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By intraducing a multivariable form of Tellegen's Theorem and e generalization of
energy functions, the pogitive-real nature of immittance matrices of finite networks
composed of resistors, pi-plane inductors and capacitors, all non.negative, trans.
formers atd gyrators, is proven, as well as the lossless constraint. Multivariable
resctance functions are investigated and the relation between such functions and
multivariable Hurwitz polynominls is proved.

Notations
p=o+ jw=p, the complex frequency variable,
p;=0c;+jw; complex variables, 1 <i<n,
p=o+jw the n vector of variables=(p,, Py .-, Pu) of real and
imaginary parts ¢ and w,
Re p=0>0 real part of p;>0, for all 4, 1 <i<gn,
p® a fixed point, generally in the open polydomain o >0,
Z(p) open circuit impedance matrix of the n variables p,,
Z(p) transpose of Z(p),
Z'(p) complex conjugate of Z(p),
Z.p) Hurwitz conjugation of Z(p), ie. Z(—Pp) obtained by
change of signs of all independent variables in Z{p),
Z+2'>0 the left-hand side is non-negative Hermitian,
z{p) a multivariable positive real function,
z(p) a multivariable reactance function,
1,, identity matrix of order m,
|[£,(p}] magnitude of multivariable function,
|¢(p)| 21, for |$(p)| <1, for Rep>0, |#(p)| =1, for Rep Re p=0 and

1. Introduction

Re pZ0, |4(p)|>1, for Re p<O.

A restricted class of multivariable real rational funetions, the positive-real

ones, was introdueced by Ozaki and Kasami (1960}.
lhas been made in the use of these functions.

Considerable progress
However, as several independent
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complex variables are involved, the explanations for the basic nature of these
functions and the reasons for characterizing classes of networks by the accepted
definitions for these functions, are either often incomplete or confusing. This
is especially so as Brune’s (1931, p. 196) original energy arguments cannot be
justified on physical grounds as in the single variable case, and this often
tends to obscure the implications of the multivariable positive-real Property.
Nevertheless, the ‘ energy functions * approach (Guillemin 1957, p. 5, Bello
1960) can be naturally extended, as we do here, and then the multivariable
positive-real concept can be formulated by generalizing Tellegen’s Theorem
(Penfield et al. 1970), as we do in §2. This is shown to provide not only
insight into the multivariable positive-real property but also gives meaning
and proper justification to the basic definitions for multivariable positive
real matrices and functions.

It is well known that non-negative resistors, inductors and capacitors,
whose impedances are functions of the complex frequency variable p=p,,
are necessary and sufficient to synthesize an arbitrary rational immittance
driving-point function characterized by the single variable positive real
property (Bott and Duffin 1949) while the addition of transformers and
gyrators gives the same result on positive-real matrices (Newcomb 1966).
The question next arises as to what the restrictions would be on the immit-
tance matrices and driving-point functions of a network that is comprised
of non-negative resistors, inductors and capacitors, elements with impedances
of types pJ; and 1jpc;, for i=2,3, ..., n, where the p/s are in general,
independent. complex variables (independent of each other as well as of P1)
and the I/’s and ¢;'s are real, non-negative constants. Any form of electric
or magnetic passive reciprocal coupling between elements could be considered
present, whenever appropriate, as well as gyrators.

In § 3 the multivariable positive-real matrix concept is formulated for an
m-port comprised of elements of the types just mentioned, after introducing
a multivariable form of Tellegen’s Theorem in §2. In §4, the lossless
constraint for multivariable m-ports is also proved using Tellegen's Theorem.
Multivariable reactance functions are investigated and the multivariable
counterpart of Foster's reactance theorem is proved using the formulation
arrived at earlier. In §35 the relation between multivariable reactance func-
tions and strictly Hurwitz polynomials is proved using the maximum modulus
theorem for analytic functions of several variables.

2. Tellegen’s theorem

Consider an m-port network which, when closed on sources, contains a
finite number of branches. the branch variables being assumed to be functions

of the » complex variables p=(p,, p,. ..., p,). Then, tie-set equations can
be written as (Newcomb 1968, pp. 28-29)
Itp)=TJ(p). TV(p)=0 (1)

where 7' is the transpose of T the tie-set matrix {with constant elements),
J(p) is the matrix of loop currents and I(p). T'(p) are, respectively, the column
matrices of branch currents and voltages. 1f ¢[/(p)] is a linear operator,
operating on the components of I(p). then operating on 7(p), multiplying by
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V(p) and using (1) gives Tellegen’s Theorem {Penfield e al. 1970, p. 14)
generalized to the multivariable case

ol{p)1V (p)=0. (2)

Partitioning I(p) and V(p) into source and internal loop components denoted
by subseripts s and 1, one can rewrite (2), using proper polarity conventions,
as

o1 (P1Vp) =PV \(P) (3)

Next consider an m-port of this type whose internal branches have impe-
dances giving a loop impedance matrix

Z(p)=R+ ¥ PiLi'*'l 8y (4)
i=l D
where L; and C; are real, constant, symmetric non-negative definite matrices,
and the symmetric part of the real constant matrix R is also non-negative
definite. That is, the m-port is constructed from a finite number of resistors,
p;-plane inductors and capacitors, all non-negative, and transformers and
gyrators. Such a network we will call positive.
If Z(p) denotes the open-circuit impedance matrix of the m-port, then (3)
gives
O (p)IZ(P) (P) = LI (P))Z\(P) \(P) (5)

where 7 (p) can be arbitrarily chosen.

3. Paositive reality

We first extend the definition of positive-reality (Newcomb 1966, p. 96)
in the obvious way, where Re p>0 means ¢;>0 for all 7, and the upper
asterisk denotes complex conjugation.

Definition 1
An m x m matrix Z(p) of the multi-variable p is called posilive-real if,

(@) Z(p) is holomorphic in Re p>0,
() 2'(p)=Z(p")in Re p>0,
(¢) Z{p)+ Z'(p) is non-negative definite in Rep>0.

Note that in the 1-port case, Z{p)==(p), condition (c) is the standard condi-
tion Re z(p)2 0 in Re p> 0.

We will show that positive networks, those discussed in § 2, have positive-
real impedance matrices. First we recall the Theorem of Osgood (Gunming
and Rossi 1965, p. 2):

A function, f(p), of # complex variables, continuous in an open poly-
domain Re p> 0, is holomorphic in this polydomain if and only if it is
holomorphic in each variable separately.

Tt now follows that for the class of networks under consideration Z{p) is
holomorphic in Re p>0, that is, condition () of the positive-real definition
is necessary. This is a consequence of taking p to have all components fixed
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but one, in which case Z(p) becomes a positive (but not necessarily real)
matrix in that one variable, by virtue of (4) (Belevitch 1968, p. 71), for which
condition (e) holds for that variable. If I{p) iz chosen holemorphic in
Re p>0 then one can also assume 7 (P} holomorphic in Re p> 0, as will be
needed in the next paragraph.

To prove condition (b) we choose ¢ - ] in (5) to be the identity operator,
then it is seen that for p real, Z(p) is real in Re p> 0 (by using (4) and choosing
1(p) real, which then generates real I P)). Finally, to prove condition (c)
@[ - ] is chosen to give the complex conjugate, i.e. [I(p)]=1'(p), then

ISPNZ (0) + Z(P) )P = I (P)IZy () + 24(P) ) y(p) (6)

from which, it follows, using (4) and the foregoing holomorphicity condition
on Iy(p), I,(p) and Z(p) that 2'+Z>0 in Rep=0>0. Thus, using the
generalized version of Tellegen’s Theorem we have proven :

Theorem 1

The impedance matrix of a positive network is necessarily positive-real
{(and rational).

The converse oceurs in Koga (1968),

We comment that the class of networks under discussion does give rational
Z{p). However, the technique used also applies to the same class of networks
but with possibly an infinite number of branches, in which case condition 1))
cannot be relaxed to read for any p, since 7 i{p) at (6) need no longer be rational
in p, and condition (z) must be postulated since it does not follow from condi-
tion (c). In contrast, as with the single variable situation, when Z(p) is
rational, condition (¢) can be shown to yield holomorphicity, condition (a).
Although this analyticity is often accepted (Koga 1968) its proof depends on
some nice properties of functions of several variables. Towards the proof
we first note that clearly, for any m vector I (P) at a point of its analyticity

I'IZ'(p)+ Z(p) 11 (p) =2 Re [I'(p)Z(p)I (p)]. (7)

Then assume the presence of a singularity of f(p)=1I'(p)Z(p)i(p) at p=p®
in Re p>0, where, since Z(p) is taken rational, p® will be non-essential,
though of the first or second kind (Kaplan 1963, p. 67). First assume that
the singularity is of the first kind and expand the single variable function

2(01) =T (P)Z(P)I(P) [ py . ..y pus

about the point p,=p,® in & Laurent series. Then, of course, Re g(p,)
changes sign in a suitable neighbourhood of p,=p,®. If p® js a non-
essential singularity of the second kind then it is known that the locus of the
hon-essential singularities of f(p) is of dimension (2n — 4) in a space of dimension
2n ; therefore these cannot disconnect the space (Kalplan 1963, pp. 65-67).
In fact, if {(p) were a function of two complex variables, i.e. if 2 =2, then the
non-essential singularities of the second kind would form a set of isolated
points. As the domain of the rational multivariable meromorphic function
/(p) including singularities of the first kind and excluding those of the second
kind is connected (Kaplan 1963, P- 66) it follows that in an arbitrarily close
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neighbourhood of p®), there must exist a connected space containing singu-
larities of the first kind. Any such singularity at p=p? with Re p"> 0 in
the neighbourhood of p=p® is considered, and by the argument advanced
previously from a Laurent series cxpansion of a single variable, it results
that Re §i(p,) changes sign in a suitable neighbourhood of Py=2," where
again

f(p,) = I‘(P)Z(P)I(P) |pas it ..oy o = paith

is a function of a single complex variable.

The definition of positive-reality of course holds for L-ports. Thus, i in
(6) all current sources except the one at the ith port are deactivated then {6)
reduces to

1 & i
24(P) =5 1L (P2, (P) + Z,(p))1,(p) (8)

|si

where z;,(p) is the driving-point impedance at the ith port. Equation (8)
is then a useful representation of a driving-point function from which the
positive-real nature ean be deduced.

4. Reactance matrices and reactance functions

We now consider that in (4) the matrix R is skew-symmetric, implying
that resistors are absent in the m-port. In this case a positive network is
called lossless. Now let O -] be such that it vields the Hurwitz conjugate
(replacement of p by —p), ie. O[/(p)]=1.(p)=I(—p). Then (5) vields

1.(p)Z.(p)+ Z(p) ]/ p) =0 (9)

for all p since the right-hand side vanishes using (4). Since (9) holds for ail
1(p) it follows that besides being positive-real, the impedance matrix of a
lossless m-port satisfies

Z(p)= —2(~p) (10)

A positive-real matrix satisfying (10) is called a reactance matrix. Of course,
by duality the admittance matrix satisfies identical constraints while the
transformation

S(P)z(z+1m)—](z_1m) (ll)

vields the bounded-real constraint (Newcomb 1966, p. 94, Koga 1968, p. 4)
on the scattering matrix with S(p)=[S.(p)]~! in the lossless cnse {(Newcomh
1966. p. 101, Koga 1968. p. 5).

As multivariable reactance functions form a very important subelass of
multivariable positive-real functions, their properties will be derived separately.
In fact for some purposes practically useful networks consisting of Iumped
reactances and lossless commensurate transmission lines ean be characterized
by two wvariable reactance functions (Ansell 1964). Again, if in (4) the
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symmetric part of R is zero, and if all current sources except the one at the
ith port is deactivated, (5) reduces to

1 " Vv .
ZilP) =15 [ ) (P1‘Tt(P)+—j(—P))+J I’g(P)] (12 a)
I i=1 P
where
TPy =I(p)LA\p), Vip)=1I,(p)S:I (p) (125)
are non-negative semidefinite Hermitian forms for i=1,2,...,n, and jV «(p)

is a skew Hermitian form resulting from the non-zero skew symmetric part
of R. Now the left side of (12 a} is independent of I (p) and consequently
8o is the right for which we are free to choose any I (p). Thus we choose
I(p) real so that jV_ (p)=0, as this will not alter the properties of Z:(P),
the function under study. Similar results as those to be obtained below
can also be reached by maintaining j 7 (p) non-zero as has been done in the
single variable case by Su (1965, p. 80). However, choosing J.(p) such that
FVeP)=0, and |I,(p) =1, vields the more compact and manageable form

H 'I's
Zudp) =z (p)= ¥ (Pch(P)'l';“)-))- (13)

im] i

From simple arguments using (13), (10) and the positive-real nature of a
typical reactance function we conclude the necessity of the following multi-
variable extension of the single variable results (Balabanian 1958, p. 66).

Theorem 2

A non-zero multivariable rational function z (p} is a reactance function if
and only if

(1) z.(p) is real for p real,
(2) Re [z,(p)]Z0 for Re p30.

Here the symbolism means, for example, that Re z, <0 in Re p<0; it should
be noted that the behaviour for all p is not covered, for example, when
Re p,>0and Re p,<0. We see that these two conditions completely charac-
terize a rational z (p) as being a reactance function since such a z, is clearly
positive-real and (10) follows from its validity for p=jw since z,{jw) is a
rational form in w=p/j.

Some further useful results will be arrived at by using the representation
of a reactance function as given in (9). Consider any point p=p®), having
n—1 components fixed such that Re (p,)=Re (p,0)=0, for i=2,3, ..., n.
Then

)] I". ]f
any= e, (. L F i ST
2, (p) :';2 (.7"”1 Ti+jwl_|;1]) {oy +Jw1)Tl+(al+jwl) (14)

shows that if 7| and T, are not identically zero z (p®!}=0 cannot he satisfied
for o;#0. Furthermore, under these conditions z (p’)=0 will be satisfied
if o, =0 by some choice of w, since the right of (14) represents a structure of
complex resistors and single variable, jew,, inductors and capacitors (Belevitch
1968, p. 185). Therefore, zeros (and by the dual representation, singularities)
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of a reactance function of n variables will always show up in Re p=0 and none
will be in either Re p<0 or Re p > 0.

Next an extension of the well-known Foster's Theorem will be arrived at
using (13). The results to be arrived at have been given by Ozaki and Kasami
1960, p. 255) but the approach is different. Our technique makes use of the
Cauchy-Riemann equations for analytic functions of several variables
(Gunning and Rossi 1965, p. 4). From (13),

z2(p) =r(s, w)+ jz(c, @) {15)
where
o, w)= % (o +—2ili (16a)
e = : . B
'@ o \E o+ w?
d w, I,
(@, W)= N (R 16d
a’(ul w) .'21 (wl T Gi2+w52) ( )
From (16 a)
ar V;
= =T, +—L20, i=1,2,..,n 17
30; | emo ’+wi2 ] n (17
Applying the Cauchy-Riemann equations in several variables, it follows that
2 | >0, i=1,2,...,n (18)
awi [ a=0

except at points where z,(p) has singularities in Re p=0 (as the Cauchy-
Riemann equations do not hold here). Equation (18), which is the multi-
variable counterpart of Foster's Reactance Theorem, is included in the next
theorem.

Theorem 3

A rational multivariable reactance function z(p)=r(e, w)+ jxio, w) has
the following properties :

(7} z,(p) is holomorphic in Re p> 0 and Re p<0,

o .
%) — 20, i=1,2,...,
cw,- a=l

5. Multivariable reactance functions and Hurwitz polynomials

In this section the characterization for multivariable reactance functions
given in (13) is used to prove a useful relation between multivariable reactance
functions and strictly Hurwitz polynomials. Such a relation was proved in
& lengthy manner for the two-variable case by Ansell (1962, pp. 11-20).

First we define a real polynomial as one with real coefficients and then
turn to multivariable Hurwitz polynomials (Saito 1966, p. 354).

Definition 2

A real polynomial f(p) of # independent complex variables is calied a
strictly Hurwilz polynomial if it has no zeros in the closed polydomain
Repzo.




424 N. K. Bose and R. V. Newcomb
Then the following generalization from the single variable case is valid.

Theorem 4

A real non-constant polynomial f(p)={(p)+/,(p), with f, and f, relatively
prime even and odd parts, is strictly Hurwitz if and only if /,(p)//.(P) is &
non-zero n-variable reactance function.

Proof

Whether 2f,=/+/. and 2f,=f—/. are relatively prime or not can be tested
by using standard procedures (Bose 1971, Walker 1972, pp. 25-27).
If Part : Let f,/f. be a non-zero n-variable reactance function. Then g(p)=
folfo+1={f,+[J)/f. is an n-variable positive-real function, as is then 1/g(p)
which must have no zeros of f,+/, in Re p>0 by condition (a) of positive-
reality. By Theorem 2, f,/{.# —1 on Re p=0, therefore /,+f, has no zeros
in Re p=0. Whence f,+{, is strictly Hurwitz.
Only If Part: Suppose f(p) is a strietly Hurwitz non-constant polynomial.
Then [, 0 ns otherwise f=/, has zeros on Re p=0 by the arguments at (14).
Form

1t
¢(p)=f7°=;”;;°= ;‘"’ (P). (19)
T 2P
As [,/f. is an odd rational function, Re (f,/f.)(jw)=0. Therefore
|¢(p)|=1 for Rep=0. (20)

As ¢(p) is holomorphic in Re p20 (note that ¢(p) is continuous on the
boundary Re p=0), applying the maximum modulus theorem for analytic
functions of several variables (Bochner and Martino 1948, pp. 107-109), it
follows that in any arbitrarily large domain where ¢(p) is analytic with the
proviso that the domain is bounded, |¢(p)| <1, as f,#0. In other words,

|¢(p) <1, for bounded non-zero p in Re p> 0. (21)

It is noted that the result is generally not valid if the domain is unbounded,

unless |$(p)| approaches zero as |p,|*+ |p.|?+... + |p,|* approaches infinity

(Bochner and Martino 1948, p. 108). Also, as 1/¢(p) is analytic in Re p<0,
it follows similarly that |1/¢({p)| <1 in the any bounded portion of the domain
Re p<0. Therefore

|¢(p)| =1, for bounded non-zero p in Re p<0. (22)

Now ¢(p) is continuous in p for sufficiently large p,, hence, by (20), (21), (22),

|#(p){Z1 for Repso0. (23)
Using (19) and (23) it follows that

Re (;—“(p))éO for Repz0 (24)
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in which case Theorem 2 applies to show that f, /f, is & reactance function
when f,#0, as assumed.

6. Discussion

Here, among other things, we have proven the necessity of the positive-
real condition for positive multivariable networks. Previously there appears
to have been no complete proof and presently we are unable to proceed
through a direct energy consideration, as in the single variable case. Con-
sequently we have introduced a multivariable version of Tellegen's Theorem
which allows the straightforward proof to be given. Actually a close look
at the procedure shows that if at (4) we had Z,(p)=YZ{p,) with the Z;
positive-real, the same results can be obtained, that is, the Z(p) at the ports
will be positive-real ; further generalizations of the classes of networks allowed
for the validity of Theorem 1 can be thought up almost at will.

In Theorem 4 an extension of the single variable test is given for multi-
variable Hurwitz polynomials, the proof falling back upon the rather interest
ing Theorem 2. A method then of testing a multivariable Hurwitz polynomial
is to attempt a lossless synthesis of the odd over even part through a positive
network. As a consequence one would hope in the future for simpler such
syntheses than those presently available (Koga 1968),
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