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Abstract
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l. INTRODUCTION .
"This poem wants to be a description"” [H1l, 4th]

Among the recently developing areas of applied mathematics
can be found that of the operator theory of networks. Here we try
to outline the field, as scattering theory pertains, beginning
with first principles and ending with the present state of the art
and open problems which may be of interest to the mathematical
community.

The field is one which, until recently, with one or two ex-
ceptions, has been primarily cultivated by mathematically inclined
electrical engineers. It 1is, though, we believe, a fascinating
field for both mathematicians and engineers and one where strong
tles are developinz and appear profitable. Thus, for example, in
their artistic devalopment of new designs for modern integrated
circuits and microsystems the engineers are led to operator theo-
retic decompositions which can challenge creative mathematicians
for generalization and vice versa. Too, as we shall see here, the
techniques developed open up nev areas of research in combinatlons
of algebra and analysis, as for example in the coupling of differ-
ential field theory and Hilbert space operators.

By way of historical background, one can probably rightfully
say that ideas in the fleld trace to those of Cauer who, in the
early 1930's, set up a transformation theory of networks using
electrical transformers [C3]. Later, in 1952, the mathematician
B. Mc¢cMillan set up a vector-space framework for networks, glving
syntheses for an important class of impedance operators [M2].
Probably the first significant introduction of the scattering
operator in netvork theory was given by Belevitech in 1951 [Bl]
when he pointed out a useful decomposition for synthesis. This
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work was extended and solidified in a beautiful paper by Oono and
Yasuura in 1954 [01], with a rigorization of the foundation materi-
al initiated by Youla, Castriota and Carlin in 1959 [Y1]. This
latter showed the importance of Hilbert Space concepts in treating
passive scattering operators and undoubtedly motivated some of the
following treatments based upon the theory of distributions of L.
Schwartz [S8]. For example, using distributions Zemanian [22][2z4)
and Beltrami & Wohlers [B3] obtained passivity conditions on time-
independent operators. However, probably of even more importance
has been the use of distributions, through the kernel theorem [S7],
in treating time-dependent operators (A1), especially in the synthe-
ses of Spaulding [S11] and Anderson {A3]. In the early 1960's, the
field was such that it could be somewhat codified [N4], leading the
Argentinian mathematician A. Gonzalez-Dominguez to be motivated to
deeper studles [G3] which have recently been profitably continued
by P. Dewilde [D4]. Professor Gonzalez -Dominguez has also been
instrumental in calling attention to the work of M. Livschitz [L107].
One of the first uses of more abstract operator theories in network
synthesis published in English was given by Saeks in 1970 [s2],
this being followed by the works of Levan [L7] and Helton [(H6]
using the characteristic operator function, as developed by Sz.-
Nagy and Folas [S16]), for synthesis of passive scattering operators.
Interestingly enough, these abstract Ttheories run into difficulties
when applied to the practical problems of finite networks for which
an alternate development [N7], which preserves rationality and
causality of operators, proceeds on an algebraic basis through
differential field theory [K4].

By way of background, on the mathematical side we assume
some familiarity with Hilbert Space concepts, as may be obtained
from a number of texts [H4][H10][R2][S13]. At points, the treat-
ment wlll also be somewhat algebraic for which we will assume the
avallability of comprehensive texts [D91[R1][R3] for those wishing
to check out details. On the engineering side, we assume less,
though point out the existence of texts [N4][S4][w4] which may be
helpful in clarifying some of the physical meanings. We should,
however, mention that the theory, though perhaps similar in a few
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points to scattering theory as treated by Lax and Phillips [L1],

is quite different in content from that familiar to many accustomed
to flow and transportation networks based on graph theory [s1013.
Too, 1t is worth commenting that it would be convenient to have a
theory developed for which one would not constantly have to refer
to the underlying functional spaces which somehow keep appearing

in a manner which confuses the more basic arguments. However, as
mathematicians are aware, specifications of such Spaces are cruclal
for the validity of results, something upon which the laxity of
engineers often leads them to incorrect results. In any event, we
try to avoid the undue use of functional spaces in the treatment
here, for which reason only passing mention of distributional re-
sults is made.

Because most practical use for the theory occurs in electri-
cal engineering, we adhere somewhat closely to the nomenclature
there. Thus Yy and 1 can conveniently be thought of as voltage and
current vectors, though, of course, other interpretations are
possible when thinking of other applications. By way of explana-
tion of the notation, we will use boldface quantities to represent
vectors or matrices usually of physically measurable quantities
dropping the boldface for scalars and general operators.

The next section gives a definition of a network in terms of
allowed pairs of port variables, this being followed by the intro-
duction of the scattering operator in Section 3. In Section 4,
Passivity 1s introduced, this being the main constraint used for
deriving results on linear networks. Synthesls, the main concern
of engineering, is introduced in Section T, this falling back upon
the cascade load relationship introduced in Section 5. Section 7
also contains some clarifying examples. Since engineering designs
are primarlly based upon finite networks, these latter are covered
in Section 6 which also contains differential field concepts of use
in the synthesis of finite networks. A few generalizations are
touched upon in Section 8 with some cpen problems mentioned in the
closing discussion.




2. NETWORKS

"This forest is dense
Full of scrawny trees, and they are afraid" [H1, 4th]

We begin by defining in general, but mathematical, terms a
network introducing the concepts of input power and ports; the sec-
tion closes by cataloging a feu important networks.

Abstractly a network N can be most primitively thought of
as a set of allowed pairs of variables v and 1 where a given pair
1s allowed if it satisfies the constraints C placed by the physi-
cal nature of the network. We thus write vCNi if v and 1 satisfy
CN and define the particular network so specifled as

N = {[y,1}yc,1) (1)

Pictorially, we represent N as in Fig. 1. We comment that no
preference is given to Y or i; in other words, neither is con-
sidered as an input or an output since physically the same network
may serve several functions. A network is then a speclal case of
a non-oriented system [Z1, p.10]. '

There are tvo types of constraints contained within CN,
those common to all networks and those differentiating one net-
work from another. The former are generally placed for mathema-
tical rigor, while the latter are of most importance from an
engineering viewpoint. Within the former class of constraints,
we shall initlally take v and i €, (H) where 5, (H) is the space
of infinitely differentiable functions of time t taking values
in some Hilbert space H and which are zero until some finite time
(that is, have support bounded on the left, where by the support

of a function is meant the closure of the time set upon which the
function is nonzero). This constraint i1s motivated on physical
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.grounds since an arbitrary network may give rise to arbitrarily high
derivatives, while, too, it would be put in use only after a finite
time. Denoting the scalar product on H by <-,'>H we also subsume

in the common constraints of CN that the polarity choices on v and
1 are such that for the pair [v,1]eN the total power P{t) into N

at time t is given by

P(t) = <y(t),1(t)> (2)
(Note, for example, that a reversal of 1 would give output power
instead).

Customarily, and for ease of interpretation of various re-
sults, one takes H = R" and teRl where R is real Euclidean n-space
in which case N is called an n-port and §3,1>H = Vi where the tilde
denotes matrix transposition. For general H the network is called
a Hilbert-port [Z3]. Most normal electronic systems are n-ports
while non-n-port Hilbert-ports are of practical interest for miecro-

wave structures, such as satellite communication systems.

Example 1. The constraints differentiating some important networks
from others are illustrated as follows. For these we
comment that the parameters, as resistance, are allowed
to vary with time in which case we denote by € the
space of infinitely differentizble (real) functions
(with no constraint on the support).

a) The resistor, of resistance r, is the l-port
defined by the constraints n =1 and v = ri,

TEL.

b) The capacitor, of capacitance ceP, is defined by
n=1and i = d(ev)/dt. Similarly the inductor,
of inductance feg, has v = d(41)/dt.

¢c) The gyrator, of gyration conductance gef, is the
2-port defined by




d) The transformer (k+m) -port, of kxm turns-ratio

matrix T = [TiJ]’ TiJea, 1s defined by
o = Ty, o=yl . 1= [y
i = -Ii, Yo i,

e) The nullator is the l-port having v = i=0 while

the norator has v and 1 independently arbitrary.

For the norator the network constraints CN are

essentlally vacuous.
Although the networks of Example 1 are among the most useful,
there are many other networks, as transmission lines and transis-
tors, some of which, eg. transistors, can be conveniently constructed
(or conceived) as interconnections of those of the Example. Too, it
should be noted that the networks of Example 1 can be generalized
from n-ports to Hilbert ports; for example, a Hilbert port resistor
would have its resistance mapping 3+(H) rather than J@(Rl).




3. THE SCATTERING OPERATOR

"Here, in this forest, the voice moves dripping with sweat
This 1is a region where trees open up, in here
The blind tree forgets that it can be seen." [(H1, 4th]

Having defined a network N, we now introduce a scattering
operator 8 for it, via a linear change of port variables, giving
the solvabllity condition for the existence of 8.

If for a given N it occurs that there exist linear mappings
al-) and ®[*] of 3+(H) into ﬁ;(H) such that

L alyl = m[i] (3)

theh we will call N linear. A1l of the netvorks of Example 1 are
seen to be linear. However, rather than use two linear operators
to describe N ve would prefer to consider only one. In cases
where ¢ is invertable, eg. the resistor, the impedance operator
2= a"1® can be used while 1f, as for the gyrator, ® is inver-
table then the admittance operator % = 8 1g exists. But, as the
transformer shows, neither the impedance nor admittance operator
‘need exist for useful networks. Consequently, it is more con-
venient to Introduce the scattering operator 8[-] for which we
make a change of variables to incident, KF’ and reflected, XF’

variables

Ex} = Vi '(43)
2y = y-1 (4D)

to yield
Xf = S[vi], 8§ = (@+a)‘l(m-a) (4e)




‘At this point, an orilentation for N has be:zn chosen since vi acts
as an input with vr as an output. Our meaning of the word "operator"
is seen to be just a synonym for "mapping of one space (inputs) into
another (outouts),' the actual spaces varying with the discussion.

Physically, incident and reflected variables can be inter-
preted by connecting a unit resistor in series with each port of N
to form an augmented network N,, described by [e,1i], e = v+i, as
1llustrated in Fig. 2. Then e = 2v, the source voltage or input,
while if for some ports e = Q then X? = V appears across those
ports’ resistors as output. Consequently, the scattering operator,
besides being most conveneient for the mathematical treatment of
networks, 1s also quite useful for designing resistively terminated
structures.

We comment that i1f N is linear so is N and that if Na has an
admittance operator Yg» L= ¢ [e], then v = g_i_= (J"?a)ESJ where J
1s the identity operator, giving

o Yalyd = (8-9,) (4] or § = 3-2¢y, (5)

Consequently, we are led to call N solvable if for every ees, (H)
the equation e = v+l1 is satisfied by a unique [v i]eN Cur result
i1s that a solvable linear N is described by a scattering operator
§ and conversely. If the parameters r, £, ¢, g, T are constant,
the networks of Example 1 are all solvable except for the nullator,
.the norator, and the r = -1 resistor.




4. PASSIVITY - PASSIVE OPERATORS

"A hollow region, and all in accordance
The forest burst into flower to confuse me" [H1, 4th]

In this section, we introduce passivity, the main constraint
to be placed upon scattering operators. Passivity conditions in
terms of 8 are derived (Thm. 1), losslessness defined, amd the dis-
tributional kernel representation briefly msntioned.

To be sure, most of the electronics industry 1s devoted to
active networks [K6][N6]; however, all such networks can be con-
sldered through the loading of passive networks in negative resis-
tors. Hence the study of passive networks is most fundamental
mathematically, and, as it turns out, qulte challenging too.

We first introduce some more notation by noting that, for
each teRl, j;(H) is 2n inner product space when supplied vwith the
scalar product

t
K,y = <§(T):y(7)> dr 3 X, V€5 (H) (63)
Pt A Yo - H R

From this, we can complete 3+(H) to Hilbert spaces .1'.2(H)t [H4, p.17],
‘one for each t, of square integrable H-valued functions associated
with the scalar product <:,*>.. A norm Il I, is then defined for
each t by

Izl = <oy 5 xesy(H), (6b)

We note that 54(H)C£2(H)t for teRl, but not for t = o where we will
write £2(H) for LQ(H)Q. Flnally, we will need the norm of a linear
bounded transformation T[-] of any of these Hilbert spaces into
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itself for which we write, in the standard manner [H4, p.31],

Il = sup  [ITLxI, | (6c)
"}'”t=l

Passivity 1s best conceived of through the input energy E defined

at time t for [v,1]eN by

t

B(t) = [ P(nar = <p,1o0 = IHE - 170G (7)
where Eqs. (4a,b) have been used in Eq. (2). The network is then
called passive if the input energy 1s never negative, that is
E(t)z 0, vteR' and v[y,1JeN. Note that E(t) is well defined for
ju(H) functions, as well as, in the passive case, for any'x}exe(H)t,
showing why Hilbert spaces are important in network theory. We also
comment that all networks of Example 1, except the norator, are
passive 1f r, 4, ¢ are nondecreasing nonnegative functions of time.
A network which 1s not passive 1s termed active.

A passive network, and its assocliated 8, is causal in the
sense that xi(t) = Q for t<t_ implies Xf(t) = 0 for t<t_ (since
OsE(t) = -”X?Hi for t<to). Physically a causal network is one for
which responses do not occur before excitations. Likewise, a
passive solvable network is completely solvable in the sense that

if, for an incident sequence, lim g} = 0 then, for the resulting

P J-M:n

reflected sequence, lim vy = 9‘(this 1s seen by noting that the
' 1

J
joe i
limit e = 0 = 2y~ yields, by solvability, a unique x? which, by

passivity, is the 1imit‘g? = 0). Consequently, for each teRlU[m]
8 defines 2 continuous operator on £2(H)t, that is, 1lim S[xj) =
Stlim_xj] in which case the scattering operator 8§ for a passive
network can be extended from 3+(H) to the (complete) Hilbert
spaces £2(H)t; vwe will assume from now on that this extension is
made. From E(t)20 we also see that ||l <l while under the solva-
bility assumption we can show that [3]| <1 implies [ell <1 for all
teRl [Al, p-14]. We can summarize our results.
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Theorem 1. A linear solvable passive network N possesses a linear
scattering operator 3 which satisfies
a) S:ﬂ+(H)*ﬁ%(H)
b) 8:& (H) 45 (H)t continuously vteRIU{w]
c) HSH =<1
It is convenient to call a linear s satisfying Thm. 1 passive and
we see, by tracing back through the reasoning, that any passive §
defines a linear solvable passive network.
Let 8% denote the adjoint of 8 on ,(H), that 1s <,8%[y)>_

= <g[§]{¥>& for all_g,.ze£2(H), and let a Hermitian, Q = Q2, opera-
tor be called nonnegative, Q=0, if <x, Qx>_2 O for all 5€32(H)(or

sometimes, as for differential operators, for all X on a dense set,
as £ (H)nj (H)\ Then from

E(w) = <v7,v> - <v,878[v > = fx},(é-sas)[xfj>bao (8)
we see that a passive 8§ has J—83320. If a scattering operator is
an isometry (R2, p.280], that is if gds - J, then a passive 8 and
its corresponding network are called lossless. Physically, a loss-
less network excited as an augmented network with eELE(H) returns
all 1ts energy to the augmenting resistors at t = =. We note for
future reference that if $ is unitary, that is if 8%s = 832 = g,
then it 1s lossless if passive.

Although we shall not emphasize it here, 1t is often con-
venient to represent a passive scattering operator 8 by its distri-
butional kernelé, indeed it 1s through such kernels that many
syntheses have been achieved. Consequently, for completeness, we
merely outline some of the main ideas in material which can be
otherwise skipped by readers unfamiliar with the theory of (Schwartz)
distributions [S8]. For this, we only consider n-ports, that is
H = R", though modifications are available for general H [27].

To obtain the distributional kernel representation, we note,
from the above, that a passive n- port 8 defines a linear continuous
mapping of the space B(R"), of 5 (Rn) functions of compact support,
into 9! (Rn), the space of n- vectors of distributions [recall that
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ﬁ'(R )}, the space of distributions, 1s the topological dual of
ﬁ(R ); that is the distributions are linear continuous functionals
on ﬁ(R }J. It is known [S7J[S89, p.143] that any such linear con-

tinuous mapping can be represented by an nxn matrix §= §_(t,-r) to
give

Y(t) = JPGS t, 1)y (x)ar (9)

Rigorously the distributional kerne].éi:is @ matrix of distributions
in two variables and the integral represents a scalar product taken
on topologically dual spaces, this scalar product colnciding with

normal integration wihen the latter can be performed. The conditions

of Thm. 1 can be rephrased in terms of‘é)[Al], for example HSH <1
becomes

(t-1)1, <[ S (L0I (1, m)ar= 0 | (10)

(nonnegative in the sense defined above on £2(Rn)nﬁ (Rn)) where
6(+) is the impulse distribution (i e., derlivative 6f the unit step
function u(-)) and 1 1s the nxn identity matrix; causality becomes
é(t, 1) = Q for t<r [Al p.12].

As an example, direct calculations show that for the capaci-

tor
t

f 1 dx
S(t,1) = -6(t-7) + 3—(2?)- e V7 g u(t-71)




5. INTERCONNECTIONS - CASCADE LOADING

"But first you have to calm down the wind,
The walking wind, the dense tree-growing wind!" [H1l, 5th]

Basic to the synthesis of scattering operators is the
cascade-load transformation which we now define giving some ex-
amples of its use.

One of the interests of engineering is to build new constructs
from basic buillding blocks. For thils, the cascade-load connection
of Fig. 3a) is of fundamental importance since any connection can be
reduced to it. For example, Fig. 3b) shows how the parallel connec-
tion can so be interpreted.

For the cascade-load connectlon, we assume as given the
scattering operators Sb of the load network Nz and Sc of the
coupling Nc’ with the latter partitioned as the ponrts

8§ = |8 s

c 11 712

851 820

. We say that Nz loads Nc, and rigorously define the cascade-load
by placing the constraints Vo= ¥, andﬂ;2 = 1$£ on the defining

equations
¥ = 311L11] + glEEX%] - (11a)
¥p = 321E311 + 8,,03) ©(111)
vp = 8,[¥;) | (11c)
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Thus, since xi =.X£ and v

tor for N is

i = Xé in Eqs. (11), the scattering opera-

§ =8 -+

11 J -

-1
8108,(9 - 8,58,) 78, (12)
In Eq. (12}, we have simply indicated composition of two operators
by writing them in Jjuxtaposition. Too, we comment that even when
the indicated inverse does not exist a similar expression can often
be used [A2][H9], this requiring, however, detailed arguments con-

cerning ranges and null-spaces of the operators.

Example 2. We show how cascade-loading can be applied to obtain
the composition and real unitary transformation opera-

tions.

: _ | —

a) Let §,=1]0 0 :J » 8y = 8;.
J 0olo
0 J ?o’

This 8, satisfies Thm. 1 with {8 [l = 1 and hence de-

fines a passive network {which is lossless), called the

3n

circulator. The circulator for H = can be ob-

talned further as a cascade-load of n gyrators

having g = -1 with these acting as a load on wires
[N4, pp. 54,150). Too, wires, which are direct
connections, are a special case of the transformer,
all turns ratios being +1.

b) Let, as from a), 8, = [O 81] ;) 8, = 8,.
$ 0O
Then § = 8.8,.
¢) Alternatively, let s, = |9 lQ.LEL » 8, =8, +38,
10 0
0 IJ 0

"where + denotes the direct sum. Then & = 8
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d) Let the coupling network be an ideal transformer
wlth an orthogonal turns-ratioc matrix. Then

8, = [0 J] where J is the operator representation
70

of T in £,(H) and 7% its adjoint. We obtain

S=JS£Ja.

It is true that if Sz and sc are passive then 8 obtained by
cascade-loading is passive (since the total energy is the sum of
the energles into the coupling and load subnetﬁorks). However, a
similar result only holds in special cases for the lossless property
(since the coupling network, though lossless, may trap energy in the
load [Al, p.31]); the cascade load of finite, time-invariant, loss-
less networks 1is again lossless [A2].



6. FINITE NETWORKS - DIFFERENTIAL FIELDS

"Make me this poem, make it warm enough for winter
and I willl inhabit this line for 2 long long time" [H1, T7th)

Next we turn to a more algebraic approach, that based upon
differential field theory [K#]{R3], the results being primarily
developed for finite networks. First, we introduce the differential
operator from which a scattering matrix representation, and passiv-
1ty conditions upon it, are obtained. The latter part of the section
outlines details and results, particularly factorizations, using
differential field theory, as needed for the folloviing section on
synthesis (where Examples 3 and 4 illustrate varlous calculations).

By a finite network we shall mean any network conceived as
an interconnection of a finite number of those of Example 1. Prac-
tically the vast majority of constructed linear networks are [inite
and it 1s from them that the impetus for a theory of networks has
stemmed. It is to be noted that for finite networks the dynamies
can be considered to enter only through the derivative in which case
we are led to introduce the derivative operator

p = %{;l (13)
In terms of p, we will consider rational descriptions of networks.
Consider as given a differential field F, that is a field
in which a (derivative) mapping into itself is defined taking acF
into a'eF satisfying (ab)' = a'b + ab', (b'l)' = -b'/be vihere also
beF; a' is called the derivative of a. We shall assume F to be
formally real, that is -1 ¢ ai with a ¢F, and in%erpret the ele-
ments of F as functions of time, examples being R™ for which all
elements are constants, a' = 0, and the set of rational functions
in £ with real coefficients. With F on hand we set up polynomials

16
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in p with coefficients in F, called differential polynomlals,

P(p,t) = ak(t)pk+...+ al(t)p + ao(t) 5 @4€F (14a)

for which, in order to perform polynomial multiplication, we take
our operator p to act algebraically over F according to the rule

pa = ap + a' a,a'eF (14v)

We call k the degree, writing k = 8{P], and introduce the adjoint
of P of Eq. (14a) as

k
P?(p,t) = (-1)}¥p 8y +e.ot peae - pa; + a (14c)

At thils point, we can specify a domain upon vwhich the differential
polynomials can operate, initially this being chosen as F. Thus
we introduce a multiplication ¢ such that P(p,t)eacF for aeF, this
being naturally defined through pea = a'. Next, by proper choices
of F, as for F = Rl, ve extend the domain of definition for . and
consider matrices of differential polynomials such that they map
5, (R™) into B (R®). 1Indeed most finite networks can be described
by [ca]

A(p,t)ey = B(p,t)e1 (15)

where A and B are matrices of differential polynomials.

On using Eq. (14b) in defining multiplication, the set P of
differential polynomials over F forms a ring which in fact satisfies
conditions allowing it to be imbedded in its skew- field, 2, of quo-
tients [W1, p.1373(that is, P has no divisors of zero and for any

lA PP there exist Pl’ P2, Pl’ Peen for which F P = P2P2 and

PPy =P P2) In other words, .2 is the differential quotient ring
of rational differential operators. With division now available
we can, as at Eq. (4c), form the scattering (matrix) operator s(p,t)

with

8 = (B+8) 1(3-a) (16)
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‘Besides having the advantage of yielding a concrete representation
for 8§ the composition product is here seen to correspond to simple
matrix multiplication. The material of all of the previous sections
carries through and, for example, we have (with ln the nxn identity
matrix, since H = R" now)

- - - -1
2=847B= 2+ 9@, -9 y=3t- @, @, +9 (7
s=1 -2r, =@ +yQ -y =(+1)Yz-1) (17b)
S o 2a =n 2 ~n X ~ “n ~ &n

= 8.2 + 8.,.8,(1 - S..8 )"15 (17¢c)
~11 ~12=2%~m ~22=4 ~21

Since s operates on £2(Rn), the main passivity constraint,
I8lle< 1, takes the form of 1 - s®s = O where the adjoint s? is
formed by transposing s and taking the adjoint of each entry, using
Eq. (l4c) on the differential polynomials. Although this method of
forming the adjoint works on 12(Rn) it is worth pointing out that it
doe§ not generally work on £2(Rn)t. In any event, the resistivity
matrix ;n —‘§§§ is a nonnegative Hermitian operatoq on £2(Rn) vihose
rank, as we shall see in section 7, 1s related to the minimum num-

ber of resistors in N. Theorem 1 can now be reformulated.

Theorem 2: If g(p,t) describes a linear passive finite N then
necessarily
. n n
a) s : .B+(R )—».&+(R )

b} s : £2(Rn)4£2(Rn) causally
¢) 1, -s5'320

Conversely, given an nxn matrix s of rational differential operators
it defines a linear passive N if the conditions a), b) and ¢) of
Theorem 2 are satisfied [§ for Thm. 1 appears continuous by obtaining
the distributional kernel @ (t,r) = s(6'(t-r),7) where &' = dé(t)/dt

is the derivative of the lmpulse; N is solvable by the existence of
g]. However, finiteness 1s most conveniently obtained through a
synthesis.

In order to obtain the factorizations necessary for synthesis,
and hence as background preparation for synthesis, we present some
more detailed results on differential quotient rings. This, however,
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is 3 digression from the main chain of thought and may, perhaps, be
skipped on an initial reading. As preliminary to the factorizations
we first turn to Galois type extensions. For this, we recall that

P(p,t)eu(t) = 0 , pep (18)

represents a differential equation in which case, under suitable
conditions, thers exists (K4, p.21] a Picard-Vessiot extension field
§ of F such that a) Peu = 0 has solutions U €d of which there are
6[P] linearly independent (over constants) u; and b) F and ¥ have
the same field of constants. Suitable conditions are that 1) the
base field F has characteristic zero, that is there are an infinite
number of distinet multiples of unity (as for Rl) and 2) the field
of constants is algebraically closed vhen j = /T is adjoined, that
is every polynomial with constant coefficients in F has a root

¢ =a+ Jb with .a,beF and a' = b' = 0. These suitable conditions
are consistent with any physical theory, hence we assume from now
on that F has been replaced by &, for which we write F, whenever
needed.

Given ueF direct calculation shows that E%’u = %(p - E')vu =0
so that, following the ideas of Frobenius [F?,p.IQO],'if u also
satisfies Peu = 0 then p% is a right factor of P, P being, as we
shall see, a ring with irreducible factor decomposition (R1, p.310]
{noge that if (p-a)eu = O then u' - ou = 0 or u(t) = u(tl) exp
(-ft a(A)dx)}. Cancelling this factor ang repeating gives a factori-
zatiin of P into irreducible factors of degree one (with formally
real coefficients). If P is self-adjoint then %(-p) can be cancelled

from the left (assuming otherwise gives a contradiction) and vie
obtain (as an extension of the factorization of Frobenius (F2,p.193))

- = .
P=r" < (-p)'np* + (-p) Yo o0t e s (-P)byp + b, k=22 (192)

[cl(-p)ce(-p)~--cz(-p)Jcofpcﬁp---pcgpclJ (19p)

(-p-al)...(—p—ag)bk(p-az)...(p—al) = Pika1 (190)
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‘Now, if this self-adjoint P is nonnegative, <X,Px>_ = <P1x,kalx>5 =
<y,bky>m = O shows that bk 2 0 in which case it can be factored into

its Hermitian nonnegative square-root giving the result:

a- a
If P=P 20, PeP, then P = POP0 s POEP

where PO = JEEPl'

At this point, we are in a position to give a (matrix) Gauss
factorization, this resting upon the scalar factorization Just ob-
tained. For this, consider as given a self-adjoint nonnegative
matrix‘g(p,t) of differential polynomials. On partitioning g_= Qa

g

with ql1 a8 scalar differential polynomial, we write by inspection

8(p,t) = a3y 95| = fq; @ ay 9 937 p |(20e
' a a
Q2 % STV S O na
with ’

-1

— - a :
82 = 930 - B35 Q1] 930 2 0 ) (200

where Qy4q Z 0 is assumed, perhaps by applying permutations of rowvs
and columns. Since 4 = qil > 0 we can apply our factorization of
Eq. (19) to get 9, = qiql. Too, since we are working in the quo-
tient ring .2, and in order to recover a polynomizal matrix from 92’
we can find a differential polynomial Ql and a differential poly-
nomial matrix g12 such that qiaEJQ = EﬁeQil (where the superscript
-a denotes the adjoint's inverse). From Eq. (20b) we have

_ A~8rn8 a -1
3o = Q193209 - 9801097 2 0 k)
Continuing the iteration, after interchanging factors with Q;" and

absorbing any permutations in the outer matrices finally gives a
Gauss factorization

_ ars -a -1 _ .a

drm  am
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where ;p,n ls the p x n zero matrix with its first p columns re-
placed by ;p; p is the rank of Q, and M and L are polynomial with L
diagonal. We comment that because of the nonuniqueness of irredu-
cible factors in P various propertiecs for L are possible. For
example, 1f F = Rl,.é_can consist of Hurwitz polynomials with real
constant coefficients [N4, p.168).

We have used the fact that P has irreducible factor decompo-
sition, this following [R1, p.325] from P being a Euclidean ring.
That is, a Zuclidean algorithm exists (02, p.483] based upon either
left or right division. Specifically given Pl’ PeeP with degrees
satisfying 6[P ] = a[P ] > 0 there exist F s P3€P such that
P1 = P1P2 + P3 and havina 6[P ] = a[P ] - e[P ] and 6[P ] = 6[P2J -1
from which we obtain the sequence P2 2 3+ cany Pk-2 =

k-2 -1 Pk’ Py = Pk—lPk for some k. Using similar operations,
elementary matrices L Q (having entries, and inverses with entries,
in P) can be found such that for any (square) matrix A with entries
in £ a Smith form holds [W1, p. 139]

E(p,t)A(p,t)Q(p,t) = diag fay(p,t),. .. a.(p, t),0] (22)

Where 8, 1s a left and right factor of 3y and 5[a ] < 5[a ] for
1 < J; the rank r is independent of P and Q. The result extends
easily to nonsquare A while another extension to rational matrices
gives a Smith-McMlllan form [K1][N4, P.178] as follows. We remove
a left denominator polynomial bﬂ to write a given rational matrix

Bas B = %-&_with‘g.a differential polynomial matrix. Expanding A

£
in a Smith form as above we next find a differential polynomial b

and (elementary)!gz such that b§£ =-§b£ to give the Smith-McMillan
form

1 =1 - [ 1 7
fz(bzﬂ)-@ g diaglay, ..., a,,0] = diag 5y 2 2“2’°"’$rar’9~J (23a)
where, by virtue of possible cancellations, oy divides oy and

ai divides Bi 1" Similar results hold if a right denominator is
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extracted. The Smith-McMillan form allows us to define the degree,

6§(+], of a rational matrix B = %-A_as
‘ L
S |
6[B] = = olza,] (231)
i=1 i

where 6[% @, } = max [a[ai],a[ai]] is the largest of the numerator
L *

or denominator degrees after all possible cancellations have bez=n
made. With appropriate interpretations the customary properties of
the degree hold [N4, p.176], for example 8[B] = O if and only if B
is independent of p.



7. SYNTHESIS - OPERATOR DECOMPOSITIONS

"Here everything is as usual

Like a river into the sza,

I bring full darkness to night;

Everlasting.

You may walk by, but the night does not halt" [H1l, 6th]

This section culminates the previous ones by ocutlining sev-
eral synthesis methods. The first embeds a passive scattering
operator in a unitary operator to physically yield a lossless
coupling having a resistive load, while the second uses the charac-
teristic operator function for a lossless coupling having a loss-
less (capacitive) load. Then the differential field concepts are
applied toward synthesis of finite networks through rational opera-
tor decompositions. Unfortunately most syntheses require the
development of considerable background material, so much of what
we present will merely outline what is involved.

In engineering terms, a synthesis can be considered as the
formation of a network from a given scattering operator through the
interconnsction of (supposedly simpler) subnetvorks. For a given
S, there are consequently varlous degrees of synthesis depending upon
how simple thes subnetworks are required to be. Of most practical
interest is the synthesis of rational s(p,t), for which we %ill m2an
by a complete synthesis that all subnetworks are either resistors,

capacltors, inductors, gyrators or transformers.
Mathematically, any synthesis can be concelved of as the
generation from & of appropriate coupling, Ses and load, qz,
scattering operators for the cascade-load connection, Eq. (12).
For the first synthesis to be considered, vie will place all
loss in the load in the form of unit resistors, as illustrated in
Fig. 4a); thus 2, = dor 8, = O[=(2, + 3)"1(2, - 9)1 giving via

23
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Eq. (12), S = 511. In this case, a lossless Sc 1s desired, that is
szgc = J. One possibility 1s the unitary transformation [S2]
s, = |3 (J-gga)l/e (24)
(J_gag)l/’?_’ _sa

where passivity guarantees the existence of the square roots since
9 - 895 2 0 and with it J ~ $8% 2 0 (since |8%s1_ = [Is|Z = !ss®().
However, the Sc so formed may be noncausal, hence not passive, un-

less further restrictions are placed (for efforts in this latter
direction see [S11, p.56][A1, p.27] for the introduction of an
antecedal adjoint and [L63}[(L9] for the use of certain projection
operators). Noncausality of Sc can of course stem from that of

32 as is seen, for example, from the kernel representation for the
capacitor as given at the end of Section 4 for which

§(e,m) = -8t - ) + By e -[_(_Tdh u(7-t)

which 1is nonzefo for v+ > t, hence non-causal; see also {L7] and
[S2, p.923] for other examples. Even vwhen this Rc is-passive, 1t
is not generally attractive in an engineering sense since 2) it
usually yields nonfinite subnetuworks when finite ones can be ob-
tained and b} more resistors than necessary may be required for
the synthesis of 8.

For a second, and similarly mathematical, synthesis ue
summarize the use of the characteristic operator function {Fl1]
[S171[D87] as outlined by Helton [H6]. In essence, this method
consists of extracting capacitors (or inductors if preferred)
into tha load. In fact, if inductors or capacitors are present,
we note that 8 is a function of our operator p, 8 = 8(p). First,
S{p), a passive operator on £2(H), is written as a direct sum of
a unitary p-independent operator Su and a purely contractive
operator 8 (p), (that is, 8, satisfles ”Sk(p)ﬂas 1 with
"Sk(l)”m< 1), through the use of a unitary p-independent opera-
tor W [H67[S18, Prop.V{2.1)]
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s, + 8,.(p) W (25a)

g(p) = v

Next Sk i1s further decomposed by finding an appropriate Hilbert
space H and a p- indmpendent contraction operator T on H such
that [H63[S17, pp.38,51)

5,(p) = [-UR,TV] + [U(4-TT )1/23["*13 1 (-2 (2sm)

where U and V are onto isometric p-independent maps of (J9-TT )1/2
into £ (H) and H into (J-T T)l/EH respectively P, is the orthogonal
proJection of H onto (J-TT% )l/eg. Here e( ) = (p) is called the
characteristic operator function, in (p- 1)/(p+l), for T. The de-
composition of Eg. (25b) is well-determined for a purely contraztive
operator [S17, pp.51-531, though the construction of T 1is not es-
pecially simple. However, gilven the characteristic operator function
decomposition of Eq. (25b), if we form the p-independent unitary map,
on L,(H) + H,

a,\l/2
Sop = | “UP,TV U(s-71%) / (25c)
(9-121) /2y 7
o 8 g _ 1-p
than ak(p) results by loading in 8, = i d, that is (a2 Hilbert

port of) unit capacitors. The final structure is that of Fig. 4b)
where it is seen that only lossless subnetworks are used. Conse-
quently, besides having the shortcomings of the first synthesis an
infinite number of capacitors i1s neceded to simulate a resistor.
As a further investigation shows [H6), this method allows the
synthesis of any bounded-real H-valued matrix function of p where
P is treated as a complex variable; by definition (and with *
denoting the complex conjugate) 8(p) is bounded-real if

1) s8(p) is analytic in Re p > O

2) 8*%(p) = s(p*) in Re p > O

3) <% (3 - & (p)3(p))x >, = 0 in Re p > O vxeH

Classical syntheses of rational bounded-real scattering matrices
having real constant coefficients are well-documented [01 (N4 ][B2]
and extensive.
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We comment that the two syntheses so far presented can be
tled together by noting that 8, of Eq. (24) can be considered as
resulting from the characteristic operator function s(A) for
T= -8, using U =_V = P, = 4, through

o(r) = s + (3_333)1/2(%J _g3) "1 (5-5%5)2/2

and choosing A = O when loading S, in Sz(k) = Ad. Since § = $(p),
the iIntroduction of the variable )\ also opens the possibility of
considering various parameters for other purposes, such as gain
for sensitivity analyses [N6, p.202].

As stated above, the two syntheses outlined to this point,
though mathematically elegant, have engineering shortcomings.
Consequently, for a synthesis which is more realistic in engineering
terms, we turn to that of a given rational scattering matrix opera-
tor s{p,t). -Assuming S5 1s passive, for which both i, - Eéﬁ and
&n - §§a are nonnegative, we form a unitary 3e to extract a re-
sistlve load following a philosophy similar to that of the first
synthesis. Lgtting Po denote the number of resistors used, the

unitary constraint is

a —
c ;n+pc i B = |2 B (26a)

221 .%2? ]Pc
n p,
which upon expansion yields (as the (1,1), (1,1) and (2,1) terms)

a_ _ _a - a a _ a
dn B2 S518p) 5 A 7 387 = 5158715, 850875 = 8,8 (26D)

Since the rank of a product is no bigger than the number of rous
in a factor, the first equality of Eq. (26b) shows that

P, = p = rank (ln ~ §§§) (26¢c)

which fixes a lowier bound, which vwe shall obtain, on the number of
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resistors needed to synthesize s (vie observe that the ranks of
2 are equal since, when the impedance z exists,

ln - sas and l - S8
by Eq. (17), 1_ - §§a = 2(z + 1 ) l(z + z28)(2? + 1 ) "L and

1, —§é§ = 2(2° + ;n) (z + 2 )(z +1 ) ; vhen 2z dons not exist } -s
is singular and there exists vectors x such that x = sx in which

——

case x = gag_[818, p.8] giving (;n - §?§)§ = (ln 5§§al§ = 0O while

on the space complementary to such x's an impedance exists; in the
time-independent case the result follows also from §§a and.§a§
having equal eigenvalues [M1l, p.23]). If we succeed in finding

551870 @nd s, to satisfy Eqs. (26b) then s, is unitary, as is

easlly checked. To find 8oy @nd 8,, we factor 1 - gag and
L, - §§? by the Gauss factorization developed in the last section

(any other factorization which insures rational factors could be
used%. )Introducing a right pseudo-inverse sléa ()

a a) _ a_(-a
815895 | = ;p«’ the third term of Eq.(26b) gives Spp = 8518 895
Explicitly, vwe first write all quantities as differential polynomizls

through

a
for 512, that is

5=k = g5k, (275)

where 8:8p1 KiJ’ KEiJGP with Kij and Keij entries in the matrices

K and K,. Using Eq. (21) we have
a a -1 _ _-aya -a. -1 S
1, - 5% =e7e%1, - XKk g ML LL 1 Mg (27b)
a _ a _ SIS -1, -a a_-a
L, - 88" = gy lepealy - KoK0)ey" = g Mol LOTLA%1 ) MDeS? (27c)
or finally, with s{-1) . =L,1 M “1z  and using E (26b)
e 212 Hozp, e 82 g =q.
_ A s -1 -
Rk Bp Maly o (274)
-1 -1 -1 -1..8a a
.:.I.-"- .-l—p s nmg -E l psN Mg K2M2 .I..p n n;‘le

Consequently, a unitary coupling scattering matrix operator §c(p,t)
has been constructed whlch is rational with coefficients in a
formally real field (when S is passive). There is actually consi-
derable freedom in choosing the diagonal polynomizl matrices L and
~&2; it appears that these can be chosen such that for any fixed
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‘time s maps £2(Rn)t into £2(Rn)t with nonnegative energy E(t) =2 0
[N73. However, only when F = R, that is when the base field of
the differential algebra is the reals, is it yet proven that a
passlve g, can be obtained by this procedure [N4, p.288]. The case
F = R! 1s that of time-invariant networks, s(p,t) = S(p), for which
complete synthesis can be given for (rational) passive 3(p), these
scattering operators being of necessity bounded-real [v1].

The process of formingﬂgc is conveniently illustrated by

example.

Example 3. Let it be desired to find a 1ossless_§c for the passive

- I 5 - =
s(p,t) = A0 pra(t) 2a(t)ud ; wu' =20, dua = 1 , qeF
-1 - 1 7
= dn - Cogpgrgr WI
a
where H_ié an n-vector, constant and normalized as shown, and
1 _ 1

the second expression results from the first since bra a = 8p+b

ﬁields possible a and b from a{p+b) = (p+a)a which is
ap + ab = ap + a' + qa implying a = @, b = (a' + aa)/a.
For Eq. (27a), we have g = p + a + a'/a, B, = P +a, K
= (ptot+a'/a)l, - 2aud, K = (p + a)l - 2oud. On direct
multiplication we have

_ a_ 1 ' 1 ~ B a
«n "5 T pg et pmw (=810875)
a_ _ 1 ] 1 ~ _.a
=n ~2E° -p+ata’ = pratar 22 (_§21§21)
o a

For the Gauss factorization at Eq. (27), we have the rank gi= 1,
= [1! 0 with 1, M = 2a'd. Noting that
2

A

hence ;p,n = ll,n

a' 2 0 is a condition for factorization and hence passivity we

have
- 1t ' 1 __ 1 /337y
*12 = pra (2a'y) = ~ p+a
= 1 "y 1 = = 5 1
221 J2ar (203 p+a+a’ a ~ pra @
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a o« (-a) a {-a) _
Then 810 = uJ? ' p+a and 312 for 512 12 = 1 is

méé a) _ (-p+a) Jﬁﬁfﬂi for which ve have

_ a (-2) _ _J/2a" ~ 1 _ 1
Bpop = 8018 875 7. = = — g p+ai[ln 2a—5;5uu]( p+a)f2~1'_

- J2aT"

_ al a

1
/2ar a p+a (pra- 5-) =

L2871 o(p-a)+2a?]

a pic

Finally, using these entries we have the (n+1)x(n+l) unitary
matrix

We comment that the ze mapping constraint, b) of Thm. 1, seems
to also require a > O for passivity.

There are several ways to obtain a complete synthesis of a
passive unitaryﬁi(p,t). One method 1s to convert to an admittance,
while another is to factor g. Both of these methods we only outline
to catch the main features to give a general feeling, since the
detalls presently involve extensive calculations using distribu-
tions [S1173[A3].

For the first method, one forms y(p,t) (1 -s) 1(1 +s)
after perhaps an orthogonal transformation, as at Exampln 2d)
used to guarantee }n - 8 nonsingular [N4,p.131]. The unitary con-
dition of s gives Y +'ya = Qn which, in conjunction with the
passivity constraint, guarantees the existence of the expansion
[s11, p.53]

vy O -0

F(pst) = T{WpR(8) + ¥(t) + 2(0ITE(E) ; y - (28)

Synthesis readily occurs from Eq. (28) which yields a parallel
connection of three subnetworks: a transformer of turns ratio
matrix T cascade-loaded in unit capacitors, gyrators fortxo,
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and a transformer of turns ratio Io cascade-loaded in unit induc-
tors [for this note that a transformer, by Example 1d), having

vo = Tv;, 14,=-Ti,, cascade-loaded in a network with

Ao = 1, = ¥,(p.t) ey slves 1) = Ty, Tovy or y(p,t) = T(t)y,(p,t)E(t) 1.
Figure 5 shows the end result (when 1, -5 1s nonsingular; otheruise

a transformer is inserted on the left). When s 1s independent of t,
the matrices on the right of Eq. (28) will still normally be time
dependent. However, terms can either be combined [S12] or a direct
partial-fraction expansion made [N4, p.202] to insure that no time

dependent subnetworks are used. Again, an example is in order.

Example 4. Consider

$=1 - —=ful=1 - Pt

1 5 -
“n  pta =~ =n p+a+ﬂ;6~9- U

3=t

us=1

e

This 1s lossless if O < qeF and 2a = B - g—, as calculation

a a
T - 85 = -88=0

—

shows. We then form
- -1

y=Q, -1, +s)

= (Lauml 1B

= (E;aauu)e(;n + ud)

Here the inverse is found by solving for x in the equation

(ln + E)[%(}n + XEE)] = }n' This equation for x also shows that
1 8__1 _ _ 1 1 : .

pta 2 p+a—5/2 = - bra 3/2 + p+a—B/2 5/2 which, when inserted in

the expression for y, gilves, since 2a ~ B = _5)5,

1 Bg-_1__8
p+a—ﬁ/2 2 et p-5y25 2

w

X= ug

= UB7z ) § /B7z 0)

which is Eq. (28) [the last equality results by solving for x in
1
xEx = ———%———B which is (p-B/28 )x = E—p]. In terms of Fig. 5
P" " P-Blpp /2 2X
the synthesis uses one unit time-invariant inductor and a trans-

former of turns-ratio matrix Eo = Jﬁ/e u.



31
Another method of obtaining a complete synthesis of a

rational unitary passive E(p,t) is to factor s into degree one
factors

8= 28,818, .- 89 5 6la 1=0, 8{s5;1=1, 6[g)=d  (292)
where details show [A3, p.43)]

3, = go(t) is orthogonal and (29b)

,s_»i(p,t)=[;n+ii(t)%?_i(t)]’ltgn-fi(t)%li(t)l, i=1,...,d=8[s] (29¢c)

with the rank one turns ratio {lxn) matrices T, determined as
follows: Find the distributional kernel representation of’§,
this takes the form [S11, p.44]

S(t,7) = a (t)[-8(t-1)1 + 2(t)¥(r)u(t-1)) (30)

where, as before, u(-) 1s the unit step function, &6(-) = u'(.) is
the impulse distribution, and g_and_g_are nxd matrices. The number
of nonzero columns, d, in & is the degree of_E_from which the synthe-
sis philoscphy is to reduce the columns to zero vy removing, for
each s,, one column at a time, each removal coinciding vith a factor
of s with each s, factor coming from a network containing one induc-
tor and a transformer. 1In actual fact, the removal of a column of
% 1is accompanied by a removal of a row of_E'since the lossless
constraints on s guarantee [A3, p.36] that there exists a positive
semidefinite constant matrix C to satisfy Eé'2.= -¥C. Taking of(t)
to be the jth column of & and ¢ the (J,J) entry of C one then

chooses
Ty(8) = [2(e + [ §(r)o(r)an) 17/ 2a(s) (31)

This particular choice of gl, which 1s physically a turns-ratio
matrix, guarantees that the degree decreases, that is,
6L3] = 6[§i§o§] + 1. On extracting 2,3 one then repeats on the
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agoi = (goﬁl)'¥§, to get T,, continuing the process @

1
times. Given the expansion of E .. (29a), ve iteratively apply the

cascade-load result of Example 2¢c) for realizing the products.

remainder, s

The orthogonal scattering matrix,go comes from transformers and
gyrators while each'gi, i=1, ..., d, is synthesized by converting
to'gi = ii %521 and using the synthesis already given at Eq. (28).
As with previous synthesis, time-invariant syntheses exist [D2)
(D3 3.

Finally, we give some active syntheses for which we observe
that if 8 is a bounded linear scattering operator with

1 < |lsll_ < k then %8 has H%SHG < 1. Then 8 results [L4][52] from
the passive
8 = 0 LS (328)
c k

by cascade-loading with (negative) resistors having Sz = kd (which
1+k

is 2, = 7 3). This 8, in turn results from cascade-loading the
circulator of Example 2a) by Sz = % J. A similar result using

23 = -J can be found in [S2] while another method of active syn-
thesis, also due to Levan [L3][L5], stems from forming [compare
Eq. (24)]

1/2

s. = |8 ~(882-4) (32b)

which satisfies siJsJ = 8,387 = J with J = 3} (-9) (hence g5
is called the J-lossless extension of 8). By terminating the
coupling netviork defined by SJ in (positive) unit resistors §
results. RJ, which is 1tself active, can be synthesized by using
Eq. (32a), in which S is replaced by 81, though other methods

are presently under investigation.




8. GENERALIZATICNS
"No time, no time to see the green before it burst open."[H1l,1st]

Here we discuss several extensions of the previous ideas
which are of especial interest for future developments.

A. Complex Spaces

Throughout this work, we have assumed real physical elements
since practically these are the only ones available. However,
there is essentially no step we have carried out vhich will not
mathematically work vlth complex quantities. 1In most cases, the
necessary modifications to incorporate complex elements will be
clear; for exémple condition 2) of the bounded-real definition gets
deleted with the corresponding deletion of the word "real® while a
possible definition of energy 1s [Y1][N3]

t ) .
E(t) = Re [ < y(r),1(7) »dr : (33)

B. Complex Normalization

In defining incident and reflected guantities, we have also
made a particular choice by assuming unit resistors in the augmenta-
tion of Fig. 2. A common choice of interest for cascade synthesis
is
=v+21 , 2RY2T Ly g2y - (34)

2Rl/2vi
[ o T T
where Z is a given operator with 2R = Z + Z > 0. Since vand 1
are the primary quantities defining a network and Z is free to be
chosen, Eqs (34) are said to define a scattering operator,
v o= S[V ), normalized with respect to Z,- A physical interpreta-
tion similar to that of Fig. 2 can still be given (N4, p.2867.

33
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The scattering matrix used throughout the previous sections is seen
to be normalized viith respect to the identity, that is Zo = J.

C. State-Space Methods
If the cascade-load formula can be viritten as

8(p) = 813 + 8,,(pd - 5,,) 15, (35a)

wilth the gij independent of p, then we call this a state-space
decomposition, the nomenclature following from the incident vari-
able on the load Sz(p) = % J acting as a state. For rational time-
independent matrices state-space techniques are well-developed
[Y2](N5] while for nonrational matrices a theory based upon distri-
butions has been set up by Kamen [K2]1[K3]. We point out that
simlilar ideas apply if one can write

wlth the 313 p-independent for which the case of %L(p) bounded-real
is of most significance; a particular instance occurs at Eg. (25b).

D. FPactorization Syntheses

In the rational time-independent nxn matrix case factoriza-
tion synthesis, as at Eq. (29a), can occur [B2][D3] through the use
of complex normalizations and degree one factors which take the
form [B2, p.329]

: 2a.u ﬁ*
T b-i
8,0 - 1, - 2k (36)
P+Pi

where the n-vector vy is normalized to g:gi = 1 and Py =ai+jwi,
with ay >0, jJ= /I, are appropriately chosen to decrease the
degree [D3]. Factorization can occur even when the given scatter-
ing operator 1s not lossless, but in that case necessitates a
change of normalization after the removal of a given factor. Con-
sequently, a new type of multiplication is introduced which is
nonassociative, being dependent upon the normalizations used

[D2, p.1247.
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In the case where an nxn time-independent scattering matrix
‘§(p) is not rational (and hence of "infinite" degree), though still
bounded-real on H ='Rn, a factorization synthesis can occur if &nd
only if S(p) is roomy [D4]. By definition such a bounded-real S(p)
is roomy if M = M(wo) spans Rn for some real Wq where M(w)} is the
space of analytic n-vectors A(Jjw) such that 3(-Jjw)A(Jo) is analytic
in w. Physically, M represents the orthogonal complement of the
state-space of g(p). Since factorization of a roomy scattering
matirix Into degree one factors in general requires an Infinite
number of factors, each of which individually appears as in Eq. (36),
the product integral representation of Potapov [P21[G1] becomes of
most interest [G3], as well as the theory of invariant subspaces
[H4] and transfer scattering matrices [D2]. Toward further research
in this area possible factorizatlons of the characteristic operator
function {F1, p.68] should be of interest. '

E. Equivalence Theory
Two syntheses f{or the same &, but using different sc and 8
in the cascade-load, are called equivalent. Equivalent syntheses
are of considerable engineering interest since they allow for
various choices and freedom in physical construction. .
Equivalence theory has been extensively developed for bounded-
real matrices on H = R” in the two cases of 8, = O [01]}[N#, p.31]
and 8, = gi% J [A4][N5, p.71], The latter through state-space
methods. In the former case, it is a question of investigating

unitary Sc of the form

b

s, = [¢1 o }[s s o J[s! o (37a)
AR TR N D A I i T
: 821: 800 © !
o0, U,llg 'o s 0 U
RS A 3300 1 %L

where Uz’ Ur and 833 are arbitrary unitary matrices and an initial
coupling scattering operator is given, constructed from 3, 512,
321 and 822. Of Interest for future research in this direction
are the unitary SC which are unitary dilations [DB, Section 1],

that is Sc for which 32 has 87 in the (1,1) position for any
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positive integer n, the unitary dilation Se being uniquely deter-
mined by $ when S, 1s minimal [D8].

In the second {state-space type) case it is a question of
Investigating p-independent SC of the form

s -[si o6 (s, | 0 gb s 1] 5 o |(37p)
c R 1 12 ®12 ,
' i a ' aa _ab T Las | |TT T
L 1|32 : S22 %22 85 |
(O N I o' 7
b bb be .
| 821 1 0 8y 8y |
} I ce !
. J° 19 o0 S22 | |
for a given (minimal realization) $§ gP  gb = gbb initially
11° 712 T21° ‘22

satisfying § = 8,4 + 12(p+l gg) -1 Sgl, all other indicated

entries 1n Sc being arbitrary.

Tt



9. DISCUSSION

"Perhaps it 1s time
Por some conversatlion?
Why not?

As follows:" [H1, 1st)

In a relatively short space we have given most of the key
ideas within the operator theory of networks, at least as they
apply to engineering designs in scattering operator terms. Con-
sequently, portions of the treatment have been sketchy and some
topies, such as sensitivity, stability, and multivariable synthe-
sis have bezn almost completely omitted. Too, in an effort to be
concise while complete we have subsumed some classical results in
a more general f[ramework, such that, for example, one familiar
with network synthesis as normally taught [V1] will find the re-
sults rather hidden, though present. _

The synthesis technlques given here rely quite heavily
upon the cascade-load decomposition which, because of its gener-
ality, finds other uses besides. For example, it can be advan-
tageously used 1n computer-aided design [B6] as well as to show
that all finite networks can be generated using interconnections
of two basic elements, the capacitor and the 3-port differential
voltage controlled current source [B5]. Too, it may be worth-
vhile commenting that the scattering operator is not Just a
theoreticians' tool; common transistors now come specified in terms
of their scattering parameters.

There is one aspect of particular importance to engineering
design which we have as yet not commented upon. This is the theory
of specification from which given scattering operators are obtainzd
and for which syntheseés are performed. Classically, specifications
have resulted through approximation theories [H1l1] which, however,
only recently have been considered within an operator theory

37
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framevork [D1] and then only in the sense of modelling of exXisting
systems. In order that the theory may become practically useful,
methods of specification of scattering operators are needed so
that meaningful systems will be synthesized.

Finally, we comment that open problems can be found through-
out by a careful study. Among these will be seen a need for the
development of an algebraic theory for nonrational operators in p
through a differential field type treatment. Such operators include
such things as transmission-lines for which engineers have long
proceeded with various forms of calculii. Too, the abstract theory
of differential rields does not seem to have been tied into Hilbert
space techniques bheyond the treatment glven here. Along this line,
the various properties of the Picard-Vessiot extensions seem to
need investigation in particular cases of practical importance.
Concerning Hilbert ports, very little has been done by way of in-
vestigating the behavior of networks vwhere the ports shift around
in time. Similarly the theory of network equlvalence has scarcely
been touched upon beyond that avallable for rational time-
independent operators.

In closing, vwe belleve it could be said that the operator
theory of networks has a hlstory of development stemming from
practical needs which brought it to the mathematical maturity we
have been able to present here. We feel its future is bright and
may well be worth an investment by the mathematical community in
view of recent discussions [W2].

"The sun and the moon
The tree ln the clouds, and man, 1in woman's power...
And it fell silent, the greedy poem." [H1l, 8Bth]
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