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AN Codes for Arbitrarily Large Dista.nces+

P, M. Monteiro*, R. W, Newcomb*, and T. R. N, Rao¥

Abstract:

A systematic method of obtaining an AN code with minimum distance W1th1n

a specified range is presented. It is shown that when A is of the form A =T (2 ) -1)
j=1

a minimum distance d . in the range Zs<d . <Zs+1, for any s<r, can be obtained

min min

by suitably choosing the mj (j=1, 2,...,r). Sufficient conditions for obtaining the min-
imum distance are established and information rates for various choices of m,

(=1, 2,...,r) and s are tabulated. It is seen that for s<1 these codes are non-cyclic.
A significant advantage, however, is that the form of A allows for ease of syndrome
generation by using residue generators modulo ij-l. Error correction properties

are discussed and implementation considered for either direct coding or for conver-

sion to multi-residue codes with check bases of the convenient from 2 J-1.
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"I am tempted to write a poem" Neto (1968)

I. Introduction

In the design of digital computers with internal error correction it is desirable
to have available arithmetic codes which are a) capable of multiple error correction
and b) relatively easily implemented. Here we discuss a systematic method of ob-
taining such AN codes of arbitrarily large distances suitable for implementation
through the use of simple residue generators, perhaps in terms of their multiresidue
equivalents.

Previous studies on AN codes have led to the discovery of certain classes of
multiple error correcting cyclic AN codes, such as codes of Barrows (1966) and
Mandelbaum (1967), and those of Chien and Hong and Preparata (1971). Though exact
expressions for the minimum distance have been obtained for the former class of
codes, Chang and Tsao-Wu (1968), no systematic method is available for the calcula-
tion of minimum distance of the latter class. Besides, there still remains a large
gap between the theory and implementation of large distance codes of these cyclic
kinds. .

One of the main problems in the implementation of AN codes arises because of
the complicated encoding and syndrome generation procedures, Encoding of an AN
code involves multiplying the information integer N by the fixed integer A, whereas
syndrome generation consists of obtaining the residue of a result modulo A (which,
in general, is not easy for arbitrary A). Here we will primarily consider those A
whose factors allow ease of implementation.

A desirable feature of a code is the separability of information and check digits,
so that simple encoding and decoding circuits can be designed. But, in general, AN

codes yield a non-separate form of coding such that there is no way to distinguish be-

tween information and check digits. In contrast, multiresidue codes, first introduced
by Dadayev (1965) and later studied by Rao (1970) and Rao and Garcia (1971) are separate
codes, which can be directly derived from AN codes, and are implemented by means of
a processor working in parallel with an appropriate number of checkers. If the check
bases are of suitable form, the implementation is fairly straightforward. However, the
use of multiresidue codes necessitates the consideration of a new factor, viz., the reli-
ability of individual checkers, and this raises some difficult que_stions, as we shall see

later.



The codes presented in this paper can be shown to have arbitrarily large
distances for suitable choices of the factors of A, and, in addition, have the ad-
vantage that they have relatively straightforward procedures for encoding and syn-
drome generation.

The next section will be devoted to a brief review and outline of the background
material necessary for the discussion to follow. Section III gives a discussion of the

-
necessary conditions for an AN code with A of the form jfrl (2 J--1) to have a minimum

distance dmin> 2° for some s<r. Section IV investigates the sufficiency of the above
necessary conditions with no additional constraint on the various parameters. Section
V contains the main contribution of this paper, which is a theorem establishing suffic-
ient conditions for an AN code with A =_£rl{2mj-1) to have a distance greater than 2° for
any s<r; the resulting codes are noncycjlic except when s=1. Section VI discusses the
relationship of such codes to repetition codes and their information rates. The error
correction properties of the constructed codes are investigated in Section VII while

finally Section VIII presents a discussion on implementation of these codes.

"A poem that would not be letters

But blood alive

In the pulsating arteries of the mathematical universe.! Neto (1968)
II. Preliminaries

We take as our starting point material covered in Peterson & Weldon (1972),

[ pp. 451-465] and/or Massey and Garcia (1971), these treatments primarily being for
cyclic codes. However, the codes discussed here are generally noncyclic for which
our review in this section contains appropriate modifications.

Let Z, Z+ and Z represent the ring of integers, the positive integers, and
the nonpositive integers, respectively, Then given an integer N it has a unique re-
presentation in radix-2 form

i a=0,lfor N¢ Z+
N=g£ 22 withd i (2.1)
=l a,;=0,-1for N¢ Z
If one allows a, of both signs simultaneously, this representation becormes nonunique

since

PPN L PN (2. 2)



But calculation errors can readily introduce coefficients of both signs, so that of

most use in arithmetic coding is the unique representation in nonadjacent form (NAF),
Reitweisner (1960)

=F p ot -
o) i_obiz + bbiy

0 with bi = 0,4+ 1 for N¢e Z (2. 3}

The NAF can be found by repeated application of (2. 2) or from the radix-2 form of

3N and N using N = (3N-N)/2, Tsao-Wu and Chang (1969). Hence, given an integer

Ne Z we can now define the weight W(N) as the number of nonzero terms, bi’ in the

NAF of N. Note that W(N) = W({-N), W(Nl-l- Nz) < W(N1)+W(N2) and W(N) = 0 implies

N =0. Consequently, W(NI-NZ), known as the arithmetic distance, serves to define

a metric, on Z making it into a metric space, Kelley, Namioka, et al (1963) [ p. 29].
Most physical implementations work, however, over a finite ring ZM of in-

tegers modulo a positive integer M . In such cases there are two possible interpre-

tations of Ne Z_, when considered as a number N¢ Z ; these are N itself and the

M
negative of the complement of N, the complement N of N being defined by

-N & N = {M-N)modM . (2. 4)

where NE€ Z+U {0 }, if NeZ . Since it may occur that W(N)#W{-ﬁ):W(T\I_) and
since we often wish to consider N and -N equivalently for error correction we

are led to define the modular arithmetic weight, Rao and Garcia (1971) [ p. 89] ,

AW(N) = min { W(N), W(N) } N‘:ZM (2.5)

Note that AW(-) depends upon M, since the complement does, though we omit this

from the notation. Using AW{.} we next define the modular arithmetic distance

DN, N,) = AWN,-N,) , N,N,eZ (2. 6)

' 2""™M
The modular arithmetic distance is useful in characterizing error correction pro-
perties, but only in special cases is it known to define a metric on 2 Massey and

Garcia (1971) [ p. 288] .

M’

-3-



The discussion in the remaining sections centers on the distance of AN

codes of a given length, so we proceed with definitions and discussions on

these terms.

By definition, an AN code in ZM is the set

C(M,A) = [xIxEANmodM for all Ne Z }

generated by A of modulus M= AN_, for fixed A, NRe Z+ . If we support

Rl
C(M, A) with the algebraic operations of ZM , as shall be assumed, then the

AN code becomes an idealin Z The AN code's information range is the

M
integer NR=M/A while the code-words are the integers AN for 0$N<NR .

(2.7

In some situations it is convenient to extend the definition of an AN code to include

the empty code, in which NR = 0 is allowed; such a code is called imaginary.
The (minimum) distance dmin of an AN code is the minimum of the modular

arithmetic distances between all distinct code-words, that is

= i €
dmin min DM{xi, xj) for all xi;f-’ xj C{M, A)

= min AW(xi) for all nonzero X € C(M, A)

where the latter follows since the difference of two code-words is a code-word,
xj—xk=xie C(M, A), and vice versa. If the code is imaginary, thatis C(M,A)=¢,
the empty set, then we take dmin = 0. By the code-length n of an AN code is

meant the minimum integer n for which M = ANR <2".

The whole purpose of coding is to detect and/or correct errors, where for

an AN code an error is an element of the set Z_  _-C(M,A). Thus, given an ele-

M

ment xe Z an error is detected if ]

M X| p

# 0 where we introduce the notation

(2. 8a)

(2. 8b)

] |A for modA, If error correction is desired by means of an AN code an element

E=0modA is decoded into a code-word in C(M, A} with the help of its syndrome
S(E) , where for any X€ Z we define S(X) = IX] A Associated with a nonzero

syndrome is a rule which relates S(E) to the error value giving a correction

which may then be subtracted from E . Error correction of all errors having an

upper bound on their modular arithmetic weights is possible if each such error



has a distinet syndrome with respect to A so that there is no ambiguity in
obtaining the error value. For example, when AW(.) serves to define 2

metric on Z if dmin32t+ 1 then syndromes can be assigned such that

)
the AN code-gicodes xe ZM to ANx which minimizes DM(x, ANx).s t, if
such exists; otherwise it flags that an error has been detected. In this case
all errors E are corrected having AW(E)<t, Massey and Garcia (1971)
[p.291] .

Since AN codes are at times practically implemented as multiresidue
codes we end this section with a discussion of the latter. By definition a

k-residue code G(M,b), b= (bl,b - ’bk) , is the set of (k+ 1)-tuples
(V denotes ''for all'')

rA

G(M,b) = [(x,xl,xz,...,xk)lxi= |x|bi for i= 1,...,k,VerM}

The bi (i=1,2,...,k) are called the check bases, M is the code modulus
and the (k+1)-vector(x,x), x = (x1 EITERRY :ﬁ() , is called the multiresidue

code-word. As an example,
G(7,(3,5)) = {{0,0,0),(1,1,1),(2,2,2),(3,0,3),(%41, 4, (5,2,0),(6,0,1)}

Addition, ® , of two multiresidue code-words X = (x,x) and Y = (y,Yy) is
defined in G{M, b) by

XBY = ([x-[-'y'IM, [x1+y1-chb yeees |xk+yk- cM[b)
1 k
where

0 ifxty<M

€ l1 ifx+y2 M

As a consequence, the multiresidue code is closed under addition. Further,

if bi divides M for all i then,

XY = (| x+y|M . |x1+ Yllbl reens ka+yk|bk)

0

(2.9)

(2.10)

(2.11a)

(2. 11b)

(2. 1lc)



Practically, a multiresidue code is implemented by a processor work-
ing in parallel with 'k checkers. Operations in the processor are carried
out module M and those in checker i modulo bi for i=1,...,k. Thus,
it is evident why multiresidue codes are called separate codes. The syn-

drome of a separately coded word X = (x,x) is defined as the k-vector

d(X)=8=(s5,8,...:5) (2.12a)
where

si=|x-—xi|bi i=12,...,k (2. 12b)
For example, for the code of (2.10) we have
£((6,0,) = (]6-0],, [6-1],) = (0,0) (2.13)

It is easily seen that the syndrome of a multiresidue code-word is the 0
vector. However, if an error e occurs in the processor it yields the syn-

drome

A(X0(e,0)) = (Je]y s-venfe]y, ) » XeGMb), ecZ (2.14)
1 .k

M
where X is the correct multiresidue code-word.

It is shown in Rac and Garcia (1971) that for every AN code C(M,A)
there exists a multiresidue code G(M,b) with A = LCM {bl’ v bk] such
that every error that is correctable by C(M,A) is correctable by G(M,b),
that is, if unique syndromes exist for such errors in the former case the same
is true for the latter case. This will be used further in Section VIII but we do
mention here that the information range of the multiresidue code is 0 ¢ N<AN

R

in contrast to OKN<N_ for the corresponding AN code.

R



"And would be stars scintillating
For calm nights" Neto (1968)

III. Necessary Conditions for d_ ., > 2°
min

Necessary conditions for achieving large dmin by general AN codes
have been stated by Kondrat'yev & Trofimov (1969) [ p. 86] , though they
scarcely sketched a proof, We comment that what is of interest, once an
A is given, is the choice of code modulus M, or equivalently the code

length n.

We use the standard notation (mi, mj) = 1 to mean that mi and m,

are relatively prime,
THECREM 1:

Let an AN code be formed with

having the_ mj pair-wise relatively prime (and ordered), that is,

(mi,mj)= 1, rni> mj>1 for all i>j for all je {1,...,r - 1}

Then necessary conditions for dmin> Zs are that r> s and the

code length satisfies =9
n<n_ = minimum of (.'rrI m.+ . T m,)
° over all Jeh 132 ) Jels )

nonempty disjoint
partitions of

[l,...,r}=_fl I

i=1 1t

Proof: We first observe that A is 2 code-word and on multiplying out the

terms of (3.1a) that there are 2¥ terms, or perhaps fewer in its NAF, in which

case 2° <dmin‘s AW(A)L 2t , by (2. 8b); hence, necessarily s<r.

(3.1a)

(3.1b)

(3.2)



Consider next the integer, for some partitionof {1,...r} ,

s
L= (2"’1 -1) where g =n m,
. i=1 jeIi

where the nonempty, nonintesrsecting sets of integers Ii contain all
integers 1,...r, thatis, igl Ii ={l,...,r} . We observe that L is
divisible by A and hence a candidate for a code-word and/or modulus.
However, AW(L)< 28 , since L has at most 2° terms in its NAF ex-
pansion, in which case we cannot have L as a code-word. Consequently,
since L is divisible by A, ANrS L while ANr <2 by definition of n .
Partitioning the integers such that the highest exponent of L,
# m+ v m+ ...+ ®m m,_, is minimized gives the minimum
jer, b jer, jel
such IL; this exponent is n, of (3.2) . Since the next highest power of 2
in L is subtrgctive we see that the greatest lower bound on n is n_ i, e,
ANr< minL. < 2 ° from which (3. 2) necessarily follows. Q.E.D.
It is worth commenting that (3.1b) is merely for convenience.
Indeed if the mj are not relatively prime then the same theorem holds
except that rrmj is replaced by LCM {mJ} in (3. 2). However, the use
of m, which are not relatively prime leads practically to inefficient coding
so is Jscarcely cor'lsidered in the following. We illustrate the theorem

-~

numerically for a simple but interesting case.

EXAMPLE 1: .

Let it be desired to create an AN code with drnin> ?.2 = 4 using the
smallest possible A of the form of (3.1). Then r = 3 and we wish, in the
first instance to consider m, = 2, m, = 3, m3.= 5 or

1 2
A= i3y 2%y = 651 = 2%+2742% 2%

where the right side is the NAF, showing W(A)=5. The set of L's,

. 3)



(3. 3), are

2- . -
L, = (2 3 p@5n=22 30 0 % 3= 2t e 2’ 4 1= 1953234
13 .10 .3
L, - (27 51y (2 22 5GBS 2T L 7161= 11- A
3.5 : :
L= @35y 2y=2¥ 5+ 22223 5 h1= 212 2% 1 1= 98301= 151 A

3

Thus the minimum L is L1 from which we see that
mlmz-l- m3;Ll= {1, 2}, I,= {3}
n = 11=2.3+5=min m1m3+m2;11= 1, 3},12={2]
m,m,+ m1;11= {2, 3], Iz={ 1}

Consequently, we require M=ANR= 651NR< 2048=211 . The maximum NR

satisfying this inequality is NR= 3. Choosing this NR gives M=3A and
the AN code is C(3A,A)={0,A, 2A]} in the ring Z3A= {0,1,...,3A-1} . In
this ring A = 2A and always W(A)=W(2A) . Hence, d . = 5522 for the
largest possible n,n= no= 11, and thus, the conditions of Theorem 1 are

seen to also be sufficient in this case.

1Of winters rainy and cold" Neto (1968)

IV. Insufficiency of the Necessary Conditions

As will be used extensively later, in the special case of s= 2 the
necessary conditions of Theorem 1 are known from Kondrat'yev and
Trofimov (1969), [p.90] , to be sufficient to guarantee dmin> 4=2% .
Consequently, the code of Example 1 does have dmin>4 , as has already
been seen by inspection. However, we show here by (counter-) example
that for s>2 the conditions of Theorem 1 need not be sufficient for any
n>0.
EXAMPLE 2:

Consider an AN code with m, = 3, m2=4, m, = 5, m,= 7 , that is,

2'19“217 14 .12 .8 6, 6.3, .0

A= 23y ety 2>y -y = +2 5 2%2%27 271 2

-9-



where the NAF on the right shows that W(A)=8 . Consequently, any
AN code generated by A must have dmins 8 . However, if thescon-
ditions of Theorem 1 were sufficient they would allow drnin>8=2 R
since s=3<4=r would be possible for some ng n = 3.44 54+ 7= 24

calculated according to (3. 2).

We, therefore, conclude that in general additional constraints on
the mj are necessary to obtain drnin>25 for some n satisfying (3. 2).
Indeed since we would desire at least one nonzero code-word, meaning-

r
ful n are n> ¥ mj , the highest exponentin A .

j=1

"And would be light to greet the gazelles
That graze insecure
In the fields that host immense life .Neto (1968)
V. Sufficiency Results
Our main result, Theorem 2 of this Section, will give a constructive
method for designing a code with dmin> 2% for any s . Because of their
multiresidue implementation we are most interested in those A having the

form given in (3.1a) . However, the primary result of Theorem 2 is more

general and hence given for arbitrary A .

THEOREM 2:
Given an AN code with minimum distance dmin’ length n and infor-

mation range NR’ the A'N code formed with

A = A- (2™ (5.1a)
has minimum destance d' , =2d , , with N§{=NR for a code length
min nmin
m+n if
m > n+l (5.1b)

-10-



j1 j2 jc1+ t
Proof: Let d= dznin and A-N=2 "£2 £...2 be any codeword in NAF

for the code generated by A, where jls n and jd-l-t: 0, t2 0. Then

: jtm jytm g tmo§) o d, ]
AVN=AN-2Pn=2) w22 ..x29Tt wplap? g dft
Now, since m2>n+ 1 and j1~$ n, jd+t+m-j1> 1. This all the 2(d+t) terms
of A'*N are nonadjacent, since AN was originally in NAF, and A'-N consists
of A-N shifted by m places added to-A'N (which has the same weight as A-N).

Thus, AW(A!. N)=2(d+t) .

Thus, given any codeword AN in the original code, we can show that its
weight is doubled when multiplied by 2™_1. We also observe that the informa-
tion range of the new A'N code is the same as that of the original AN code, from
which we conclude that every A'N codeword can be written as A:N- (Zm-l) .
Since every codeword is the original AN code has a vs.;eight at least d, the min-
imum distance of the A'N code is seen to be at least 2d . Q.E.D.

To achieve a construction of large distance codes having A of the desired
form of (3.1a) we iteratively apply (5.1) to an initial A formed according to the
known, but little recognized, results for dmin> 22 of Kondrat'yev and Trofimov
(1969). We thus state the latter here for reference but without proof. We do
point out that the code-length definition we use is numerically one greater than

that used by Kondrat'yev and Trofimov in their proof.

THEOREM 3:
Let an AN code be formed with

™
, @

I ar

A =
J

having

(rni,mj)=1, mi>mj>1 Vi>j Vjell,,,r-1}

Then dmin> 4 for all r> 3 and all positive n satisfying

n<n_ = minimum of
o
over all
nonempty disjoint
partitions of

{,...,r}= 11UI2

J.m,+ .7 m,)

11

(3. 1a)

(3. 1b)

(3. 20



In other words n< n, is a necessary and sufficient condition for dmin> 2°
for 2=s<r . Using any A and n satisfying Theorem 3, Theorem 2 can
be iteratively applied to obtain AN codes with A of the form of {3.1a) and
s
. > . .
having dmin 2" for any integer s22
Theorems 2 and 3 give a lower bound on dmin for the chosen code.

In some cases it may be of interest to also fix an upper bound. For this we
can fix the code modulus M= ANR such that a code~-word of weight 23+ !

eI 8 .
occurs within the code for dmin > 2 ; such a code-word is

s+1 T m,
AN= n (@4 oy (5. 2)
i=1
s+ 1
where the sets Ii are those for which the minimumof ¥ (7 m,) occurs
i=1 js:Ii

when taken over all s+1 nonempty disjoint partitions of {1,2,..., ri= IIU' 56 UIs+ 1°

+
Consequently, we can obtain 25 1; d . > 25 .
min .
iy
The s=1 situation, where ng = -rr1 mj , is worth a comment. In this
J:

case the necessary conditions of Theorem 1 are seen to be sufficient also.
Likewise, in this s=1 case, dmin= 4 is known, Kondratiyev and Trofimov
(1969) [ p. 86] (though some mj> 3 must be held, Monteiro (1972)). The s=1
code is of some interest since it is the only cyclic code of this class.

Some example codes are given in Table 1, along with their information

rates, as defined in the next section.

1A motor that impels the impossible
Toward the reality of the hours;
A harmonious chant to the magnificance of man.' Neto (1968)
VI. Relation to Repetition Codes - Information Rate
The codes treated here can be looked upon somewhat as repetition codes,
Massey and Garcia (1971) [ p. 305], with, however, a change in sign in the repeti-
tion. To see this we define an A'N code as one formed via Theorem 2; we then

note that every A'N codeword is of the form

AlN= A-N- (2™-1) = AN 27 - AN (6. 1a)

]



In the right hand expression there is, in view of the constraint m2n+1,
no overlapping of the two terms; that is, the term AN2™ isa repeti-

tion of -AN with a sign change. In contrast a true repetition code, called

here an AE-{N code, would have

A N=AN 2™+ 1)

With the choice m=n the latter yields cyclic ARN codes when the ori-
ginal AN code is cyclic, since Mp=Ap-Np=A- NR(2m+ )= (2"-1) 2"+ )=

R R
ZZn“

noncyclic.

From the repetitive 'nature, it is clear, on observing (6.1) that the

distances of the ARN and A!N codes are twice those of the original AN

1. This is in contrast to the situation with the A'N codes which are

(6.1b)

code when subject to m2n+1 (the +1in n+1 being to preserve nonadjacency).

In terms of information rate, for the same choice of m the A'N codes

are just slightly better than the ARN codes. Thus, on defiing the information

rate by, Massey and Garcia (1971) [ p. 296],
1c>g2NR

IR = ———
logzM

we have for the codes of Theorem 2

log 2NR

IR' =
m
log2A+ logzNR+ logz(z -1)

while for the corresponding repetition code

log N
IR_~= L

log2A+ logzNR+ 1og2(2m+ 1)

Thus, for the same value of m always IR' > IRR though the difference for

large code lengths is negligible.

=-13-

(6.2)

(6. 3a)

(6. 3b)



"A poem closed within itself
To be understood
From the brightness of the sky
And from the upright character of man'  Neto (1968)

VIiI. Error Correcting Properties

The relation between the minimum distance of an AN code in the infi-
nite ring, Z , and the number of errors it can correct (or detect) has been
given by Massey (1964),[ p. 7] . In his proof of the result Massey has used
the fact that the integer ring Z is a metric space with the arithmetic dis-
tance as the metric. More recently, Massey and Garcia (1971), [ p. 290],
have shown that for AN codes in certain finite rings, the modular arithmetic
distance is still a metric function if M, the code modulus (or ring modulus)
is of the form Zk or Bki'l . Hence, all such codes have the same relation
between the minimum distance and error correcting properties as those in
infinite rings. However, the general question, as to what happens if the
modular arithmetic distance is not a metric, is still not completely answered.
Moreover the relationship between faults in equipment versus errors as mathe-
matically defined here needs investigation, particularly when there are rore
than one end-around carries. We will, however, now establish the relation
between minimum distance and error correction capability when M is of the
form

5211 T e jer ™
M= (2 -1)(2 -1, .. (2 - 1) (7. 1)

with the mj partitioned as for n_ of (3. 2) in Theorem 1,

We will first show, by means of an example, that when M is of the form

(7.1), the modular arithmetic distance is not necessarily a metric,

EXAMPLE 3:
Let M= (25-1) (26-1)= 1953 and consider N1= N2= 329 and N3= N1+ N2=

1858. Then AW(N)= AW(N )= min {W(929), W(1953-929)}=1 and AW(N,) =
min {W(1858) , W(95) }= 3 hence

3= AW(N +N,) > AW(N)+AW(N,) = 2

-14-



Consequently, the modular arithmetic weight on Z quivalently the

1953 or e
arithmetic distance, does not satisfy the triangle inequality which is an essential

property of a metric.

Even though modular arithmetic distance does not define a metric on ZM
the error correcting properties are essentially those of a metric space under a

slight modification of the conditions of Theorem 3. These modifications and the
relationship of the error correcting properties to the minimum distance are now

presented,

THEOREM 4:
Let an AN code have d . >2° with
main

r m.
A= ¢ (2 -1 (3.1a)
j=1 :

and having r>s>1 with

(mi,mj)=1, mi>mj>1 Vi>j Vje{L2,...,r-1} ; (3.1b)

be formed according to Theorems 2 and 3 using m2n+2 at each
step of application of Theorem 2, then the code is capable of correct-
ing all errors of weight 23-1 or less if M, the modulus of the code,

satisfies (7.1).

Outline of Proof: We will only outline the proof here, as details which are leﬁgthy,
are provided in Monteiro (1972). Since distinct syndromes lead to distinct errors
of weight Zs-l or less, the proof consists in showing that any two errors having
weights 25-1 or less have distinct (modulo A) syndromes. The condition for this
results by showing that all multiples of A in the range M <AN<2M have an
arithmetic weight greater than 25 (those in 0 <K AN <M do by assumption); the
upper bound 2M results by considering the addition of two numbers less than M.
This condition is first shown to be true for s=2 and all r . Finally, by induction

this condition is shown to be satisfied for all s, completing the proof.

-
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By means of Theorem 4 we have established that the relation between
the minimum distance and error correction capabilities of such codes is the
same as that for AN codes in infinite rings, hence, the modulus M can be

used in the implementation, which we shall now discuss.

1"To the beauty of virgin forests
And the precision of gears, of existence
Over the barbaric rattling of machines
And the aspiration of man" Neto (1968)

VIII. Code Implementation
The implementation of AN codes involves three main aspects: (1) the
encoding of an AN code consists of multiplying the information integer N by

the code generator A . (2) Syndrome generation consists of obtaining the resi-

due of the result modulo A . (3) Syndrome decoding and error correction in-

volves determining the error magnitude and polarity from the form of the syn-
drome. The error is then subtracted from the result. Syndrome decoding is
by far the most complicated of the three steps involved in the implementation
of AN codes. |

In the following treatment we shall briefly point out the advantage of using
A of the form (3. 1la), that is, A=j11i1 (2 j-l) , in the processes of encoding and
syndrome decoding. Finally, we will discuss the implementation of these codes

as multiresidue codes and the limitations of such an implementation.

Encoding . Generally, for arbitrary A, a multiplier circuit is needed for form-
ing the product A.N . However, in the case where A is of the form in (3. 1a)
we can perform the operation by means of the schematic presented in Fig. 1.
Using Fig. 1 the operation of multiplying N by A takes r cycles where r is
the number of factors of A . In each cycle the number Ri is shifted by the |
variable shifter to form ZmIRi . Then both Ri and its shifted value are fed
into the subtractor, to form Ri+ 1= (2‘.mi-1)Ri . The gating is accomplished by
using a D-flip-flop array which on the arrival of clock pulse Py holds Ri at its

output until the arrival of Pyl at which time R, is transferred through.

i+1
The heavy lines in the figure indicate multiple bit signals to represent the numbers

being handled.
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Syndrome Generation, We recall from Section II that the AN code syndrome

of a number X is defined as S(X)= |X]A . A nonzero syndrome indicates
an error in the result X ., It is important to note with Sitnichenko (1970)
and Peterson and Weldon (1972) that practically obtaining the residue of a
number X modulo A can be cumbersome if A is not of either of the forms
Zk or Zk-l (which occurs with r>1 for our A). This being the case, we
proceed by first finding the residues of X modulo the factors of A to form
a vector é(X) to which the Chinese Remainder Theorem, LeVeque (1958),

can be applied to yield the actual syndrome S({X) .
r m, .
For A =j1_'r1 (2 J_1) we define the r-vector S(X) by

~ m,
S(X)=(|x.|b1. |X|b2,.... |X], ) » b.=2 71 (8.1)
I

J
Because of the form of A . é(X) is easier to generate than S(X) . Indeed
each of the components !le, ., j=t, ..., r, is readily generated at rela-
tively low cost using the well-known “tree" method, Sellers, Hsiao and
Bearnson {1968) [ p. 79], for finding the residue of a number modulo 2_k-1
for some k. The Chinese Remainder Theorem assures us that a given
é(X) yields a unique |X|A= S(X) insuring that syndrome decoding for g(X)
is equivalent to that for S(X) . Indeed S(X)=0 if and only if 5(X)=0 so
that any error detected by S(X) is detected by é(X) and similarly for error

correction. Consequently, we need not really calculate 5(X) if S5(X) is known.

Syndrome Decoding. This is a complicated problem for errors of large multi-

plicity. Tsao-Wu (1968) has suggested a method for the decoding of syndromes
of cyclic arithmetic codes. However, his method cannot be applied as such
here, as our codes are non-cyclic., The form of é(X) does enable us though
to use 2 method similar to that described in Monteirc and Rao (1972) for multi-
residue syndromes of single and double errors. In essence the method, which
- is detailed in Monteiro (1972) cycles a syndrome to a canonical double error
form, the canonical forms being relatively few in number. The canonical
double errors are stored in a read-only memory which is accessed when a
canonical syndrome is reached by cycling. The actual, double or single, error

is found by a reverse shifting of a canonical error. For errors of greater
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multiplicity we propose to stop at detection, as no simple method is known

for decoding syndromes of errors of large multiplicity, and our limited pre-
sent knowledge requires checking circuits that could be more complex than

those being checked.

Multiresidure Implementation. For multiresidue codes the syndrome is gen-

erated in 2 manner similar to that for :S(X) , as shown by (2.12) . Conse-
quently, given an AN code with A J:r (2 i -1) the equivalent multiresidue
code, which has bJ- 2 ™ -1 as the moduli for its checkers , has the advan-
tages of syndrome generation just mentioned for S {(X) . Likewise, the ex-
pansion of the code range from NR to ANR , as mentioned at the end of
Section II, occurs. Encoding for these multiresidue codes is also relatively
straightforward consisting of forming residues, also of moduli b, =2 i -1,
However, when r is very large the question of failure of the che‘z:kers be-
comes as important, and as difficult, as that of the main processor. In fact,
if we try to make what seem as reasonable assumptions regarding checker
reliability and the number of units that can fail at any given instant, the in-
formation range drops sharply when r> 3, Monteiro (1972) . Consequently,
at this point in the development of the theory implementation of an AN code
for r> 3 in its non-separate form is recommended, instead of the mutiresi-
due implementation.

Héwever, for the case when r =3, multiresidue implementation of an
AN code does seem warranted. Such has been carried out in Monteiro and
Rao (1972) for A of the form of (3. 1la} thus enabling double error correction
and triple error detection through use of the syndr.ome vector of (2.12) using

check bases bi= Zmi-l, i=14,2,3.

1A poem traced over strength
Sculptured in Love
A poem solution
Resolving the interrogative curve of an image
In a straight line of affirmation." Neto (1968)
IX. Conclusions
The codes of Kondrat'yev and Trofimov (1969), as summarized in Theorem 3

are used as a basis for iteratively deriving, through Theorem 2, large distance
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T

m-l
AN codes having A of the specialized form A =m, (2 sy |

However, Theorem 2
allows the consideration of other than the Kondrat'yev and Trofimov codes for
initial choices in iterations. Thus, should more efficient base codes become
available Theorem 2 can be used for increasing their distance to arbitrarily
large values. As seen in section VI the codes presented are closely related

to repetition codes, though as discussed for multiresidue implementation are
more convenient for some purposes.

Because of the form of A the codes discussed are easily implemented as
multiresidue codes where only residues modulo ij-l , rather than modulo A,
are evaluated for the checkers. Such an implementation seems quite practical
for r=3, as discussed in Section VIII, but, for larger r, problems in checker
reliability seem to indicate that alternate means of implementation would be
more profitable. Consequently, we propose at this point to encode these large
distance AN codes by using Fig. 1to obtain the multiplication, based upon r
multiplications using the ij-l , and then decoding through the syndrome
equivalent vector g(X) of (8.1). Since syndrome decoding eventually comes
down to "'table look up" perhaps after shifting to canonical form, Monteiro
(1972), it does presently seem impractical to correct more than two errors.
Consequently, these large distance codes seem best adapted to the correction
of at most two errors allowing then the detection of at least 2°-4 other errors.
In the end, however, it must be admitted that the problem of determining the
actual error value, once an error is indicated, is a complicated problem, re-

gardless of the class of codes used, when multiple errors are considered.

"A poem closed't Neto (1968)
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Figure Title

r Tl
1.  Scheme for Obtaining the Product A+ N where A:J.g1 (2 J-1);

pi are Clock Pulses at Instants i=0,1,...,r+1; FF and D-FF

Denote RS-Flip-Flops and D-Flip-Flops.



Table 1

r m,
Information rates for some AN codes with A = J.1_'r1 (2 J-l) and d>2° |,

r m,
A= (2 ) 5 length rate
2°-1) (2°-1) 271 2 37 0.515
(2°-1)(2°-1) 271y ¥y 3 78 0.244
2’18y 2% 287 237y 4 269 0.152
"1 28y 2%y 2Ly 2131y 2853y 3 1300 0. 46

2'-1 2% 2% (22 2Pl (2395 4 , 605 0.188
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