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{RE TRANSACTIONS ON CIRCUIT THEORY

The Realization of #-Port N etworks Without

Transformers—A Panel Discussion*

This is the firat in & series of panel discussions of the status of unsolved problems in
cxrcult theory, first suggested 1o the PGCT by Loth A, Za._de.h. The problem of
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Statements By Discussants

E. A. Guillemin:} This title may mean different
things to different people according to their specific in-
terests and their interpretation of the term *port' as a
point of access or merely as an sliernate designation for
& node pair. Both interpretations may be appropriate in
the same problem at different stages of its solution,

My own interest in the n-port problem arises from a
long-standing desire to place synthesis procedures on a

. much more general basis that, unlike the Foster, Brune,
Darlington, ete., methods, does not Jead to specific topo-
logical configurations unalterably fixed by the theoretical
aspects of these methods. These conventional methods of
realizing driving-point and/or transfer functions are
coupled with certain structural forms: Iattices, tee's, pi's,
ladders, or these things in parallel or in tandem—some-
times with and sometimes without terminal resistances.
We pick a method, and we are stuck with a certain topo-
logical configuration whether we like it or not. Frequently
we do not like it but there is little we can do about it.
The ability to absorb parasitic elements, for example,
is tied in with this situation. Sometimes the resulting con-
figuration permits us to absorb such elements, sometimes
it doesn't. Sometimes we can do some horse-trading, like
abeorbing some particularly obnoxious parasite, if we are
willing to relax some feature in the desired response. It
takes a lot of experience with realization techniques to
recognize such possibilities, but even 50 we often find our-
selves frustrated. Whoover says that passive network
synthesis has reached maturity in the sense that we now
understand how to do all the essential things and only a
little minor polishing remains to be done has no} really
tried to solve practical problems with this stuff, Actually
the accomplishment to date represents only a few beacons
in & sea of darkness. We are still waiting for the big lights
to be turned on, and 3 recently revived interest in the

* Received between March 23 and May 14, 1962,
Massachusetts Institute of Technology, dambridge, Mass,

“n-port problem” as I see it i5 an encouraging move that
promises ultimately to achieve that end.

In the normal synthesis problem we are given a rational
funetion or set of functions (impedances, admittanees, or
dimensionless ratios) and & network with &0 appropriate
number of access points realizing these functions is sought.
A method of solution having the desired generality consists
essentinlly of two major steps: 1) construction of ap-
Propriate parameter matrices from the given rational fune-
tion or functions, and 2) construction of a network ap-
propriate to these parameter matrices, Each of these steps
present a huge task; and the two are, of course, inter-
related since construction of parameter matrices must not
be done without consideration of their realizability
conditions.

In step 1) the concept of normsl coordinates is vital
since there is an intimate connection between these co-
ordinates and the partial fraction expansion of desired
rationel functions (their residues, except for an appro-
priate normalization, are the pertinent direction cosines)
and, moreover, because normal coordinate transformations
are intimately linked with parameter matrices, Step 2)
involves the '“n-port problem” with which the present
discussion is concerned. This indeed is the setting in which
that problem is of major importance.

As is well understood by all who have worked on this
problem, we distinguish between procedures appropriate
to the realization of a short-circuit admittance matrix
and &n open-circuit resistance matrix. On the first of thess
problems the most important part of the solution has been
accomplished. On the second practically nothing has so
far been accomplished.

One can, of course, invert a given open-circuit resistance
matrix, thus converting it into & short-circuit conductance
matrix the realization of which is likewise appropriate to
the given resistance matrix; but this is not useful in the
general synthesis problem outlined above where two ar
all three kinds of elements are involved. In this same sensa
the realization of an nth order conductance matrix in a
network involving more than (n + 1) nodes is not useful
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either; and while this more general realization problem
is of academis or collateral interest, it lacks the motivation
given above,

This motivation incidentally has a collateral aspeot.
Once we succeed in solving the synthesis problem in this
way, we will no longer be plagued with the equivalent
network problem, for it will become an integral part of
the total procedure, All possible networks will be included
in the end results,

Ronald M. Foster:f We nssume that in all networks
under consideration exactly # ports, or pairs of terminals,
are specified; and that all access to the network is through
these specified ports only. In the general case this would
invelve a total of 2n accessible terminals, but these are
not necessarily all distinet since various pairs of. ports
may have a terminal in common. There is considerable
latitude with respect to the number and type of elements
constituting the network, which may be active or passivs,
reciprocal or ponrecipracal, finite or infinite, ete. One
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tarminals. If no ports have a terminal in common, then
this directly-connected network would consist of #(2n — 1)
elements. This general network can represent all possible
cases, sinece cortain of the slements can be reduced to
zero or infinite values to care for those situations where
two or more of tho ports have terminals in common, But,
although this general notwork can represent any possible
resistive n-port, it is not neccesserily a canonical network,
a8 outlined above, since it may not be composed of the
minimum number of elements. All that we can be certain
of at the moment is that such a canonical network con-
tains no more than n(2n — 1) elements; and that it
contains at least n(n + 1)/2 elements, since there are
that many conditions to be met in the general case.

Let us consider the very special case of & resistive 2-
port. Perhaps it would be natura] to expect a canonical
network to consist of a simple wye or delta connecting
the ports. Unfortunately this is not canonical in the sense
discussed above since no such single structure can repre-
sent all cases without rearranging the connections, since

. . : fixed connection will represent only one fixed sign
problem however of very considerable importance, under- 20Y C .
lying the treatment of all such networks, is that of the ©Of t-;he mutual ndm:tta?ce or n_npeda.n?e. L dw?:fld. ha.v:
single-element-kind network. That is, the network is com- to mclud? some sort O awx‘tc!n?g device, mO t l‘: L ;‘lo
‘posed of elements which are all positive multiples of ssme—0cluded in our sef of admissible elements. On the other

fundamental building block (including zero and infinite
values), finite in number, with no gyrators end with no
transformers, ideal or otherwise. This particular part of
the dizcussion will be limited exclusively to this particular
case,—ihe single-slement-kind network with exactly n
porta. .

Accordingly, in treating this somewhst specialized case
of the problem (elements of a single kind) there is no loss
in generality in assuming all the elements to be ordinary
resistors. Of course negative resistors are excluded. The
main questions to be studied concern 1} & canonieal form
for such a netwark, and 2) necessary and sufficient con-
ditions on the short-cireuit admittances Yy of the net-
work with respect to the specified n ports, referred to as
the ¥ matrix (or occasionally as the @ matrix, in view of
this restriction to resistors); or the open-~cireuit impedances
Zy; of the network with respect to the specified n ports,
referred to ns the Z matrix (or occasionally ag the B
matrix},

By & canonical form we mean a set of resistors con-
nected together in some fixed structursl arrangement so
that by suitably adjusting the values of the various
resistances (including zero and infinite values), this net-
work may be the complete equivalent with respect to
the n ports of any resistive n-port network whatsoever;
and furthermore that this be accomplished with the
minitum possible number of elements,

It is known that any n-port resistive network with 2n
terminals may be replaced by a directly-connected net-
work with one resistor connecting every pair of the

t Polytechnic Institute of Brooklyn, Brooklyn I, N. Y.

d, a six-element network directly connecting the four
terminals would certainly be capable of representing all
possible cases; but this is presumably not canonical be-
cause it contains too many elements. A canonical network
is afforded by a four-element general lattice, not & sym-
matrical lattice. That is, without, changing any connections
such & lattice can represent any possible resistive 2-port;
and hence may be regarded ns a true canonical network
for the resistive 2-port. Furthermore any onc of the four
component resistors may be limited to two values, zero
and infinite, if so desired, with the other three regiators
capable of assuming all values.

Thus in the general case of n-ports we expect a canonical
aetwork to have a number of elements somewhere between
the two extremes of n{2n — 1) and n{n + 1)/2 elements,
Actually very little seems to have been donc up to the
Ppresent in studying this question.

The other major question is this; Given & matrix (real,
square, symmetric, of order n) what are necessary and
sufficient conditions that it be realizable as the ¥ matrix
of a resistive n-port network (of the type outlined above),
or as the Z matrix of such a network?

Something must first be said about this subject of neces-
sary and sufficient conditions. Any logically equivalent
statement of the problem can of course be cited as a
necessary and sufficient condition for the original problem,
It is thus relatively easy to give many different sets of
neecessary and sufficient conditions for the same problem,
They are all logically equivalent, The real question relates
to the utility of the conditions. Are they easy to apply?
Do they involve essentially different operations from those
normally envisaged in the original problem? Are the
broposed sufficiency conditions simply o program of
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synthesis which may or may not work out? Ag examples
of the more desirable sort of hecessary and sufficient can-
ditions, consider the following: A necessary and sufficient
eondition for the realizability of the kind of matrix dis-
cussed above as the admittance (or impedance) matrix
of & resistive n-port network in which ideal transformers
are permitted is simply thut it be a positive definite
matrix (singular or nonsingular). This is a condition which
can be tested directly by well-established reathematien]
means. Or & necessary and sufficient condition for » func-
tion of the complex radian frequency s to be realizable
as the driving-point impedance of o finite network com-
posed of all three kinds of ordinary elements (resistors,
inductors, capacitors) is that it be g rational positive real
function. Agnin this ig o condition which can be tested
direotly, and by a choice among several different methgds,

Up to the present no quite satisfactory set of nceessary
and sufficient conditions for our present problem seems
to have been formulated. Certain necessary conditions
and certain sufficient conditions are known.

A reasonsbly well-known necessary condition on ga
matrix for it to be either the ¥ or the Z matrix of a
resistive n-port is that it be g paramount matrix, that is,
& real symmetric square mairix in which any prineipal
minor is greater than or equal to the absolute value of
any other minor drawn from the same rows as the prin-
eipal minor {15), 118], [386), [41].

Various sufficient conditions are also known:

1) For realization as .either ¥ or Z, the matrix be
paramount and the number of ports n be not greater
than 3. [Thus in this case, satisfactory necessary and
sufficient conditions are known] {37), [41].

2) For realization as Y, the matrix be dominant, that
is, any element on the maijn diagonal is greater than or
equal to the sum of the absolute values of all the other
elements in the same row ag the element on the maijn
diagonal (36], [41],

3) For realization ag Y, the matrix to have elements
which are all positive or zero and which are uniformly
tapered (6], [26), that is, the rows and columns can be
renumbered (if necessary) so that,

Yu+Yi, a2 Yiois+ Yo
for all 7 < j, with the additional notation
Yt.u-l = Yu.f = 0,

Sufficient conditions have been developed for certain
other cases, particularly when the strugture is limited
to n 4 1 nodes; but these conditions seem to be largely
operational in nature (7], (8], [11), {17), [28], [27].

It is also definitely known that paramountey is nok
sufficient when the number of ports n is greater than 3.
This has been shown simply by the citation of an ap-
propriate numerica] example {17].

It is also known that complete necessary and sufficient
conditions must differ for realization as s ¥ matrix or as
& Z matrix. Again this has been shown by the citation
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of numerieal examples: 1) of & matrix realizable as o ¥
matrix but notasp Z madtrix, and 2) of a matrix realizable
88 & Z matrix but not as o ¥ matrix [17), [18]. This last
statement of fagt may necessitate a change in some of
our preconceived ideas as to the nature of the prineiple

of duality as applied to networks,

Louis Weinberg:f In this note we attempt to give a
precise statement of o network problem,” indicate its
inportance, nnd suggest posaible methods for solving it,
Because of the limited space available the discussion must
perforce be concise. It is nssumed the reader knows what
voltages and currents are, but since there are some
mathematicians among the writer's friends who are dis-
mayed by such an assumption, it is immediately stuted
for their benefit that we also include a purely mathe-
matical formulation of the problem in matrix terms,

Consider the electrical network N shown in Fig. 1,
which is a representation of n 2n-terminal passive network;
all our knowledge of the internal structure of the network
must be obtained from measurements of the voltages and
currents of the terminals, Frequently we specialize the
network by specifying that certain pairs of terminals are
to be considered together, that iy, as ports, and thus the
2n-terminal network is converted into an n-port network.
For exampie in Tig. 2 terminals 1 and 2 have been paired
as port 1, terminals 3 and 4 as port 2, ete.; it is assumed

t Conductron Corporation, Ann Arbor, Mich.
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in this n-port network that all measurements are made
only at ports and that no connections are made between
terminals of different ports; for example, an impedance
can be connected between terminals 1 and 2 but not
between terminals 2 and 3. '

Because of the above restrictive assumption on the
n-port only n{n + 1}/2 independent functions are needed
for its complete specification, if N is a passive network
obeying reciprocity; thus for o two-port a complete
description is given by a symmetric matrix of the second
order. IFor the 2n-terminal network, however, n{(2n — 1)
independent functions provide a complete specification;
thus for » = 2, we require six independent functions,
which is to be contrasted with the requirement of three
functions for the two-port.

A solution is known for ithe problem when ideal trans-
formers are permitted in the network. In fact the two
problems of the realization of & network specified hy its
ports and by its terminals are equivalent in this case;
for example, realization of a three-port can be converted
to the realization of o corresponding four-terminal net-
work. Without transformers two different problems exist.

In the following we consider networks without resl or
idesl-trunsformers: We firat-discuss the-network formed
purely from resistances and then extend this to the case
of & network containing resistances, capacitances, and
inductances.

Suppose an nth-order symmetric matrix H with real
elements is given; the problem that is unsolved is io
determine the necessary and sufficient conditions on H
for it to be realizable as the open-circuit resistance matrix
or the short-circuit conductence matrix of an n-port
containing only resistances.

Some necessary conditions are known. First of all H
must be positive semidefinite. An even more restrictive
condition is that H must be & paramount matrix, where a
symmetric matrix of order n is defined as paramount if
each principal minor of order r, wherer = 1,2, ... ,n — 1,
is not less than the absolute valus of any rth-order non-
principal minor formed from the same rows. This condition
is sufficient for n < 3 but is not sufficient for n > 3.

A sufficient condition is aleo known for the short-circuit
eonductance case and can be stated in terms of dominant
matrices. A real symmetric matrix is defined as a dominant
matrix (or a matrix with dominant main disgonal) if
each of its main-diagonal elements is not less than the
sum of the absolute values of all the other elements in
the snme row. The given matrix 7 may be realized as a
short-circuit conduetance matrix if it is dominoat,

A less general form of network than the n-port con-
taining 2n terminals is the n-port containing only (n 4 1)
terminals. Two cases must be distinguished for this case
of (n - 1) terminals: one is an n-port in which all ports
have the same common ground terminal with the positive
direction of each voltage rise measured from this terminal,
that is, the poris correspond to a tree in a star configura-
tion. The second is an n-port the ports of which, when an
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element is drawn between terminals of each port, form
an arbitrary tree on the (r + 1) terminals.

An nth-order real matrix is realizable as the short-
circuit conductance matrix of an n-port containing oanly
(n -~ 1) terminals, one of which is a ground terminal for
all the ports, if and only if the matrix is dominant and
each of the off-dingonal terms is nonpositive. Furthermore
the (n 4 1)-terminal network may be synthesized to have
only (n + 1) nodes. ’

When the ports do not correspond to o starlike tree,
that is, there is no commen ground for all the ports, then
o linear tree may be used for characterizing the groph,
where by & linear tree we mean a tree that can be ordered
to bave successive branches ench with a single common
node with the preceding branch; thus the linear tree can
be drawn without lifting one's pencil from the paper.
A short-cireuit conduetance matrix is realizable if and
only if the transformed matrix corresponding to the ports
formibg o linear tree is uniformly tapered. The definition
of & uniformly tapered matrix is given in the preceding
discussion by Professor Foster. Methods have been given
for transforming the given matrix to one corresponding
to a linear tree, ' i

The_preceding method _introduces some computational
difficulty when the given matrix has some zero elements,
for it may be neeessary to try a large number of different
motrices in forming the sign matrix that is required.

A method that uses matrix algebra is also available
for realizing the (» 4+ 1)-terminal network. The given
matrix is decomposed by an algerithmic procedure into
a congruent transformation of o diagonal matrix

H = ADA'

in which D is an nth-order diagonal matrix with positive
elements ont the main diagonal, A is a unimodular matrix
and A’ is its transpose. A necessary and sufficient condi-
tion for realizability of H as a short-circuit conductance
matrix i3 that A be realizable as a cut-set matrix of 5
linear graph with (n + 1) nodes, and for realizability as
an open-circuit resistance matrix A must be realizable
as the loop matrix of & graph containing precisely » inde-
pendent, loops. In the preceding we have used the term
unimodular matrix; by this term we mean a matrix each
of whose minors is equal to &1 or 0,

The conditions for the general n-port problem eun ulso
be given a matrix formulation in terms of matrices defined
above. A necessary and sufficient, condition for o matrix H
to be realizeble as the short-oircuit conductance matrix
of an n-port network is that H be a principal submatrix
of the inverse of a congruent transformation ADA’,
where the order of each of these square matrices is > n.
Even though we have stated a neccssary and sufficient
condition, this does not mean the problem is solved;
what is unknown is a procedure for determining whether
o given matrix may be represented in the above form.

Thus if we solve the n-port problem by a technique
other than the matrix decomposition, we will at the same
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time have solved the pure mathematics problem stated
above, )

A recent attack on the n-port problem that almost
succeeded was given by Biorci in an unpublished paper.
It failed because he could not prove that if & given nth-
order matrix is realizable by ar n-port having M re-
sistances, where M > n(n + 1)/2, it is also realizable
with M — 1 resistances. If this theorem is true for ail n,
as it is forn < 3, it implics that n(n - 1)/2 resistances
are sufficient to realize any matrix, if it is realizable at
all. The theorem stands as & conjecture at present,
baving been neither proved nor disproved.

We now can consider the RLC problem. Here the
matrix has elements that are rational functions of the
frequency variable § = o *+ jw, and the network may
contain resistances, inductances and capacitances, but
no mutual inductance or ideal transformer. Some neces-
sary conditions are known. The given matrix H(s) must
be & positive rea) matrix; furthermore it must be g para~
mount matrix for all s in the range 0 < ¢ < w,

The necessary and sufficient, conditions for the realiza-
tion of the RLC n-port are the same as for the resistance
case, except that the diagonal matrix D now has elements
on the main disgonal given by a, b/s, es, with abc>0,

To guide the solution of this problem some further
properties of the matrices are available. If we group to-
gether in D the elements of the same kind —that is, we
renumber the rows and columns 80 that constants are
in the diagonal elements of ‘the first group of columns,
terms of the form b,s in the second group, and terms of
the form c,/s in the third group—then D must be de-
composabie in the dircet sum

D=D|+8Dn+%Dn

where -+ indicates direct sum and Dy, D,, D, are disgonal
matrices with positive elements in their main diagonals.

This is a much more formidable problem than the
resistunce case. In fact we do not even know s #olutign
when the network is an RC quadripole, that is, n = 2
and only resistances and capacitances are permitted in
the network. Agrin some Decessary conditions are known
for n = 2, but perhaps it is possible to leapfrog this ease
by a general approach.

It will be found that the conditions for realizability
of the impedance matrix and the admittance matrix are
different. In fact our ideas of duality have been modified
by some of the. resulis already obtained in work on the
resistance network; for example we know that there are
matrices realizable asg impedance matrices but not as
admittance matrices, and vice versa, i

This is a crucial problem in network synthesis; it
promises to enlarge our concept of duality and throw
light on the basic problem of equivalent networks, It
also has applicability in other branches of engineering;
for example, having realized a resistance network we have
also realized 2 communication network, where nodes
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represent stations and brenches represent communication
channels of specified capacity,

A number of suggestions could be given on approaches
for solving the problem. Since this note is already too
long, only one suggestion will be given here. It might yield
useful insights to assume that the n-port._possesses termi-
nels rather than n ports, or it may be convenient to switch
between the two representations. There is a simple formuls
relating system functions in one representation to system
functions in the other. This formula, which is given below,
is not so widely known as it should be; its first appeargnce
and proof in the literature are somewhat in doubt, and
it is continualiy being rediscovered. One of the conceptual
advantages of the 2n-terminal network representation is
that only driving-point measurements need be made;
these characterize the n-port uniquely, Thus an obvious
hecessary condition on each measurement is that it is a
non-negative number,

Consider a resistance n-port with an open-circuit
resistance matrix B = {R.s]. Of course since the n-port
obeys reciprocity, of the n? driving-point and transfer
resistances only n(n -+ 1)/2 are independent, that is,
the matrix i3 symmetrical. Now consider this network as
a 2n-terminal network with the terminals numbered from
1 to 21, and with the ports so numbered that port 1
comprises termingls 1 and {(n + 1), the assigned positive
direction being from termina] 1 to terminal (n + 1), In
general port k& will run from terminal k to terminsl (n 4 k)

For the representation of the 2n-terminal network let
8¢, denote the mensured driving-point impedance be-
tween terminals ¢ and k, all other termipals being left
free. Then we define Sux = 0, since this measurement
corresponds to both of the measuring leads connected
to the same terminal, It is clear that

Ry = Sinsae )
The general formule for the elements of matrix R is
By = S s + Senre — St — Sau.-.ﬂ].

which reduces to the previous formula when { = %,

Thus we see that a great desl is known about the
problem. We should be on the brink of a solution, If this
note helps to push a reader over the brink, then the writer
will get off the hook, since he predicted in the 1960 report
on Circuit Theory to the URSI General Assembly that
the resistance n-port problem would be solved before the
next General Assembly in 1963,

I Cederbaum:t The determination of the conditions
under which a matrix mey represent the specifications
of an n-port network without idesal transformers remains
an outstanding problem in network theory.

The admission of ideal transformers (or ideal gyrators)
removes the topological constraints inherent in any actual

t University of California, Berkeley, Calif,
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configuration of network elements. Other constraints
inherent, for example, in the linear, passive and time-
invariant character of elements have been successfully
dealt with, and the pertinent realization theory has
achieved quite a high level of mathematical sophistication.

The topolegical constraints however have not yet been
overcome. They meet us directly in their unveiled form
when dealing with the problems of synthesis of pure
resistive or E-networks. Only the case of so-called mini-
mum realization of a given immitance matrix over the
field of real numbers may be here considered as solved.
However if the requirements of the minimum possibla
rank or nullity of the resulting network are dropped the
broader family of reslizable matrices is not yet well-
defined.

It is my intention to present the problem of realization
of a pure resistive n-port from its immitance matrix in
the language of mathematical programming.

Take the given ¥ matrix (with constant real elementa,
symmetric and paramount) and visueliza it ss derived
from an s.c. admittance matrix P of & (2n — 1) port
described on a 2n-vertex network N, completely con-
nected, .c., having n(2n — 1) edges. Without impairing
the generality of the discussion, the (2n_—=_1) pert may be
assumed to have the linear port structure, and the n-port
looked for may be considered as derived from this (2n — 1)
port by open-circuiting each alternate port. If the numera-
tion of the ports is such that the open-circuited ports
have the last n — 1 order numbers, then after partitioning
¥ in the form

7= [-.":_f_’f':_ L 6
\W}’_,’), i Yo ln—1
n n-—1
wa have the relation
Y=Y, — Y,¥;'¥Y,. (25
Of course there is _
¥ = cecr, @)

where C is the given fundamental cut-set matrix of order
{(2n — 1) X [n(2n — 1)]) corresponding to the linear trea
and @ is the diagonal branch admittance matrix of the
#(2rn — 1) unknown edge conductances,

The relation (2) presents a system of n(n + 1)/2 equa-
tions of order n in these n(2n — 1} unknowns. The
synthesis problem may now be looked on as finding a
solution of the system (2) under the constraint on ail the
unknowns to be real and non-negative numbers,

Ii such a solution exists, then it i3 in general non-
unique, The objective function which is to be minimized
in order to obtain the optimal alternative may bo cither
the number of the vertices or the number of edges of N.
The first criterion may be met if we maximize the number
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of unknown edge-conductances which increase without
bounds, since each such edge represents a short circuit
unifying a pair of vertices, The second criterion implies
maximizing the combined number of edges with either
infinite or zero conductances.

Of course the difficulty with this technique lies in the
prohibitive amount of computational work implicit in
testing tho realizability of a given ¥ matrix. However
the simplicity of the objective function which need to be
minimized snd the non-negativity constraint on the
variebles indicate that the methods of mathematical
programming might here be advantageously applied.

In conclusion some words on the importance of this
problem. With respect to network theory the realization
of R n-ports may be looked on as presenting the first
step in realization of RLC n-port networks without
mutua]l inductance. Since such s network displays for
positive real values of the complex [requency 2 the
properties of an R-network, a necessary condition for its
synthesis turns out to be evidently the R-realizability
of its immitance matrix for all positive real values of a.

Pursuing further the same argument we are sble to
synthesize a subclass of RL.CM-networks, This class may
be obtained from a linear graph after replacing each of
its edges by a two-terminal box with an arbitrary con-
figuration of elements inside of the boxes [19).

One of the most interesting facts which may presently
be observed is that some related fields like contact, com-
municetion and probabilistic networks or sequential
machines are able to apply a number of network-theoretic
results. Since the weights assigned to edges of the pertinent
graphs in these applications are normally non-negative
real numbers, it is only natural that the border line between
these fields and network theory passes along the region
of pure resistive structures. It is to be hoped that any
progress made in one of these fields will produce interesting
consequences in the whole neighborhood.

Giuseppe Biorci:t The problem can be stated as
follows: given a real nth-order paramount matrix, to find
(if it exists) a network composed of positive resistors
only, which shows among n terminal pairs (ports), prop-
erly chosen, a short-circuit conductance matrix identieal
to tho assigned matrix, The dua! statement is omitted
for brevity.

The number of nodes of the network cannot be lower
then (s 4 1) sincs the n voltages across the ports mus
be independent. If the network turns out to have more

an 2n nodes, some nodes do not belong to any port,
and they may be suppressed through star-mesh trans-
formations. Therefore the number of nodes may be any
number between (n + 1) and 2n.

The solution of the problem is extremely important.

th Istituto Elettrotoenico Nazionale, “Galileo Ferraris,"” Turin,
3.
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First, it is & basic theoretica] problem; in fact it is the
inverse problem of the analysis of resistive networks
solved by Kirchhoff and Maxwell. Weinberg' has indicated
that a few years ago many scientists could not beljeve
that it was an unsolved problem. Second, as Guillemin [24]
has pointed out, its solution may lead to the topological
synthesis of multitermigal networks made of inductances
and capacitors, 08 well as resistors in the frequency do-
main, and such o synthesis hag & great theoretical and
" practical interest. Third, the problem has implications
in switching circuits, the importance of which is wall-
- known,

The present status of research on the problem is the
following: if we restrict the investigation to those networks
which have (n + 1) nodes exactly, we know severnl
methods of solving the problem [8], {15], [28], [45]. 1
believe that none of the proposed solutions is fully satis-
factory and that some work should be done to reach, in
this particular section of the problem, a necessary and
sufficient condition which does not require a full process
of building up the network. I hope that the other par-
ticipants in this discussion will give their opinion on this
point.

If the nodes are more than (n + 1) the problem becomes
much more difficult for two main reasons: 1) the number
of possible branches of the network becomes larger than
the number of elements of the assigned matrix, whereas
such numbers are identical if the nodes are (n -+ 1),
and 2) the functional relationship between branch con-
ductances and matrix elements ig rational but not linear
88 it is in & network with (n + 1) nodes.

Guillemin devised a technique, which can be derived
from the theory of Howitt transformations, to augment
the given matrix in such a way as to find out the con-
ductance matrix of the (n + p)-node network on which
the n-port is based, This is equivalent to putting two
petworks in parallel both having positive and negative
resistors but such that the resulting one is realizabie.
Although theoretically the second network, and hence
the final one, can be constructed in infinitely many ways,
it is quite difficult to find out even 8 single solution since
the problem is to solve a set of so many quadratic inequali-
ties, as many as the branches in the complete graph on
(n 4+ ) nodes, while the variables are less in number,
In the approach proposed by Guillemin, no indication is
given to make the method sysiematic, and hence the
procedure cannot be applied since even o trial-and-error
procedure must be limited to a finile number of trials.

Cederbaum [16], [17) seems to hope that & solution can
be reached by malking use of the paramount condition,
I believe that the probability of success along this line
is very low since paramountey is not a sufficient condition,
28 Cederbaum {17) and Piglione (33] have proved. Further-
more the physienl meaning of paramountey has been
found recently by Biorei and Meo (10] and Civalleri (21):

' L. Weinberg, private communication,
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it is nothing but a very particular consequence of the
no-amplification condition. .

I ptopose & new approach. It should be investigated
whether the following statement is true or false: Given a
network of positive resistors with n ports nnd m branches
[m larger than n(n 1)/2, which is the number of ele-
ments of the short cirouit conductance matrix], there
exists another network of Positive resistors with n ports
and (m — 1) branches having the same short-circuit
conductance matrix as the first network. If the statement
is true it follows that, if a short-circuit conductance
matrix is realizable with m branches, it is also realizable
with n(n 4+ 1)/2 branches (note that this is true for
n=2andn = 3)

Therefore the synthesis prablem, if the property is
true, becomes much simpler. In fact the number of pos-
sible structures of a network with n(n + 1)/2 is finite,
elthough large, and since for each of them the problem
is defined (there are as many unknowns as equations)
it is possible to find out, by systemetic trinls, if one of
them is composed of positive resistors only, If the state-
ment is false, from the proof of jts incorrectness it should
be possible to find some indications about the real mini-
mum number of branches and possibly new ways of ap-
proaching the problem,

I hope that the other participants in this discussion
will kindly give their opinion about the above approach.

Evaluation and Questions

Paul Slepian:f The panelists are to be commended for
their delineation of the problems of resistive network
synthesis. However, no member of the panel has sug-
geated that an insight into the synthesis problem can be
obtained by & more eritical examination of the processes
of network analysis,

In particular suppose that 1 is a positive integer and N
is an n-port resistive network. The processes of analysis
yield an (n X n) symmetric matrix of real numbers Z(¥),
which we call the open-circuit impedance matrix of A.
Thus Z is a function on the set of all such resistive n-
port networks into the set of ail (n X n) symmetric
madtrices of real numbers.

Network synthesis is merely concerned with an in-
vestigation of the inverse of the function Z. It appears
to this observer that an investigation of the inverse of =
function should be preceded by a thorough investigation
of the properties of the function itsalf. Thus I suggest
that our problems of network synthesis will not be solved
by an investigation of isolated synthesis techniques. I
fear that Dr, Weinberg will remain impaled on his haok
until such a time aa the investigators turn their directions
to the proeesses of analysis.

As a concrete supgestion suppose thet A is an n-port
resistive network and B is an n-port resistive network,

{ Dapt. of Mathematics, University of Arizona, Tucson, Ariz.
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First, it is & basic theoretical problem; in fact it is the
inverse problem of the analysis of registive networks
solved by Kirchhoff and Maxwell, Weinberg? hag indicated
that a few years 8go many scientists could not believa
that it was an unsolved problem, Second, as Guillemin [24]
bas pointed out, its solution may lead to the topological
synthesis of multiterminal networks made of inductances
and capacitors, as well 48 resistors in the frequency do-
main, and such g synthesis has g great theoretical and
" practical interest, Third, the problem has implications
in switching circuits, the importance of which is well-
known,

The present status of research on the problem iz the
following: if we restrict the investigation to those networks
which have (n + 1) nodes exactly, we know saveral
methods of solving the problem (8], [15), (26], [45). I
believe that none of the proposed solutions is fully satis-
factory and that some work should be done to reach, in
this particular section of the problem, » necessary and
sufficient condition which does not require a full process
of building up the network. I hope that the other par-
ticipants in this discussion will give their opinion on this
point.

If the nodes are more than (n 4 1) the problem becomes
much more difficult for two maj

such numbers are identica] if the nodes are n + 1),
and 2) the functional relationship between branch con-
ductances and matrix elements is rational but not linear
a8 it is in a network with {n + 1) nodes,

Guillemin devised & technique, which ecan be derived
from the theory of Howitt transformations, to augment
the given matrix in such g way as to find out the egn-
ductance matrix of the {n + p)-node network on which
the n-port is based. This is equivalent to putting two
networks in parallel hoth having positive and negative
resistors but such that the resulting one is realizable,
Although theoretically the sepond network, and henca
the final one, can be constructed in infinitely many ways,
it is quite dificult to find out even a single solution since
the problem is to solve a set, of so many quadratic inequali-
ties, as many as the branches in the complete graph on
(n + p) nodes, whilg the variables are less in number,
In the approach proposed by Guillemin, no indication is
given to make the method systematic, and hence the
procedure cannot be applied since even trinl-and-error
procedure must be Iimited to g finilte pumber of trials,

Cederbaum [16], [17] seems to hope that s solution ean
be reached by making use of the Paramount condition,
I believe that the probability of success along this line
is very low since Paramountey is not » sufficient condition,
as Cederbaum {17 and Piglione (33} have proved. Further-
more the physieal meaning of Paramountcy hag been
found recently by Biorci and Meo [10] and Civalleri [21):

! L. Weinberg, privata communication.
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it is nothing but a very particular consequence of the
Dho-amplification condition. .

I ptopose a new approach. It should be investigated
whether the following statement is true or false: Given a
network of positive resistors with n Ports and m brenches
Im larger than n(n -+ 1)/2, which is the number of ele-
ments of the short circuit conductance matrix), there
exists another network of positive resistors with n ports
and (m — 1) branches having the same short-sircuit
conductence matrix as the first network. If the statement
is true it follows that, if a short-circuig conductance
matrix js realizable with m branches, it is also realizable
with a(n 4 1)/2 branches (note that this is true for
n=2andn = 3),

Therefore the synthesis problem, if the property is
true, becomes much simpler, In fact the number of pos-
sible structures of a network with n(n 4+ 1)/2 is finite,
although large, and since for each of them the problem
is defined (there are as many unknowns as equations)
it is possible to find out, by systematic trials, if one of
them is composed of Positive resistors only. If the state-
ment is false, from the proof of its incorrectness it should
be possible to find some indications about the real minj-
mum number of branches and possibly new ways of ap-
Proaching the problem.

I hope that the other participants in this discussion
will kindly give their opinion ahout the above approach,

Evaluation and Questions

Paul Slepian:t The panelists are to be commended for
their delineation of the problems of resistive network
synthesis. However, no member of the panel has sug-
gested thot an insight into the synthesis problem can ba
obtained by a more eritical examination of the processes
of network analysis.

In particular suppose that = is a positive integer and ¥
is an n-port resistive network. The processes of analysis
Yield an (n X n) symmetric matrix of real numbers Z(N,
which we call the open-circuit impedance matrix of N,
Thus Z is a function on the set of all such resistive n-
Port networks into the set of nil (n X n) symmetric
madtrices of real numbers,

Network synthesis is merely concerned with an in.
vestigation of the inverse of the function 2. It appears
to this observer that an investigation of the inverss of a
function should be preceded by n thorough investigation
of the properties of the funetion itself. Thus I suggest
that our problems of networlk synthesis will not be solved
by an investigation of isolated synthesis techniques, I
fear that Dr, Weinberg will remain impaled on his hook
until such & time a3 the investigators turn their directions
to the processes of analysis,

As & concrete suggestion suppose that A is an n-port
resistive network and B is an n-port resistive network.

t Dept. of Mathematica, University of Arizona, Tucson, Ariz.
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It would be nice if, with certain restrictions on 4 and B,
‘we could ndd these networks to obtain a new n-port
resistive network which we denote by

A@B.
It would be even nicer if, after such addition,
Z(A P B) = Z(4) + Z(B),

where the addition on the right is the usual matrix ad-
dition. Thus I ask what the conditions on 4 and B must
be in order that addition of the networks will satisfy the
above equation,

Such thoughts are not original with this writer. Indeed
Kron {31] and his loyal disciples bave concerned them-
selves for many vears with this problem and claim some
powerful results, Unfortunately this writer cannot under-
stand these results,

Note however that if such an addition of networks can
be defined, then the synthesis of a complicated matrix
can be attacked by & decomposition of the complicated
matrix-into the sum of simpler matrices, each of which
18 realizable in such o way that the realizing networks
are mutuslly additive, Furthermore the networks realizing
these simpler matrices will probably be related to the
canonical networks discussed by Prof, Foster.

S. L. Hakimi:f The problem is the following: Given
an (n X n) symmetric matrix A with real entries, what
are the necessary and sufficient conditions for this matrix
to be the open-circuit impedance matrix Z,, (or the short-
circuit admittance matrix Y,,} of an n-port resistive
network. '

It is known that if A is realizable as Z,, (or ¥,,), it is
not necessarily also realizable as ¥, (or Z,,); and further-
more if the question of realizability of A as Z,, (or V.,)
is completely answered, this by itself will not solve the
problem of reslizability of a given matrix as ¥,, (or Z,,).
This stems from the fact that Z2 (or V') may not exist.
Liven if the above problem (as stated in the first paragraph)
is solved, there may remain another interesting and
important problem, that of realizability of A as & grounded
n-port resistive network.

As it has been pointed out, 8 number of extremely
interesting papers on this subject have alrendy been
published. In spite of this fact it might be advisable for
some research workers to ignore the present literature on
this subject, for it seems improbable thet a complete
solution is merely & generalization of the presently known
results,

In any realizability problem, one may find 1) a set of
necessary and sufficient conditions for realizability of the
given specification without having a finite scheme for

t Dept. of Elec. Engrg., Northweatern University, Evanston, 11,
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arriving at the realization (the network), or 2) a finite
scheme for arriving at the realization without having a
set of conditions to examine the given specification pricr
to the realization. Neither of these two by itself is a com-
completely satisfectory solution. It is the feeling of this
writer that s “satisfretory’ solution to “the n-port prab-
lem" is not within reach and that the problem most
likely will remain unsolved for some time to come.

Robert W, Newcomb:} If I understand correctly the
approach suggested by Biorci and commented upon by
Weinberg, it consists of an analysis of all structures of
n{n <4 1)/2 branches. Supposedly this will result in a
catalogue of such networks as concerns their applicability
for realizations. It is not clear if Biorci has carried out
this analysis, which certainly must be tedious for most n
of interest, # > 3. In any event one unsolved problem
is to reduce the network to the n(n -+ 1)/2 branches.
If the above interpretation is correct, it appears to me
that this latter could be avoided by analyzing ali networks
with the maximum necessary number of 2n nodes. These
would still contain a finite number of branches, sumething
like n(2n — 1} of them, which could be catalogued in the
same manner. If I understand the method, it seems un-
likely that any conclusions could be drawn for very large
n because of the computational difficulties. However it
does seem worth pursuiog since an inductive proof could
possibly be found.

Some comments on duslity seem approprinte. First,
one wonders if the duality problems are real or just ap-
parent; that is, can they be by-passed by making a proper
choice of variables or by the use of some transformation
(such as that of Puckett [34]). SBecond, it seems that a
search for plenar realizations (including sources) would
seem worthwhile. For instance the nonplanar reslizetion
deseribed by Ioster in his previous example B can be
replaced by a planar one [22]. The importance of this
lies in the fact that if 4 can be realized 88 A = ¥ bhut
not A = Z (as a resistive transformerless n-port with
the same polatity conventions for ¥ = admittance and
Z = impedance), then the realization of 4 = ¥ must
be nonplanar. It is not clear however that if A = ¥ and
A = Z are both realizable, there is a planar realization.
A ‘thorough investigation of duality concepts certainly
seems in order.

In equivalent network studies one of the most important
concepts is the scattering matrix S, Has anyone investi-
gated the use of S or even the constraints on § for trans-
formerless n-ports? Likewise Richard’s theorem is useful
for 1-ports and has been generalized by Bayard to n-
ports [1]. Althcugh Bayard's result doesn't seem to assist
much in & transformerless synthesis, perbaps further
investigations of generalizations of the Bott-Duffin syn-
thesis would be worthwhile.

1 Stanford University, Stanford, Calif.
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Yilmaz Tokad:} For the realization of a real sym-
metrieal matrix g of order n, a8 an (n 4+ 1) terminal R-
network, an approach which does not suffer from the
existance of O entries is as follows: Consider the set of
matrices @, which transforms s given tree with (n 4 1)
.vertices into another, This set of matrices can be generated
easily from a vertex matrix [38]. If g is realizable as an
7 + l-terminal R-network, one of the matrices in this
sct transforms § into & dominant matrix agae’. The
determination of G, can be realized through a digital
computer search program,

As for the canonieal or minimum element realization,
it is not always hecessary to use a 2n-terminal R-network
with n ports having no common terminals, It may be
possible to determine a terminal graph (port structure)
which contains less than 2n-terminal and more than
% + L. In general thig terminal graph contains more than
one part. Even though it may be possible to establish
such o terminal graph, the problem of determinating the
element values remains wnsolyed. To determine this
separated terminsl graph one can first partition the given
matrix as .

(k) (ka)
G‘*’[g" 9"], by + ks = n,
(kJLSn G

If G., and Gy, are realizable as k, + 1 and k; 4+ 1 terminal
R-networks forany 1 < ky, k, < n — 1, then the terminal
graph is in two parts if not more partitioning in the g
matrix is necessary [11).

For a given realizable paramount p.r. matrix of order n,
fissume that the tarminal graph is found to be connected,
t.e., the synthesis is possible as an n =+ l-terminal RLC
network. The realization therefore must be possible by
increasing the number of nodes inside the network by at
least p where p = k/2if kiseven, p = (k — 1)/2if k is odd,
and k is the degres of the common denominator [38].
An alternate procedure is to create one internal node
at a time by the use of polygon to star transformations,

If reslization is not possible with n ++ 1 terminals,
the reslization as an n + k& (¢ > 1) terminal network
may be possible, but represents a much more complex
problem,

S. D. Bedrosian:} The panel has done an admirable
job of defining the problem and indicating its importance
in network theory. This writer heartily concurs with the
emphasis on single-element-kind treatmeng in efforts to
solve the n-port problem. It appears that a somewhat
broader view should be taken of the over-all multi-
terminal network problem of which this is a specinl case.
This is particularly important dus to the apparently

o thept. of Eles. Engrg., Michigan Stato University, East Lansing,
ch.
1 University of Pennaylvania, Fhiladelphia, Pa,
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justified optimism about sn impending solution to this
special subclass of n-port networks without transformers,

The more general case of multiterminal networks in-
volves the recognition of three types of nodes, namely,
accessible, partially acceasible and inaccessible [4). These
are defined ps

Accessible nodes: the usual external termina)s;

Partially accessible nodes: terminals restricted to ap-
plication or measurement, of voltage;

Inaccessible nodes: internal or “concealed" nodes.

The partially accessible node provides a direct method of
treating subnetworks within a larger network. This is also
applicable to the n-port cage. A systematic matrix method
has been given for formulating equations representing
the externally observable behavior of such multiterming]
networks {3]. This approach has besn developed in con-
nection with & different but somewhat related problem
ares, that of network element value solvability. Solva-
bility theory, if one may coin & name, is distinguished by
emphasizing treetment of networks wherein all the nodes
are not accessible. In network solvability one seeks to
determine the specific element values of a specific con-
figuration by means of jts externally observable behavior,
It develops that there is great dependence on network
topological conditions.

An intimate connection may exist between the com-
pound matrix formulation and Beneralized reduction
fermulas for solvability and Cederbaum’s (1) and (2).
The concepts and results being obtained should alsg be
useful in providing additional ingight into the topics of
equivalent networks and canonical networks a8 diseussed
by Foster,

Wan H. Kim:f The summary of the synthesis problems
of the ordinary RLC multiport networks by Weinberg
and Foster is clear and up to date, There is however one
school of approach which is very much worth looking
into, although it is covered only by Biorci and even then
just briefly. We refer to the use of the development of
the theory of linear graphs for the synthesis of multiport
networks. This will now be explored further,

The immittance matrix of a multiport network with
% + 1 nodes H is given by

H = AD4', (1)

‘where 4 is & unimodular matrix. Furthermore 4 i3 a

basic out-set or loop matrix if the network has n ports,
and if the network hes less than n ports 4 is a modified
basic cut-set or loop matrix including a fictitious branch (es)
or loop(s). '

It is then clear that, as Weinberg stated, the becessary
and sufficient conditions for g matrix H to be realizable
are 1) that matrix H be decomposable into the form

t Columbia University, New York, N, v,
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of (1), and 2) that A be realizable as a basie cut-set or
loop matrix of a connected graph. A presently known
necessary condition for the decomposition of X is para-
mountcy. However we need much stronger condition(s)
than paramountcy before we can attempt to decompose
H because of the fact that if 4 is unimodular then H is
always paramount but not vice versa. Thus the following
question should bc answered: Tind the implication or
influence of the unimodular character of A on the im-
mittance matrix H.

Tutte's theorem (39} gives the necessary and sufficient
condition for the realization of A. Let us assume that A
is in a basic form [[J4,,], where U is the unit matrix of
rank equal to A. Then 4 must be unimodular and must
not contain n submatrix which is a loop or cut-set matrix
of either one of Kuratowski's basic nonplanar graphs.
TFrom this theorem it follows directly that & matrix 4
of rank three is always realizable if it is unimodular,
gince the minimum number of independent cut-gets or
loops i8 four in the Kuretowski graph. As a consequence
of this observetion and of the fact that we have an
available algorithm for the decomposition of A4 into a
unimodular congruence (if such a decomposition exists),
the following question may be answered strictly-in terms
of the theory of linear graphs.

2) All (2 X 2) and (3 X 3) paramount matrices are de-
composable into the form ADA' such that A is always
realizable in terms of linear graphs. For the case of a
paramount matrix of (2 X 2) the proof is straightforward,
but this may not be 5o in the case of a (3 X 3) paramount
matrix. (Note that there exist two different networks
proposed by Slepian and Weinberg [36) and Tellegen
[37], respectively, but these are not based on the realiza-
bility of graphs.)

Our discussion up to this point has lead to the following
question:

1) What are the constraints of H if A satisfies the
conditions of Tutte's theorem? In other words how can
one make sure that the decomposition algorithm always
gives a realizable A matrix? Once this question is answered
(that is, once 4 is obtained such that it satisfies Tutte's
theorem), then we know how to construct s graph cor-
responding to A4 [28].

Let us now turn to & problem of a more general nature:
the realization of H with a multiport of at most 2n nodes.
For this case it is known [17] that i H = {h,,] satisfies
the condition that hy = hy for k = 1,2, -:- , nand for
some I, then H is realizable only if it can be reslized by an
n-port with n -+ 1 nodes. This result should bo extended
to the case where k = 1,2, --- ,n — mand m 2 1, Thus
the following conjecture is made:

2) If the elements of H, k,,, satisly the condition that
hu=hafork=1,2.  ,n—mmp 1, and for some I,
then H ia realizable only if it can be realizeble with an
n~port having n 4 m nodes. The worst case would be the
one in which & = [ only. Then H may be realizable only
by an n-port with 2n nodes,

The proof or disproof of this conjecture may indicate
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the minimum number of resistors required for the realiza-
tion of H which Biorei attempta to solve.

The last comment which I would like to make in sup-
port of further work in this ares is that some of the results
obtained for a resistive network are also useful in the
study of active networks [29]. Moreover the decomposition
algorithm may be modified to yield a realization of a
multiport with the minimum number of negative resistors.
Because of limited space an example is given to support
our statements. Given H such that

7 1 2 3

H= 1 12 4 5 ) @
2 4 15 6
3 & 6 1

Then it can be shown that Cederbaum's decomposition
algorithm will result in ADA', but A is nof unimodular.
Hence it is not realizable with a resistive four-port with
five nodes. However it can also be shown that

H = ADA’, (3)
where
1 0 0 0 1 1 1 0 0]
A= 0 0 0 1 0 0 1 1 @
0 010 0 1 1 1 1
0 1 ¢ 0 1 1 1 1 ol
4 7
11
10 O
8
D= 1 ()
1
e 1
4
5 —1]

And the renlization of H with one negative resistor is
shown in Fig. 3.




