtained is connected in parallel with a realization for Y2.

If 2, is singular, we can form, [6, T-11],

1
=T 1 ;
Zl(p) = Tl[Zl(P)+0u-rl]Tl (3a)

—~|| 1

= lel(p)Tl (3b)
where r, is the raok of Zl(p) and T, 1is a nonsinguler, real
constant matrix with Ti being the first r rows of Tl. Y, of (2b)
is then replaced by ¥; = [2]7". Similarly, if Y, is singular, we

— mtyt T '

can write Yg(p) = T2Y2(p)T2 vhere T, is nxT,, r, being the rank
of Y,. Z, 1is realized by terminating a transformer (n+r}-port in a

2 1
realization of Zi(p), which i1s PR, similarly for a realization of Y,

in terms of one for Yé, (9, p. 307]. We then repeat this process until
a FR matrix Zk(p) i1s obtained which is nonsingular in p with Zk and,

T, = Z;l both analytic on o = 0. We have
8(2) = 8(,2,) + 8(2)) (ka)
= a(gzl) + 6(£Y2) + oeae b 5(£zk) + a(zk) (4b)

by properties 3) and 4) of &, Appendix 1, (in some cases should

Z
be zYk)' If any singular matrices are met, then propertiﬁsk6) and T)
of 3 show that E(Zs) = E(ZJ), and clearly (4b) is still valid. Since
the individual lossless subnetworks can be realized by 5(£ZJ) or
B(EYJ) reactive elements, (4b) shows that at most S(Z)-B(Zk) reactive
elements need be used in these lossless extractions.

Considering Zk’ which we assume to be n x n, Wwe now form the

ninimum matrix

z(p) =2(p) - [r+ o, ] (5a)
vhere, [6, Cc-121,
= min  Alw)/A, ( 5b)
T 35;5? ) All w) (
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with A and A, the determinant and (1,1) minor, respectively, of
-1
ZkH(jm). Zm(p) is PR, and, if Z 1is nonsingular, then I =2, 1is

mHYm the Hermitian parts of Zm
and Ym are both singular at the P, = jmo for which the mipnimum of

(5b) occurs. We further have

¥
also minimum, that is, since YﬁH = YmZ

8(2,) = 5(2,) (6)

by properties 2) and 4) of &, Appendix 1, while a network for Zk results
from that for Zln by connecting a resistor in series with port one;
clearly no reactive elements are used.

All the steps so far described can then be repeated until one
obtains a zero immittance matrix, at which point the synthesis is
complete, or a minimum matrix, alsc called Zm’ which is nomsingular at
every point on the imaginary axis, and consequently also in the entire
right half-plane. Up to this point the procedure is quite similar to
that of Belevitch, except we believe that the resistance extraction of

(5a) was originally due to Oono, [7, p. 168], in the symmetric case.
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III. THE BRUNE SECTION

Attention is now turned to the realization of a minimum impedance
matrix. We therefore assume that an n x n PR impedance matrix Z (p)
is given, which is analytic and nonsingular for each P on 0o 0 and
for which ZmH(me) is singular. Of course this means @ £ 0 or o,

We first write, with P, = jmo,

z (p.) = R+ jX (7)

where R and X are Hermitian; R 1is then singular as it is % (Jm ).
We can diagonalize the real part of R, R sy’ ¥ O pilp by a real
congruency transformation, where p is the rank of R , (10, p. 298].
Note that R sy is positive semi-definite. The imaginary part of the
transformed R, RSS, has its first n-p rows and columns Zero, as a
consequence of the PR character of R. By a real orthogonal congruency
transformaetion on the already transformed R, which operates on only
the last p rows and columns, we can skew diagonalize Rés to the direct
sum of zeros and multiples of E, (1), [10, p. 285]. Consequently we can

find a (nonsingular) real T, such that

zy(p) =T 7 (p)T_ (82)
z'(p,) = (0+...40+[ 1 4+ d 2 J, 14, .41} + §X°

If p = n, which is possible even though R has rank less than n, then
the first zeros are absent and we can assume Q. = 1. In this case we
further transform Z '+ Considering (8b) with p = n, we look at the real
part of X'. If some element in the second row and column, except for
the (1,2), (2,1) and (2,2) elements, 1s nonzero it can be permuted to the
(2,3), and (3,2) position by elementary operations. By adding the third
row and column to higher numbered rows and columns, the corresponding

elements of the second row and column can be brought to zero, while the
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upper left 2 x 2 submatrix in the Hermitian part of Zu'l(po) is
preserved; one can use elementary row and column operations for this.

A similar set of operations on the (1,4) and (4,1) terms brings higher
numbered elements of the first row and column (still of the real part of
X') to zero. One can then get

' — : [ —
T!z!(p )T) = {l: 1 :Il:l + Rn-E} +3[by By by by 0.0,

-J1 1 Bio By by O ... 0

b b

w o /// ///

0]
0 0 //

( 8¢c)
where Gﬁ is a real, skew-symmetric matrix and R _p and Xn-E are
(n-2)x(n-2) Hermitien matrices. Conseguently we define

2p) < 813 2 (p)r.10 = T2 (o) (9)
m o m o“m** 7o

where T' =1 If p<n sand T, 15 as needed to get (8c), if p = n.
Thues z(°)(p ) takes the form of (8b), if p <n, and the form of (8),

if p =n. A reslization for Z results by terminating a transformer
network in a realization for Z( + In either of these two cases we will
form

21(p) = 20%(p) + 2 (p) (108)

zZ,(p) = G, + PL) + D /p (10b)

where Gl is 2 real, constant, skew-symmetric matrix, while Ll and

Dl are real, constant, symmetric and positive semi-definite. and

L
l’ 1
D, are chosen such that Z( )(p ) has rank n-1, however, their choice

depends upon whether p<n or p = n, and we therefore have two cases
to consider.
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Case I, p < n:

Here we choose G, L, and D, such that Z(l)(po) has rank n-1 with
its first row and column zero. This can be done in many ways. One method
is to let Gl equal the first row and column of the skew-symmetric part
of jX', and then diagonalize the symmetric part of X', X;y, by writing

r o _ m N : '
xsy =T [1a+( lB)+°n4a-B]T (11a)
and choosing
-~ » - ' -
®L, = T'[qa+lB+0n42_B]T + lo+r 1 (11b)
D, = wa'[¥:+0n41]T' (11c)
where we can of course assume wo > 0.
Case IT, p = n:
Here we first choose Gl such that
Z(O)(p )+G. = 1 j1]+R +j[o b.+Jg,, b, _+Jg.. b 0]
o’™1 ] n-2 11 12°%%12 "137Y%13 iy
St b1o-381p by Pogtigsg  J8y,
b, .- b, ~
1374813 o3 deny 7 I/:;;//
D1y ~Jepy X
//// n-2
0 ///// ////
_ /
(12)

Of course we can do this with entries only in the first two rows and
columns of Gl. At this point we choose Dl = 0n and I.l such that
Z(l)(po) has rank n-l1. To see that this is possible, we add j times

the following real, symmetric, positive semi-definite matrix to (12).

= t - '
By=f Pl -ba]+3B ., (13)

N '
b1 By
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To show that Bl and Gl can be chosen to force the resulting matrix

singular, we form

{,:1 -ﬂ J-ln_e} {z(o)(po)+(}l+j]31} -{ B ij o } = { ,:2 il ;Rn_e} +

0

J [b,,+b! +b

117011 ¥P0*05p-28) 5 3(8)5-bpp-0),) (byg+@p3)+ile 5-by3) by, | O

I —
o
&
&
no
w
L
<
o ®
H
LU'
o
n
iy
—t
o
no
(oY}
C
U]
N
(WY
?"‘i
ro
\ &l‘
i
\\\
L

— - 1
-3(g)p=0pp-b25) Dontboy boy+dgag

[ e g e R S e g e -

By +8o) ~J&sy

72

(14)
Choosing
8o = Py (152)
83 = b23 (150)
523 = 'bl3 (150)
Blp = Ppp *+ by, (154)
by, + bil = b22 + bée (15e)

then forces the first row and column of (14) to zero. Now the semi-
definite constraint on Bl is that Bn-E be positive semi-definite and

b, 20 (16a)

bf, >0 (16b)
: 2

PlaPge 2 by Sl
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We will show that (16) is consistent with (15). Of course (15a)-(15d)
are satisfied by properly choosing Gl’ and, hence, we only need check
(15e) 2gainst (16). Assuming b1, >0, (16c) gives by > ble/bll, which
is consistent with (16b). Substituting this into (15¢) gives
2
1 > r
b,. + b by, + b12/bll or

11+t 2
(52.)% = (b-b. Jb!. - b2 >0 (17a)
11 227P13/P11 " P 2
Consequently any positive
(b, b, )
207013 L\I
by 2 5 + 7 \(bgpby ) ehe (1)

can be chosen. B , can then be chosen to yield (14) of rank n-l. Of

course L. is then given by

1

WL, = Bl (18)

In summary, then, given p = n, (8¢) is formed and any positive b!

11
satisfying (17b) is chosen. Next b, > 0 is obtained by solving (15e);

if b, # O then by, > 0. Finally, L, and G, are chosen to satisfy

(18) and (15a}-(15d4), respectively. The reason for choosing D, =0

will become apparent later.

In either Case Z(l) is FR, being the sum of two PR matrices, non-

singular in p, [6, T-9], but singular of rank n-1 at p = p,- Its

inverse can then be formed and we get

-1
AC ) B E T T,(p) + 2 (p) (19a)
Y,(p) = % (19b)
P+ 0

where Y(2) is analytic at p = P, and A 1s real, constant, symmetric
and positive semi-definite, while B is real, constant, and skew-
symmetric, [6, (13a)].

- 10 - SEL-62-125



At this point we investigate the form of Yé, vhich differs for
Cases I and IT. As we show here, the residue matrix has rank one in
both Cases, but (only) in Case I, B = On' In either Case we write by

the use of Taylor and Laurent series

2(1)(p) = (p-p_ )P + alp) (208)

K

5o * U(p) (.20b)

Y(l)(p) =

e}

where K ig the positive semi-definite Hermitlan residue matrix and
Q(Po) = Z(l)(p ); P is a complex constant matrix. As a consequence of

Z(l)Y(l) =1 = Y(I)Z(l), we have
FK + (p-p_)PU(p) + gi_-gﬁ + Q(p)u(p) = 1 (20c)
0

88 well as a similar expression with all terms commuted. Multiplying by
P-p, and letting p = P, glves

(1) - (1) -
2" (p )X = k2" "(p ) = O (21)
K 1is then partitioned into K = kll k12 with kll one by one and
K, k
12 22

Z(l)(po) written as

0+ Z Case I (22a)
(B d1i 1n_2> (o i zII> ( [_?j' g]; 1n_2> Case II (22b)

Wwhere ZI and ZII are (complex) constant, nonsingular matrices of order
n-1. Substituting (22) into (21), Performing the indicated multiplica-
tions, and using the nonsingularity of ZI and ZII glves

Z(l)(po) =

- 11 - SEL-62-125



K=k, +0 . Case I (23a)
_Jk
K = 11 1o p¢ Case II (23p)
Jk k n-
11 11

Consequently, we have, since A = K + K and B = jmb[K-E], [6, (13)],

=
n

[2k11%0n_l], B=0 Case I (2ka)

A = [2ky,1540, 5], B = [2n k) Ei0 ] case II

One easily convinces oneself that Y(e) is nonsingular in p. To see this,
note that

2(0),3(0) 7(1),5(1) . 2 Uy(1),5(155(1) 2 y(2),5 (2))5(1)

For any nonzero n-vector x we have, on the imaginary axis,

PO ), | @50, 50 (o)

Using familiar arguments, based upon the maximum modulus theorem,
[6, T-5, L-3], (25) holds for all p in ¢ >0 and Y(E) is non-
singular. Inverting Y(a) glves

17 - 225 < 20) 4 2,00) (26)

23(p) = oLy + D3/p (26b)

where Z(3) is PR and analytic at p =0 and « and L3 and D3 are

real, constant, symmetric and positive semi-definite. A realization for

5(0) (3)

Figure 1. Here all blocks are n-ports, the series arms being described

results from one for Z by the use of the coupling network Nc of

by their impedance matrices, while the shunt arms are described by the
admittance metrix.
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o : -4 3 o
|
|
I
©— ' [x] @
|
|
o . r
Lo ol ]
z(3)

FIG. 1. ORIGINAL COUPLING NETWORK.

The problem is then to show that N can be realized by using only
passive elements, of which 6(2(0)) = 5(2(3)) are reactive.

The first term to investigate is YE.
(19b) and (24a) we see that this represents a capacitor and inductor in

In Case I, by observing

series, shunting port one, with open circuits shunting the remaining
ports. This can then be described as the series conmnection of two n-ports
of admittance metrices A/p and pA/m . For Case II,

2k

11

Y, = -5 [p12+m0E] + 0 The upper left 2 x 2 submatrix in this can
+HD

2 n-2°

o}

be inverted to give —}——-[p~m E}. This shows that, in Case II, Y
2kll o 2
represents the series connection of an inductor 2-port and & gyrator,

shunting the first two ports, with the remeining n-2 ports shunted by
open circuits. This can then be described as the series connection of
two n-ports of admittance matrices A/p and B/wg. With this the
coupling network can be redrawn in the forms shown in Figure 2. Since
the elements outside the dashed lines of Figure 2 are clearly realizable
with passive elements (gyrators for El and B/wﬁ, inductors for D3/p), we
concentrate on the subnetworks labelled Né.

First consider N' for Case II, which is identical in form to the
upper tee subnetwork of N, for Case I. We have from (19a),

v(1) _ 4(2)

s Y2 or

- 13 - SEL-62-125



o o P21+
I I
| % I
[ [
O |
| A |
| <4 |
I
o -0y /p D3/p +—o
| Ne
e ¢ |
a) Cage I
I_ - - - i |
~ |
o -G) -pL, ply Da/p |

©
I
i

®

© o
b) Case II
FIG. 2. STRUCTURE OF COUPLING NETWORKS.
2(8) _ 4(1) _ 28y o) 2ty 7(2) (27)

Substituting the values of Z(L), Y, Z(2) from (10), (19b) and (26),

dividing by p, and letting p - w, we easily find from (27)

Ly - L = LAL = L AL, (28a)
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BY a simple manipulation, this gives

Ly =101 a1 (28v)

which shows that
rank L, = rank L3 =r, (29)

Equation (29) serves to define r,. Equation (28a) can be rewritten as
_Ll ~L AL3+L3 h* This can be multiplied on the right by A and 1
added to the resultant to get -L A[l +L AJ+1 [1 +L A] =1 which gives,

uslng the symmetry of L 1’ L3 and A

1 + AL, = [1n-AL1]'l (30)

Besides being of further use, this justifies the inverse used in (28b),
Now compute the 2n-port chain (transmission) matrix, 4, for N' of Case

II. For any tee structure, as shown in Figure 3, one has

Y=[1_ zl:, ,:1n on:, [1[1 2.3:, (31a)
o) 1 Y, 1 o
| n n 2 n o n

1
= ["1n+zl*f2 2,42, Y, 2 323 (31b)
*?2 1n+YéZ3
o— I 23 ——0
0, ) @
o-— | —0

FIG. 3. GENERAL TEE 2n-PORT.
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Using the values given in Figure 2b), in conjunction with (28a), (31b)
gives for Né

Yy = [1,-LA o, (32a)
A/p ln+AL3
P—
= [(1,-av)) o (32b)
A/p (1,-a0)7*
-, 0,71, -Ax,) 0 (32¢)
| (aana)/e 1 (1o (1,-an, )"

Here (30) has been used to obtain (32b) and (32c) Since an ideal trans-
former 2n-port is deseribed by V TVé, I Il’ vhere T is the turns
ratio matrix, the right term of (32c) describes a transformer 2n-port of

turns ratio matrix

T, = 1,-AL, (33a)

The left term of (32c) describes a shunt n-port of admittance matrix

Ty(p) = (aeALA)/p (330)

The residue matrix in (33b) is clearly positive semi- -definite, as A aud
L3 are. Since A + AL3A [1 +AL JA, the residue matrix has its rank
equal to that of A, by the non-singularity of [1 +AL ]. Thus in Case I,
one inductor is used for Yﬂ, while in Case IT, two are needed. By
(320),\1£ describes the cascade connection of this inductor network

with the transformers of {33a). Before drawing the physical picture, we
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state simllar results for the lower tee subnetwork of Figure 2a).
Using (27) with B = 0, in conjunction with (10), (19b), and (25),
multiplying by p, and letting p - O, we now get

A A
3°Dy SU?D1=D1;§D3 (34a)
o] O

which, as before, shows (in Case I)

ﬁ rank D3 =rank D, =1, (34v)
3
E Letting
2
C, = Afal (35)
f we have
% 1
L, + G5 = [1 -c,D.] (36)
giving
e
v, =1, 0, 1[(1,-c,n,) 0, (37)
-1
(c2+02D302)p 1 0, (1n-cenl)
: Then
T, = 1,-C;D; (368a)
Y, = p(C‘2+CaD3CE) (38b)
§
Ye is realized by a capacitive network, using one capacitor in cascade
i with a transformer 2n-port.
E
I - 17 - SEL-62-125




As these arguments show, the coupling networks of Figure 2 have

the completely passive equivalents used in Figure k4.

I |
7 T °
I I
2(0) . 2(3)
I |
Y, | o
. | |
a) Case [
e I I S
¢ g Da/p
2(0) I |
L (3)
a% Z
o o
b) Case II

FIG. 4, COMPLETELY PASSIVE BRUNE SECTIONS.

It remains to show that E(Z(O))-S(Z(3)) reactive elements are used. We
have, using the properties of & of Appendix 1 and (10), (19), (26) and
(29),

E(Z(l)) = E(Z(O)) + T, + rank D (39a)
= 2 rank K + B(Y(2)) (39b)
= 2 rank K + 5(2(3)) + T, + rank D3 (39¢)

or, from (39a) and (39c)
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PO S ——

ﬁ(Z(G))—B(Z(3)) = 2 rank K + rank D3 - rank Dy (40a)
|
E} From (34b), the fact that Dl = On for Case II, and since rank K = 1,
i
l (0) (3)y _[ 2, case I (40b)
B(z*"7)-8(2* 77} = 2,+ rank D3, Case II (40c)

By the comments mede concerning Y, and Y, and observing Figure 4, it is
clear thaet this many reactive elements are used. Since the procedure
can be repeated on the PR matrix 2(3), the procedure can be continued
until a matrix of degree zero 1s obtalpned. Such & matrix must be a PR
constant and can be realized by resistors and gyrators. Consequently,
we heve given a Brune synthesis which uses as many reactive elements as
the degree of the original PR matrizx.

In the above, it appears as D, = 0n in Case II. However, we have

been unable to definitely prove thEs as yet. We can show, using the
arguments leading to (34a), vhen B # On’ that D3 is zero except at

most for its upper left 2 x 2 submatrix (in Case II). In Case II, if

we had allowed Dl # On’ there would in genersal be no D3 present to cancel

the active capacitors.
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IV. STRUCTURE OF THE COUPLING NETWORK

Here we investigate possible canonical forms for the Brune
sections. The Case I structure is investigated first, since it is the
simplest.

In Figure 4a) we can insert a transformer Z2n-port of turns ratio
matrix T3 in cascade with one of turms ratio matrix Tél between Nc and
the realization of 2(3), as shown in Figure Sa). This leaves Z(O) un-
changed, but T, -

can be incorporated in Nc and T3l used to transform
Z(3). Using the equivalence of Figures 2-1 and 2-2 of Appendix 2,

Figure 5b) results when

T3 = T;l = 1 +C,D (41a)
T = T;ng = [ +c,p 101 -AL ] (41b)
(3)ry _a1,(3) ), ym-1

Zy”(p) = 737222 (p)T, (¥1c)
1 & |
g I£

1
’:::I_I T3 T3 [0 3)
—— 00—

Yc Tc
o [ |

b) Equivalent using (41)

FIG., 5. CANONICAL CASE I BRUNE SECTION.
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In Figure 5b), El has all but its first row and column zero and

can then be realized by the network of Figure 6a).

Since Y, and Y have
£ c

only their (1,1) term nonzero, the middle circuit of Figure 5b) is

realized by the network of Figure 6b), vhere the transformer turns are

in one to one agreement with the entries of (41b); £ and c are
determined from (33b) and (38b).

l o °©

El-Elele_b

20 —0 2
3o . o 3’
n o : : o 1

a) Realization of El

n o
2 o
| o éE
INPUT
Taj le
[
N 8 e &
2' o
n o
b}

FIG. 6. DETAILS FOR FIG.
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Considering Case IT, we insert transformers Tl 5 Tl at the
: igmediate left of G in Figure 4b). T, is split into two equal sub-
networks, T 17 without any change, to give Figure 7a) where D /p is

associated with Z(3) for convenience.

‘
L
- |u°

e (3)
a% 4
| o]
N |
o j
2 ) Cascade transformer insertion
O ] —
Uk 6 | |
Y4 ®eh I
e D3
‘——J——-————J p
| 2(3)
B T, -J
af . ’
| |
" |

b) First simplification

FIG. 7. EQUIVALENT CASE II REALIZATIONS.
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T1 and YE are then commuted and the equivalences of Figures 2-3
and 2-4 used. Similarly T. and B/aﬁ are comnuted and we have

1
ry = 7§t (k2a)
B' = T{lB%£1 (42b)

G! =T G.T (42¢)

% At this point, Tl can be chosen to diagonalize Yk. Since YE is zero

i except in its upper left 2 x 2 corner, this can be done by a Tl of the
form T, = Ti + ln-2 where Ti is 2 x 2. Such a T, gives B' of the same
form as B, that is B' = bE + O, o- As with Case I, we now insert T3
and Tgl to the left of D3/p. T?e equivalences of Figures 2-3 and 2-4
are then used to choose T, = Ti » which deletes the transformers on

the lower gyrators, B'/&ﬁ. The final equivalence is then as shown in

Figure 8, where

(3) _~,(3)
z,”" =Tzt (43a)
Dé = TlDBTl (43b)
(a7
ik H |
é"’“ e [
I o
8" l
2 4
| o— |
o— 1

FIG. 8. CANONICAL CASE II BRUNE SECTION.
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Since El hai only its first two rows and columns nonzero, this
will be true of Gi by the form of Tl' Gi is then realized by
connecting two nmetworks of the type of Figure 6a) in series; one with
the gyrator at port two. The inductor-trensformer-gyrator middle portion
of Figure 8 can be obtained from Figure 6b) as follows. One first
places an inductor across the second column of transformer turns
(connected at points 2 and 7). The capacitor and the short between 7,8
are removed and a gyrator with input at &,B and output at 7,5, is
fipally inserted. The final structure 1s somewhat difficult to draw

and it is hoped that this description will suffice.
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V. EXAMPLE

Here we carry out a simple Case II synthesis to illustrate the

basic concepts involved. Consider

1
z(p) = o [P0 6(p+1)
-6p p+2
this is PR by the PR test, [6, T-1], since

2
2
zH( jo) = ‘;L a.)2+5 3( 1+ jw) which has det ZH( o) = @i) .

w +1

3(1-jm) m2+2

At P, = J1 we have

R+jX =] 3 % +J % =jre %»+j g
3 .53 3 3 .52 1
2 J 2 2 2 J 2 2

The real part of R is then diagonalized. This has

%m(m;)x)'rm = 51 -j-;'- 2 1+39
-1 1 1-39 -2

Consequently, we use a Case II synthesis with

20%(p) = F 2(p)r_ - =T [p-:-s 11p+7
13p-5  Spel

We wish to add to z(o)(p)
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For the positive semi-definiteness of the last matrix we require

1
t it ~
P11Pas 23

and we are obliged to choose, by (17b),

P11 Zg';ﬁ
For convenience let
b]'_l =2
then, from (l5e),
by = 2/3

Clearly the semidefinite

8+3

&

Consequently,

requirement is met; by (15)

= ~(b_,+b} )} = -4/3

€5 22" a2

-13/3

z,(p) = [0 -13/3} +P [2 1/3}
13/3 0 /3 2/3

SEL-62-125



2(p) - 20%p) + 2 (p)

1 2 2
I0prT 6p +Tp+5 p -p-6

]

2+p+8 2p2+7p+1

This has det Z(l)(p) = (p2+l)(llp2+56p+53)/[9(P+1)2] and

Y(l)(P) - 3(p+1)

5 5 2p2+7p+l -p2+p+6
(p"+1)(11p"+56p+53)

270 6pCHTpS

- 31 [3p+7 -(7p+11):l

P+l llp2+56p+53
-(7p+3) 3Llp+35

where the second term on the right of this last expression is Y(a).
This has det Y(E) = 36/&9(11p2+56p+53), or

z<2)(p)=;%[31p+35 7p+11:l=;f—§|:31 7 +;‘%,:5 elfo
Tp+3 3p+7 T 3 1 1 -1 o

From (33)

Y, = (A+AL3A)/p = 5%;[03 7:]
7 15

Further, for Figure 4
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0 o=13 2_ 3 (3) ) 7
D3—02, Gy= 3~ o 1], B/wo* z [0 1],2 (p)= % 5 1]+3 0
-1 0 -1 O 1 1 -1

Although a realization could now be drawn, we continue to obtain the

canonical structutre. We can write

' L
Y, =[1 o]y, [1 ~7/437] = 38p [ 43 0
~7/43 1 0 1 0 59

and T1 is
=)
T, = ':1 o:l y T = [1 o}
/43 1 -1/43 1
Thus
~' _ Lo _ 1_3'
Gy =06 =3=E
¢ < -3
B =B =xE
2$3) = 2 [ong6/(43)%  so/u3 |+ L m
| 50/43 1|
b 1 50/43 ol 0]+ L E
T 36 9
| 0 1:\[2 1i| | 50/43 .1]
TiszTl =% 36/43 -1
-1800/(43)%  50/43

|

The realization following Figure 8 is given in Figure 9, where the 1:1

transformers could be deleted.
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VI. CONCLUSIONS

By following a more classical approach than that used by
Belevitch, this report presents an n-port Brune synthesis. The key
idea used is to insert & pole with residue of rank one in Y(l)(p).

This is done by, perhaps, first extracting many inductors and
capacitors which then later are cancelled by further extraction. The
final Brune section then uses only two inductors or one inductor and a
capacitor {which can be replaced by an inductor and a gyrator in a
known manner). Because the residue matrix is chosen of rank one, the
canonical forms of Figures 5 and 8 are easily obtained. 1In many cases,
one need not hold the rank one coanstraint of the above mentioned
residue matrix. However, as yet, nothing can be said about the
generality of this possibility.

It should be quite clear that the method yields a reciprocal
network, if the given matrix is symmetric. In this case the method is
a simple modification of that of McMillan. It is also quite similar to
that of Tellegen, but easily treats the case of x;, =0 in (8b), for
which Tellegen's method seems to fail, [12, p. 13]; see also [1, p. 150].
The xil = 0 case can also be handled by extracting a cascade gyrator
from port cne, but this would put gyrators in & reciprocal network.

Since it is known that no fewer than 6(2) reactive elements can
be used to realize Z, [8, p. 1841, the method gives a concrete way of
obtaining networks using & minlmum number of reactive elements. Of
course, as with any general PR synthesis, many transformers are
reguired.

We believe that the method of Oono, [7], can also be used {here
D1 S On in all cases}, but, mlthough it has worked on all examples to
which we have applied it, as yet no general proof of its validity exists.

Des rfves! toujours des réves! et plus 1'GBme
est ambitieuse et délicate, plus les réves
s'éloignent du possible.

Baudelaire, "L'invitation au voyage"

- 30 - SEL-62-125



ACKINOWLEDGEMENTS

The support of the National Science Foundation under NSF G-189L5
is gratefully acknowledged, as 1s the assistance of Yvonne Kilfoll who
devoted her spare time to obtaining the excellent format of this

report.

i
_



e A i

i i

APPENDIX 1l: McMILLAN'S DEGREE, &

The degree of a rational matrix, F(p), as defined by McMillan,
{5, p. sk3], is an extension of the concept of the degree of a rational

scalar, f(p), which is defined as

degree f(p) =§E:[order of the pole of f(p) at pj] (1-1)
P;
the sum being teken over all poles including ilnfinity.
Consider an n x n matrix F(p) whose elements are rational in p
with complex coefficients. Using the theory of equivalent matrices and

invariant factors, [11], we can write F as

F(p) = Clr,nAlr,nD (1-2)

where C and D are polynomial matrices with constant nonzero determinents,
1 is the r x o matrix whose first r columns are lr with all other

r,n
entries zero, and

A = diag[el/wl,...,erfwr]

r = rank F

ey divides €41’ i=1,...,r-1
¢1+l divides wi, i=1,...,r-1

ey and wi are polynomials with unit leading coefficients

ei/wi is in lowest terms

Here wl is the least common multiple of the denominators of F.
Now let F have an mth order pole at p = Pj’ where pj may be
infinity, and define

7y 4 = order of the pole st p, in ei/q:i (1-3)

Thus, 713 =m if pj is finite and 7rj =m if p'j = o, We then define the
degree of F at Py B(F,pj), by
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3 o8
8(F,py) =) 7y, (1-4)
i=1

These degrees are now summed over all the poles of F.

Definition: Let F have poles at Pj’ J=1,...,q, then the degree of F,

8(F), is defined by

5(f) =i &(F,p;) =i i 713 (1-5)

J=1 J=1 i=1

We note that a pole at infinity must be included if it is present.
T

T
8(F) is merely the degree of the polynomials Il v, or I e,, whichever
1-1 i=1
is largest.

This method of defining the degree allows the following property
4) to be easily proven, something which is very difficult to do with
the "order” of Tellegen, [12, p. 1]. The following properties are
merely stated, as all but the last two are proven in detail by
McMillan. The last two properties are easily obtained by noting that
no major change occurs in (1-2).
Properties:
1) 3(F) is an integer >0
2} 8(F) = 0 if and only if F is a constant matrix
3) 1rFt exists, then 5(F 1) = s(F)
by 1Ir F = F,+F, vhere F, 1s finite at every pole of F,, then
8(F) = 5(F,)+8(F,)
5) If F(p) = £(p)CG where £(p) is a rational scalar and G is a
constant metrix, then 5(F) = [degree f(p)]lrank G]
6) If A and B are constant matrices, then &(F) < &(AFB) where
equality holds if A and B are nonsingular (this is true even

if A and B are polynomial metrices with constant nonzero
determinants)

7) If F is formed from an m x o matrix F, by bordering with
zeros, then &(F) = E(Fl)

w2 - SEL-62-125
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8) 5(F) = 5(F)

9) &(F,) = 8(F)

Although det F = det A, when F is nonsingular, it is not always
true that 5(F) is equal to the degree of det F, as cancellation of terms
may occur. This is illustrated by F = p + 1/p which has &(F) = 2,
degree det F = 0, as well as by Caner's example, [13, p. 551). Bayard
defines the degree of F as the degree of det A, [14, p. 381], and
claims that the properties listed above hold. However, the example
given above shows that property 4) fails in this case.
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APPENDIX 2: TRANSFORMER EQUIVALENTS

a) Consider the transformer network of Figure 2-1 where all turns ratio

matrices are assumed nonsingular.

II ——
N Is
v O] T Vg
- w1
p— . _@oﬁ
» O—— ) —=0-
CHONR: ML
—o—1

FIG. 2-1, TRANSFORMER CONNECTIONS.

Here, by the definition of a transformer 2n~port,

v, =TV, I = -T,I; (2-1)
V, = TV, Ig = -ToI, (2-2)
Vp= Vs o+ Vg = Tavy, I =TI (2-3)

Therefore, solving the voltage equations of (2-1), (2-2) end

substituting into (2-3), solved for V_, gives

3’
a1 ~ S
vy = T B, (2-k)

Similerly solving the current eguations

-1 -1
I, = -T11T3 I (2-5)
S
I, = -T21T3 13 (2-6)
- 35 - SEL-62-125



Equations (2-4), (2-5), and (2-6) describe the transformer network of
Figure 2-2, which is, as a consequence, equivalent to the one of

Figure 2-1.
e

ORRAS
o—1 o
o—— -—-——4:(:)

@ | 137,
0.__|

FIG, 2-2. EQUIVALENT OF FIG. 2-1.

b) We now show the equivalence of Figure 2-3.

I — -1,
O/ A, T
O
v T Vol 1 O+ y,. =
| | - 2 o - 3 T2T| o
-o——-—l _I o___J
i FIG. 2-3. CASCADE EQUIVALENCE
|
Here
v, =TV, I, = -T,I, (2-7)
v, = T2V3, 13 =TI, {2-8)
By direct substitution
{ _mm . -
{ v, = Ty 2v3, 13 = -T,T, I, (2-9)
- 36 - SEL-62-125
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which proves the equivalence.
¢) Here we determine the relationship between parameters for the

equivalence of Figure 2-4 to be valid.

]
T
o ! Oﬁ*——J

FIG., 2-4. COMMUTATION OF SHUNT CASCADE CONNECTION.

The left side is described by the chain matrix

Yo =1, 9T ol=1T, 0, (2-10)
¥y 1 |lo ot v ot
o n n o 00 0
vhile the right side is described by its chain matrix
HR= T, ol % l=[(T o, (2-11)
-1 - -1
% T |lh L TllYl 5]
Since for equivalence liL = I4R, this requires
T, =T, (2-12)
Y, =T YT (2-13)
In a similar menner the equivalence of Figure 2-5 requires
T, =T, (2-14)
Zo s lelT1
- 37 - SEL-62-125



L'b--vl-h PEET JT S PP P

o— I, — o—
I P4 o
T, =] T |
0 o]
| O
FIG. 2-5. COMMUTATION OF SERIES CASCADE CONNECTION,.
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